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                                                                      Preface to the third edition        

 When the fi rst edition of this book was published in 2000, the assessment of quality

of life (QoL) as an important outcome in clinical trials and other research studies was,

at best, controversial. More traditional endpoints were the norm – measures such as 

disease status, cure and patient’s survival time dominated in research publications.

How times have changed. Nowadays it is generally accepted that the patients’ per-

spective is paramount, patient representatives are commonly involved in the design

of clinical trials, and patient‐reported outcomes (PROs) have become recognised as

standard outcomes that should be assessed and reported in a substantial proportion of 

trials, either as secondary outcomes or, in many instances, as a primary outcome from

the study. Indeed, in 2000 the term ‘patient‐reported outcome’ hardly existed and the 

focus at that time was on the ill‐defi ned but all embracing concept of ‘quality of life’. 

Now, we regard QoL as but one PRO, with the latter encompassing anything reported

by ‘asking the patient’ – symptoms such as pain or depression, physical or other func-

tioning, mobility, activities of daily living, satisfaction with treatment or other aspects

of management, and so on. Drug regulatory bodies have also embraced PROs and QoL

as endpoints, while at the same time demanding higher standards of questionnaire

development and validation.

 In parallel with this, research into instrument development, validation and applica-

tion continues to grow apace. There is increasing recognition of the importance of 

qualitative methods to secure a solid foundation when developing new instruments,

and a corresponding rigour in applying and reporting qualitative research. In parallel,

a major radical shift towards using item response theory both as a tool for developing

and validating new instruments and as the basis of computer‐adaptive tests (CATs). 

Many of the major research groups have been developing new CAT instruments for 

assessing PROs, and this new generation of questionnaires are becoming widely avail-

able for use on computer tablets and smart‐phones.

 Analysis, too, has benefi ted in various ways for the increased importance being

attached to PROs – two examples being (i) methods for handling missing data and 

in particular reducing the biases that can arise when data are missing, and (ii) greater 

rigour demanded for the reporting of PROs.

 As a consequence of these and many other developments, we have taken the oppor-

tunity to update many chapters. The examples, too, have been refreshed and largely

brought up‐to‐date, although some of the classic citations still stand proud and have

been retained. A less convenient aspect of the changes is, perhaps, the resultant increase 

in page‐count.



xiv PREFACE TO THE THIRD EDITION

 We continue to be grateful to our many colleagues – their continued encouragement 

and enthusiasm has fuelled the energy to produce this latest edition; Mogens Groen-

vold in particular contributed to the improvement of Chapter   3  . 

 Peter M. Fayers and David Machin

September 2015



 Preface to the second edition

 We have been gratifi ed by the reception of the fi rst edition of this book, and this new

edition offers the opportunity to respond to the many suggestions we have received

for further improving and clarifying certain sections. In most cases the changes have

meant expanding the text, to refl ect new developments in research.

 Chapters have been reorganised, to follow a more logical sequence for teaching.

Thus sample size estimation has been moved to Part C, Clinical Trials, because it is

needed for trial design. In the fi rst edition it followed the chapters about analysis where

we discussed choice of statistical tests, because the sample size computation depends

on the test that will be used.

 Health‐related quality of life is a rapidly evolving fi eld of research, and this is illus-

trated by shifting names and identity: quality of life (QoL) outcomes are now also com-

monly called patient‐ (or person‐) reported outcomes (PROs), to refl ect more clearly

that symptoms and side effects of treatment are included in the assessments; we have

adopted that term as part of the subtitle. Drug regulatory bodies have also endorsed

this terminology, with the USA Food and Drug Administration (US FDA) bringing out 

guidance notes concerning the use of PROs in clinical trials for new drug applications; 

this new edition refl ects the FDA (draft) recommendations.

 Since the fi rst edition of this book there have been extensive developments in item

response theory and, in particular, computer‐adaptive testing; these are addressed in a

new chapter. Another area of growth has been in systematic reviews and meta‐analysis,

as evinced by the formation of a Quality of Life Methods Group by the Cochrane Col-

laboration. QoL presents some particular challenges for meta‐analysis, and this led us

to include the fi nal chapter.

 We are very grateful to the numerous colleagues who reported fi nding this book use-

ful, some of whom also offered constructive advice for this second edition. 

 Peter M. Fayers and David Machin

June 2006



 Preface to the fi rst edition

 Measurement of quality of life has grown to become a standard endpoint in many

randomised controlled trials and other clinical studies. In part, this is a consequence

of the realisation that many treatments for chronic diseases frequently fail to cure, and

that there may be limited benefi ts gained at the expense of taking toxic or unpleasant 

therapy. Sometimes therapeutic benefi ts may be outweighed by quality of life consid-

erations. In studies of palliative therapy, quality of life may become the principal or 

only endpoint of consideration. In part, it is also recognition that patients should have

a say in the choice of their therapy, and that patients place greater emphasis upon non‐

clinical aspects of treatment than healthcare professionals did in the past. Nowadays,

many patients and patient‐support groups demand that they should be given full infor-

mation about the consequences of their disease and its therapy, including impact upon

aspects of quality of life, and that they should be allowed to express their opinions.

The term  quality of life  has become a catch‐phrase, and patients, investigators, funding

bodies and ethical review committees often insist that, where appropriate, quality of 

life should be assessed as an endpoint for clinical trials.

 The assessment, analysis and interpretation of quality of life relies upon a variety

of psychometric and statistical methods, many of which may be less familiar than

the other techniques used in medical research. Our objective is to explain these tech-

niques in a non‐technical way. We have assumed some familiarity with basic statistical

ideas, but we have avoided detailed statistical theory. Instead, we have tried to write a

practical guide that covers a wide range of methods. We emphasise the use of simple 

techniques in a variety of situations by using numerous examples, taken both from the

literature and from our own experience. A number of these inevitably arise from our 

own particular fi eld of interest - cancer clinical trials. This is also perhaps justifi able

in that much of the pioneering work on quality of life assessment occurred in cancer,

and cancer still remains the disease area that is associated with the largest number of 

quality of life instruments and the most publications. However, the issues that arise are

common to quality of life assessment in general.  

                                                                      Acknowledgements         

 We would like to say a general thank you to all those with whom we have worked on

aspects of quality of life over the years; especially, past and present members of the 

EORTC Quality of Life Study Group, and colleagues from the former MRC Cancer 
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wegian University of Science and Technology at Trondheim who permitted PMF to

work on this book whilst on sabbatical and whose ideas greatly infl uenced our thinking

about quality of life, and to Kristin Bjordal of The Radium Hospital, Oslo, who made
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allowed us to make extensive use their QoL data for many examples. We are grateful to 

the National Medical Research Council of Singapore for providing funds and facilities

to enable us to complete this work. We also thank Dr Julian Thumboo, Tan Tock Seng

Hospital, Singapore, for valuable comments on several chapters. Several chapters, and

Chapter   7   in particular, were strongly infl uenced by manuals and guidelines published
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α  Alpha, Type I error 
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               1
 Introduction          

      Summary

 A key methodology for the evaluation of therapies is the randomised controlled trial

(RCT). These clinical trials traditionally considered relatively objective clinical outcome

measures, such as cure, biological response to treatment, or survival. Later, investiga-

tors and patients alike have argued that subjective indicators should also be considered.

These subjective patient‐reported outcomes are often regarded as indicators of qual-

ity of life. They comprise a variety of outcome measures, such as emotional function-

ing (including anxiety and depression), physical functioning, social functioning, pain,

fatigue, other symptoms and toxicity. A large number of questionnaires, or instruments , 

have been developed for assessing patient‐reported outcomes and quality of life, and

these have been used in a wide variety of circumstances. This book is concerned with the

development, analysis and interpretation of data from these quality of life instruments.    

 1.1 Patient‐reported outcomes

 This book accepts a broad defi nition of quality of life , and discusses the design,

application and use of single‐ and multi‐item, subjective, measurement scales. This

encompasses not just ‘overall quality of life’ but also the symptoms and side effects

that may or may not refl ect – or affect – quality of life. Some researchers prefer to 

emphasise that we are only interested in health aspects, as in health‐related quality
of life  (HRQoL or HRQL), while others adopt the terms  patient‐reported outcomes 

(PROs) or patient‐reported outcome measures   (PROMs), because those terms indi-

cate interest in a whole host of outcomes, such as pain, fatigue, depression through

to physical symptoms such as nausea and vomiting. But not all subjects are ‘patients’ 

who are ill; it is also suggested that PRO could mean  person‐reported outcome  . Health
outcomes assessment  has also been proposed, which emphasises that the focus is ont
health issues and also avoids specifying the respondent: for young children and for 

the cognitively impaired we may use proxy assessment  for cognitive reasons. And for t
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many years some questionnaires have focused on health status  or self‐reported health
(SRH), with considerable overlap to  quality of life . 

 From a measurement perspective, this book is concerned with all the above. For sim-

plicity we will use the now well‐established overall term  quality of life (QoL) to indi-

cate (a) the set of outcomes that contribute to a patient’s well‐being or overall health, 

or (b) a summary measure or scale that purports to describe a patient’s overall well‐

being or health. Examples of summary measures for QoL include general questions

such as ‘How good is your overall quality of life?’ or ‘How do you rate your overall 

health?’ that represent global assessments. When referring to outcomes that refl ect 

individual dimensions, we use the acronym PROs. Examples of PROs are pain or 

fatigue; symptoms such as headaches or skin irritation; function, such as social and

role functioning; issues such as body image or existential beliefs; and so on. Mostly,

we shall assume the respondent is the patient or person whose experience we are inter-

ested in (self‐report ), but it could be a proxy.t
 The measurement issues for all these outcomes are similar. Should we use single‐ or 

multi‐item scales? Content and construct validity – are we measuring what we intend?

Sensitivity, reliability, responsiveness – is the assessment statistically adequate? How

should such assessments be incorporated into clinical studies? And how do we analyse, 

report and interpret the results?  

 1.2 What is a patient‐reported outcome?

 The defi nition of patient‐reported outcome  is straightforward, and has been described

as “any report of the status of a patient’s health condition that comes directly from the

patient, without interpretation of the patient’s response by a clinician or anyone else”

(US FDA, 2009). A PRO can be measured by self‐report or by interview provided that 

the interviewer records only the patient’s response. The outcome can be measured in

absolute terms (e.g. severity of a symptom, sign or state of a disease) or as a change

from a previous assessment.

 1.3 What is quality of life ?

 In contrast to PRO, the term Quality of life  is ill defi ned. The World Health Organi-

zation (WHO, 1948) declares health to be ‘a state of complete physical, mental and

social well‐being, and not merely the absence of disease’. Many other defi nitions of 

both ‘health’ and ‘quality of life’ have been attempted, often linking the two and, for 

QoL, frequently emphasising components of happiness and satisfaction with life. In

the absence of any universally accepted defi nition, some investigators argue that most 

people, in the Western world at least, are familiar with the expression ‘quality of life’

and have an intuitive understanding of what it comprises. 

 However, it is clear that ‘QoL’ means different things to different people, and takes

on different meanings according to the area of application. To a town planner, for 
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example, it might represent access to green space and other facilities. In the context 

of clinical trials we are rarely interested in QoL in such a broad sense, and instead

are concerned only with evaluating those aspects that are affected by disease or treat-

ment for disease. This may sometimes be extended to include indirect consequences of 

disease, such as unemployment or fi nancial diffi culties. To distinguish between QoL

in its more general sense and the requirements of clinical medicine and clinical trials

the term  health‐related quality of life  (HRQoL) is frequently used in order to remove

ambiguity. 

 Health‐related QoL is still a loose defi nition. What aspects of QoL should be

included? It is generally agreed that the relevant aspects may vary from study to study

but can include general health, physical functioning, physical symptoms and toxicity,

emotional functioning, cognitive functioning, role functioning, social well‐being and

functioning, sexual functioning and existential issues. In the absence of any agreed

formal defi nition of QoL, most investigators circumvent the issues by describing what 

they  mean by QoL, and then letting the items (questions) in their questionnaire speak 

for themselves. Thus some questionnaires focus upon the relatively objective signs such

as patient‐reported toxicity, and in effect defi ne the relevant aspects of QoL as being,

for their purposes, limited to treatment toxicity. Other investigators argue that what 

matters most is the impact of toxicity, and therefore their questionnaires place greater 

emphasis upon psychological aspects, such as anxiety and depression. Yet others try to

allow for spiritual issues, ability to cope with illness and satisfaction with life.

 Some QoL instruments focus upon a single concept, such as emotional function-

ing. Other instruments regard these individual concepts as aspects, or dimensions , of 

QoL, and therefore include items relating to several concepts. Although there is disa-

greement about what components should be evaluated, most investigators agree that a

number of the above dimensions should be included in QoL questionnaires, and that 

QoL is a multidimensional construct. Because there are so many potential dimensions,

it is impractical to try to assess all these concepts simultaneously in one instrument.

Most instruments intended for health‐status assessment include at least some items

that focus upon physical, emotional and social functioning. For example, if emotional

functioning is accepted as being one aspect of QoL that should be investigated, several

questions could evaluate anxiety, tension, irritability, depression and so on. Thus instru-

ments may contain many items. Although a single global question such as ‘How would

you rate your overall quality of life?’ is a useful adjunct to multi‐item instruments,

global questions are often regarded as too vague and non‐specifi c to be used on their 

own. Most of the general questionnaires that we describe include one or more global

questions alongside a number of other items covering specifi c issues. Some instru-

ments place greater emphasis upon the concept of global questions, and the EQ‐5D

questionnaire (Appendix E4) asks a parsimonious fi ve questions before using a single

global question that enquires about ‘your health’. Even more extreme is the Perceived

Adjustment to Chronic Illness Scale (PACIS) described by Hürny et al . (1993). Thisl
instrument consists of a single, carefully phrased question that is a global indicator of 

coping and adjustment: ‘How much effort does it cost you to cope with your illness?’

This takes responses ranging between ‘No effort at all’ and ‘A great deal of effort’.
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 One unifying and non‐controversial theme throughout all the approaches is that 

the concepts forming these dimensions can be assessed only by  subjective measures , 

PROs, and that they should be evaluated by asking the patient.  Proxy  assessments, by

a relative or other close observer, are usually employed only if the patient is unable to

make a coherent response, for example those who are very young, very old, severely 

ill or have mental impairment. Furthermore, many of these individual concepts – such

as emotional functioning and fatigue – lack a formal, agreed defi nition that is univer-

sally understood by patients. In many cases the problem is compounded by language

differences, and some concepts do not readily translate to other tongues. There are

also cultural differences regarding the importance of the issues. Single‐item questions

on these aspects of QoL, as for global questions about overall QoL, are likely to be

ambiguous and unreliable. Therefore it is usual to develop questionnaires that consist 

of multi‐item measurement scales for each concept.  

 1.4 Historical development 

 One of the earliest references that impinges upon a defi nition of QoL appears in the

Nichomachean Ethics , in which Aristotle (384–322  BCE ) notes: “Both the multitude

and persons of refi nement … conceive ‘the good life’ or ‘doing well’ to be the same

thing as ‘being happy’. But what constitutes happiness is a matter of dispute … some say

one thing and some another, indeed very often the same man says different things at 

different times: when he falls sick he thinks health is happiness, when he is poor, 

wealth.” The Greek ευδαιμονια  is commonly translated as ‘happiness’ although Rack-

ham, the translator that we cite, noted that a more accurate rendering would embrace

‘well‐being’, with Aristotle denoting by  ευδαιμονια  both a state of feeling and a kind of 

activity. In modern parlance this is assuredly quality of life. Although the term ‘quality 

of life’ did not exist in the Greek language of 2000 years ago, Aristotle clearly appre-

ciated that QoL means different things to different people. He also recognised that it 

varies according to a person’s current situation – an example of a phenomenon now

termed response shift. QoL was rarely mentioned until the twentieth century, although 

one early commentator on the subject noted that happiness could be sacrifi ced for 

QoL: “Life at its noblest leaves mere happiness far behind; and indeed cannot endure

it … Happiness is not the object of life: life has no object: it is an end in itself; and

courage consists in the readiness to sacrifi ce happiness for an intenser quality of life”

(Shaw, [1900] 1972). It would appear that by this time ‘quality of life’ had become a 

familiar term that did not require further explanation. Specifi c mention of QoL in rela-

tion to patients’ health came much later. The infl uential WHO 1948 defi nition of health 

cited above was one of the earliest statements recognising and stressing the importance

of the three dimensions – physical, mental and social – in the context of disease. Other 

defi nitions have been even more general: “Quality of Life: Encompasses the entire 

range of human experience, states, perceptions, and spheres of thought concerning the 

life of an individual or a community. Both objective and subjective, quality‐of‐life can

include cultural, physical, psychological, interpersonal, spiritual, fi nancial, political,
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temporal, and philosophical dimensions. Quality‐of‐life implies judgement of value

placed on experience of communities, groups such as families, or individuals” (Patrick 

and Erickson, 1993).

 One of the fi rst instruments that broadened the assessment of patients beyond physi-

ological and clinical examination was the Karnofsky Performance Scale proposed in

1947 (Karnofsky and Burchenal, 1947) for use in clinical settings. This is a simple

scale ranging from 0 for ‘dead’ to 100 indicating ‘normal, no complaints, no evidence

of disease’. Healthcare staff make the assessment. Over the years, it has led to a num-

ber of other scales for functional ability, physical functioning and  activities of daily
living  (ADL), such as the Barthel Index. Although these questionnaires are still some-

times described as QoL instruments, they capture only one aspect of it and provide an 

inadequate representation of patients’ overall well‐being and QoL.

 The next generation of questionnaires, in the late 1970s and early 1980s, that quan-

tifi ed health status were used for the general evaluation of health. These instruments 

focused on physical functioning, physical and psychological symptoms, impact of ill-

ness, perceived distress and life satisfaction. Examples of such instruments include

the Sickness Impact Profi le (SIP) and the Nottingham Health Profi le (NHP). Although 

these instruments are frequently described as QoL questionnaires, their authors neither 

designed them nor claimed them as QoL instruments.

 Meanwhile, Priestman and Baum (1976) were adapting linear analogue self‐assess-

ment (LASA) methods to assess QoL in breast cancer patients. The LASA approach,

which is also sometimes called a visual analogue scale (VAS), provides a 10 cm line,

with the ends labelled with words describing the extremes of a condition. The patient 

is asked to mark the point along the line that corresponds with their feelings. An exam-

ple of a LASA scale is contained in the EQ‐5D (Appendix E4). Priestman and Baum

(1976) measured a variety of subjective effects, including well‐being, mood, anxiety,

activity, pain, social activities and the patient’s opinion as to ‘Is the treatment helping?’ 

Others took the view that one need only ask a single question to evaluate the QoL of 

patients with cancer: “How would you rate your QoL today?” (Gough et al. , 1983), 

and supported their position by demonstrating a relatively strong correlation between

answers to this single question and scores derived from a more extensive battery of 

questionnaires .

 Much of the development of QoL instruments has built upon these early attempts,

fi rst with increasing emphasis on the more subjective aspects, such as emotional, role,

social and cognitive functioning, but subsequently with a counter trend towards greater 

focus on patient‐reported symptoms and other relatively objective outcomes. Fre-

quently, one or more general or global questions concerning overall QoL are included.

Implicit in all this is that psychological and social aspects, functional capacity and

symptomatology all relate to QoL. Thus, if a patient is unable to achieve full physical,

psychological or social functioning, it is assumed that their QoL is poorer. Although

this may in general seem a reasonable assumption, it can lead to theoretical prob-

lems. In particular, many forms of functioning, especially physical functioning, may 

be regarded as  causal  variables that can be expected to change or affect a patient’sl
QoL but do not necessarily refl ect the true level of their QoL (see Section 2.6). For 
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example, a patient may have a poor QoL irrespective of whether their physical func-

tioning is impaired; this might arise because of other factors, such as pain. Therefore

scales measuring functional status assess only whether there are problems that  may
cause distress to the patient or impair their QoL; absence of problems in these specifi c 

areas does not indicate that a patient has no problems at all, nor does it necessarily

indicate that a patient has good QoL. Despite these reservations, most instruments

continue to focus on health status, functional status and checklists of symptoms. For 

clinical purposes this may be logical since, when comparing treatments, the clinician is

most concerned with the differences in the symptoms and side effects due to the vari-

ous therapies, and the impact of these differences upon QoL.

 A number of other theoretical models for QoL have been proposed. The expecta-
tions  model of Calman (1984) suggests that individuals have aims and goals in life

and that QoL is a measure of the difference between the hopes and expectations of the 

individual and the individual’s present experience. It is concerned with the difference

between perceived goals and actual goals. The gap may be narrowed by improving

the function of a patient or by modifying their expectations. Instruments such as the 

Schedule for Evaluation of Individual Quality of Life (SEIQoL) and the Patient Gen-

erated Index (PGI), described in Section 1.8, use Calman’s expectations model as a

conceptual basis and provide the facility to incorporate personal values.

 The needs  model relates QoL to the ability and capacity of patients to satisfy certain

human needs. QoL is at its highest when all needs are fulfi lled, and at its lowest when

few needs are satisfi ed. Needs include such aspects as identity, status, self‐esteem,

affection, love, security, enjoyment, creativity, food, sleep, pain avoidance and activity.

Hunt and McKenna (1992) use this model to generate several QoL measures. Some-

what related is the  reintegration to normal living  model that has also been regarded as 

an approach to assessing QoL. Reintegration means the ability to do what one has to

do or wants to do, but it does not mean being free of disease or symptoms.

 Other defi nitions or indicators of QoL that have been suggested are  personal well‐ 

being  and  satisfaction with life . The  impact of illness  (or treatment) on social, emo-

tional, occupational and family domains emphasises the illness aspect, or the  interfer-
ence  of symptoms and side effects. The existential  approach notes that preferences arel
not fi xed and are both individual and vary over time – as was recognised so long ago

by Aristotle. Having a ‘positive approach to life’ can give life high quality, regardless

of the medical condition. Therefore it can be important to assess existential beliefs and

also  coping . A patient’s perception of their QoL can be altered by infl uencing their 

existential beliefs or by helping them to cope better. The existential model of QoL

leads to the inclusion of such items as pleasure in life and positive outlook on life. 

Patient preference  measures differ from other models of QoL in that they explicitly 

incorporate  weights  that refl ect the importance that patients attach to specifi c dimen-

sions. Different states and dimensions are compared against each other, to establish a

ranking in terms of their value or in terms of patients’ preferences of one state over 

another. These and other  utility measure  approaches to QoL assessment are derived

from decision‐making theory and are frequently employed in any economic evalua-

tions of treatments.
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 Finally, some authorities simply circumvent the challenges of defi ning QoL. The

US FDA (2009) notes: “Quality of life — A general concept that implies an evalua-

tion of the effect of all aspects of life on general well‐being. Because this term implies 

the evaluation of nonhealth‐related aspects of life, and because the term generally is

accepted to mean  what the patient thinks it is , it is too general and undefi ned to be 

considered appropriate for a medical product claim.” Further, they also defi ne “Health‐

related quality of life (HRQL) — HRQL is a multidomain concept that represents the

patient’s general perception of the effect of illness and treatment on physical, psy-

chological, and social aspects of life”, but also add the hard‐to‐satisfy condition that 

“Claiming a statistical and meaningful improvement in HRQL implies: (1) that all

HRQL domains that are important to interpreting change in how the clinical trial’s

population feels or functions as a result of the targeted disease and its treatment were

measured; (2) that a general improvement was demonstrated; and (3) that no decre-

ment was demonstrated in any domain” (US FDA, 2009).

 Thus there is continuing philosophical debate about the meaning of QoL and about 

what should be measured. Perhaps the simplest and most pragmatic view is that all 

of these concepts refl ect issues that are of fundamental importance to patients’ well‐

being. They are all worth investigating and quantifying.   

 1.5 Why measure quality of life?

 There are several reasons why QoL assessments may be included in RCTs, and it is

important to distinguish between them as the nature of the measurements, and the

questionnaires that are employed, will depend upon the objectives of the trial. Perhaps 

the most obvious reason is in order to compare the study treatments, in which case it is 

important to identify those aspects of QoL that may be affected by the therapy. These

include both benefi ts, as may be sought in palliative trials that are expected to improve

QoL, and negative changes, such as toxicity and any side effects of therapy.

 Clinical trials of treatment with curative intent

 Many clinical trial organisations have now introduced the assessment of QoL as being

a standard part of new trials. An obvious reason for the emphasis towards QoL as an

important endpoint is that treatment of fatal diseases can, and often does, result in lim-

ited gains in cure or prolonged survival. With some notable exceptions, little improve-

ment has been seen in patients with major cancer diagnoses, HIV or AIDS. At the same

time therapeutic interventions in these diseases frequently cause serious side effects

and functional impairment.

 There are numerous examples in which QoL assessments have had an unexpect-

edly important role in the interpretations and conclusions of RCTs, and it is perhaps

surprising that it took so long for the relevance of QoL assessment to be appreci-

ated. For example, one of the earliest randomised trials to include QoL assessment 

was by Coates  et al. (1987), who reported that, contrary to their initial expectations, l
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continuous as opposed to intermittent chemotherapy for advanced breast cancer not 

only prolonged survival but most importantly resulted in a superior QoL. 

 Similarly, other RCTs recognised that QoL may be the principal outcome of inter-

est. For example, an RCT comparing three anti‐hypertensive therapies conducted by

Croog  et al . (1986) demonstrated major differences in QoL, and the results of a cancer l
chemotherapy trial of Buccheri  et al . (1989) suggested that small treatment benefi tsl
may be more than outweighed by the poorer QoL and cost of therapy. In extreme cases,

the cure might be worse than the disease.     

    Example from the literature  

 Testa  et al . (1993) describe an RCT evaluating hypertensive therapy in men. Twol
angiotensin‐converting enzyme inhibitors, captopril and enalapril, were com-
pared. In total, 379 active men with mild to moderate hypertension, aged 55 
to 79, were randomised between the treatment arms. QoL was one of the main
outcome measures. Several QoL scales were used, including an Overall QoL scale 
based on a mean score from 11 subscales. 

In order to interpret the magnitude of the differences in QoL that were ob-
served, stressful life events that produced an equivalent change in QoL scores
were considered, and the responses to the Overall QoL scale were re‐calibrated 
accordingly. Overall QoL scores shifted positively for captopril by 0.11 units,
and negatively for enalapril by 0.11. Negative shifts of 0.11 corresponded to 
those encountered when there was ‘major change in work responsibility’, ‘in‐law 
troubles’ or ‘mortgage foreclosure’. On the basis of these investigations, a clini-
cally important change was deemed to be one between 0.1 and 0.2.

It was concluded that, although the therapies were indistinguishable in 
terms of clinical assessments of effi cacy and safety, they produced substantial 
and different changes in QoL. 

 Clinical trials of treatment with palliative intent

 One consequence of ageing societies is the corresponding increased prevalence of 

chronic diseases. The treatment outcome in such diseases cannot be cure but must 

relate to the improvement of the well‐being of patients thus treated. The aim is to palli-

ate symptoms, or to prolong the time without symptoms. Traditionally, clinical and not 

QoL outcomes have been the principal endpoints. For example, in an RCT of therapy

for advanced oesophageal cancer, absence of dysphagia might have been the main 

outcome measure indicating success of therapy. Nowadays, in trials of palliative care,

QoL is more frequently chosen as the outcome measure of choice. Symptom relief 

is now recognised as but one aspect of palliative intervention, and a comprehensive

assessment of QoL is often as important as an evaluation of symptoms.
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Example from the literature  

Temel  et al . (2010) randomly assigned patients with newly diagnosed metastaticl
non–small‐cell lung cancer to receive either early palliative care integrated with 
standard oncologic care or standard oncologic care alone. Quality of life and mood 
were assessed at baseline and at 12 weeks with the use of the Functional Assess-
ment of Cancer Therapy–Lung (FACT‐L) scale and the Hospital Anxiety and Depres-
sion Scale. The primary outcome was the change in the quality of life at 12 weeks. 

 Of the 151 randomised patients, 27 died by 12 weeks and 107 (86% of the 
remaining patients) completed assessments. Patients assigned to early pallia-
tive care had a better quality of life than did patients assigned to standard care 
(mean score on the FACT‐L scale, 98.0 vs. 91.5;  p = 0.03). In addition, fewer 
patients in the palliative care group than in the standard care group had depres-
sive symptoms (16% vs. 38%,  p = 0.01). Despite the fact that fewer patients in
the early palliative care group than in the standard care group received aggres-
sive end‐of‐life care (33% vs. 54%,  p = 0.05), median survival was longer among
patients receiving early palliative care (11.6 months vs. 8.9 months,  p = 0.02).

 Temel  et al . conclude that, among patients with metastatic non‐small‐cell lungl
cancer, early palliative care led to signifi cant improvements in both quality of life 
and mood. As compared with patients receiving standard care, patients receiving 
early palliative care had less aggressive care at the end of life but longer survival. 

    Example from the literature

 Fatigue, lethargy, anorexia, nausea and weakness are common in patients with
advanced cancer. It had been widely believed at the time that progestagens, in-
cluding megestrol acetate (MA), might have a useful function for the palliative
treatment of advanced endocrine‐insensitive tumours. Beller et al . (1997) reportl
a double‐blind RCT of 240 patients randomised to 12 weeks of high‐ or low‐dose
MA, or to matching placebo. Nutritional status was recorded, and QoL was meas-
ured using six LASA scales, at randomisation and after four, eight and 12 weeks.

 Patients receiving MA reported substantially better appetite, mood and over-
all QoL than patients receiving placebo, with a larger benefi t being seen for 
the higher dose. Table   1.1    shows the average change from the baseline at time
of randomisation. No statistically signifi cant differences were observed in the
nutritional status measurements. Side effects of therapy were minor and did
not differ across treatments.

 The authors conclude that high‐dose MA provides useful palliation for pa-
tients with endocrine‐insensitive advanced cancer. It improves appetite, mood
and overall QoL in these patients, although not through a direct effect on
nutritional status.
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 Improving symptom relief, care or rehabilitation 

 Traditionally, medicine has tended to concentrate upon symptom relief as an outcome

measure. Studies using QoL instruments may reveal other issues that are equally or more

important to patients. For example, in advanced oesophageal cancer, it was found that many

patients say that fatigue has a far greater impact upon their QoL than dyspnoea. Such a fi nd-

ing is contrary to traditional teaching, but has been replicated in many other cancer sites.    

 Table 1.1   Average difference in QoL between baseline and subsequent weeks  

LASA scores Placebo Low dose MA High dose MA p ‐value (trend)

Physical well‐being 5.8 6.5 13.9 0.13
Mood −4.1 0.4 10.2 0.001
Pain −5.3 −6.9 1.9 0.13
Nausea/vomiting −1.4 8.7 7.2 0.08
Appetite 9.7 17.0 31.3 0.0001
Overall QoL −2.7 2.8 13.1 0.001
Combined QoL measure −2.1 2.4 12.3 0.001

 Source: Beller et al ., 1997, Table 3. Reproduced with permission of Oxford University Press.

    Example from the literature  

 Smets  et al . (1998) used the Multidimensional Fatigue Inventory (MFI‐20, Appen-l
dix E14) to assess fatigue in 250 patients who were receiving radiotherapy with 
curative intent for various cancers. Patients rated their fatigue at two‐weekly in-
tervals during treatment and within two weeks after completion of radiotherapy. 

There was a gradual increase in fatigue during radiotherapy and a decrease 
after completion of treatment. After treatment, 46% of the patients reported 
fatigue as being among the three symptoms causing most distress, and 40% 
reported having been tired throughout the treatment period. 

Smets  et al . conclude that there is a need to give preparatory information to l
new patients who are at risk of fatigue, and interventions including exercise and 
psychotherapy may be benefi cial. They also suggested that their results might
be underestimations because the oldest and most tired patients were more in-
clined to refuse participation.

 Rehabilitation programmes, too, have traditionally concentrated upon physical

aspects of health, functioning and ability to perform ADLs; these physical aspects

were most frequently evaluated by healthcare workers or other observers. Increasingly, 

patient‐completed QoL assessment is now perceived as essential to the evaluation

of successful rehabilitation. Problems revealed by questioning patients can lead to
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modifi cations and improvement in the programme, or alternatively may show that 

some methods offer little benefi t.      

    Example from the literature  

 Results from several small trials had suggested that group therapy, counselling, 
relaxation therapy and psychoeducation might have a role in the rehabilitation 
of patients following acute myocardial infarction. Jones and West (1996) report 
an RCT that examined the impact of psychological rehabilitation after myocar-
dial infarction. In this trial, 2328 patients were randomised between policies 
of no‐intervention and intervention consisting of comprehensive rehabilitation 
with psychological therapy and opportunities for group and individual counsel-
ling. Patients were assessed both by interview and by questionnaires for anxiety
and depression, state anxiety, expectations of future life, psychological well‐
being, sexual activity and functional disability. 

At six months, 34% of patients receiving intervention had clinically signifi -
cant levels of anxiety, compared with 32% of no‐intervention patients. In both 
groups, 19% had clinically signifi cant levels of depression. Differences for other 
domains were also minimal. 

The authors conclude that rehabilitation programmes based upon psychologi-
cal therapy, counselling, relaxation training and stress management seem to
offer little objective benefi t to myocardial infarction patients. 

 Facilitating communication with patients

 Another reason for assessing QoL is to establish information about the range of prob-

lems that affect patients. In this case, the investigator may be less interested in whether 

there are treatment differences, and might even anticipate that both study arms will

experience similar levels of some aspects of QoL. The aim is to collect information in

a form that can be communicated to future patients, enabling them to anticipate and

understand the consequences of their illness and its treatment. Patients themselves 

often express the wish for more emphasis upon research into QoL issues, and seek 

insight into the concomitants of their disease and its treatment.     

    Example from the literature

 The Dartmouth COOP, a primary care research network, developed nine pictorial 
Charts to measure patient function and QoL (Nelson  et al ., 1990). Each Chartl
has a fi ve‐point scale, is illustrated, and can be self‐ or offi ce‐staff adminis-
tered. The Charts are used to measure patients’ overall physical functioning, 
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 Patient preferences

 Not only does a patient’s self‐assessment often differ substantially from the judge-

ment of their doctor or other healthcare staff, but patients’ preferences also seem to

differ from those of other people. Many patients accept toxic chemotherapy for the 

prospect of minimal benefi t in terms of probability of cure or prolongation of life, 

contrary to the expectations of medical staff. Therefore QoL should be measured from

the patient’s perspective, using a patient‐completed questionnaire.     

emotional problems, daily activities, social activities, pain, overall health and
QoL. The QoL item is presented as a ladder, and was later used in the QOLIE‐89
instrument (Appendix E10, question 49).

 Nelson et al . report results for over 2000 patients in four diverse clinical l
settings. Most clinicians and patients reported that the Charts were easy to use
and provided a valuable tool. For nearly half of the patients in whom the Charts
uncovered new information, changes in clinical management were initiated as
a consequence.

 It was concluded that the COOP Charts are practicable, reliable, valid, sensi-
tive to the effects of disease and useful for measuring patient function quickly.

    Example from the literature  

 Slevin  et al . (1990) asked 106 consecutive patients with solid tumours to com-l
plete questionnaires about their willingness to receive chemotherapy. They were 
told that the more‐intensive regimen was likely to have considerable side effects 
and drawbacks, such as severe nausea and vomiting, hair loss, frequent tiredness 
and weakness, frequent use of drips and needles, admission to hospital, decreased 
sexual interest and possible infertility. They were given different scenarios, such 
as (i) small (1%) chance of cure, (ii) no cure, but chance of prolonging life by 
three months and (iii) 1% chance of symptom relief only. All patients knew 
they were about to commence chemotherapy, and thus considered the questions 
seriously. Cancer nurses, general practitioners, radiotherapists, oncologists and 
sociodemographically matched controls were asked the same questions. 

Table   1.2    shows the percentage of respondents that would accept chemotherapy 
under each scenario. There are major and consistent differences between the opin-
ions of patients and the others, and also between the different healthcare staff. 

Slevin  et al . comment that patients appear to regard a minute chance of possiblel
benefi t as worthwhile, whatever the cost. They conclude: “It may be that the only 
people who can evaluate such life and death decisions are those faced with them.” 
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 These results have been closely replicated by others. For example, Lindley  et al . (1998) l
examined QoL in 86 breast cancer patients, using the SF‐36 and the Functional Living

Index – Cancer (FLIC). They note that ‘the majority of patients indicated a willingness 

to accept six months of chemotherapy for small to modest potential benefi t’.   

 Late problems of psychosocial adaptation

 Cured patients and long‐term survivors may have continuing problems long after their 

treatment is completed. These late problems may be overlooked, and QoL reported in

such patients often gives results that are contrary to expectations.

 Table 1.2     Percentage of respondents willing to accept intensive or mild chemotherapy 
with a minimum chance of effectiveness

Controls
Cancer 
nurses

General 
practitioners Radiotherapists Oncologists

Cancer 
patients

Number 100 303 790 88 60 100
Cure (1%)
Intensive regimen 19 13 12 4 20 53
Mild regimen 35 39 44 27 52 67

Prolonging life by 3 months
Intensive regimen 10 6 3 0 10 42
Mild regimen 25 25 27 13 45 53

Relief of symptoms (1%)
Intensive regimen 10 6 2 0 7 43
Mild regimen 19 26 21 2 11 59

 Source: Adapted from Slevin  et al ., 1990, Table II. Reproduced with permission of BMJ Publishing Groupl
Limited.   

    Example from the literature

 Bjordal et al . (1994), in a study of long‐term survivors from a trial of radio-l
therapy for head and neck cancer, unexpectedly found that the hypofractionated 
patients reported slightly better QoL than those who received conventional ther-
apy. Hypofractionated patients had slightly better EORTC QLQ‐C30 mean scores 
for role, social and emotional function and better overall QoL (Table   1.3   ), and 
reported less fatigue. However, both groups reported high levels of symptoms 
7–11 years after their radiotherapy, such as dryness in the mouth and mucus 
production, and high levels of psychological distress (30% being clinical ‘cases’). 
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The authors conclude that clinicians need to be aware of these problems and 
that some patients would benefi t from social support or medication. It was
proposed that the GHQ‐20 (General Health Questionnaire) could facilitate the 
screening for patients whose psychological distress might be treated. 

 Medical decision‐making 

 QoL can be a predictor of treatment success, and several studies have found that factors

such as overall QoL, physical well‐being, mood and pain are of prognostic importance.

For example, in cancer patients, pre‐treatment assessment of QoL has been shown

to be strongly predictive of survival, and a better predictor than performance status

(Gotay  et al ., 2008; Quinten  l et al. , 2009). On this basis, it is possible to argue for the

routine assessment of QoL in therapy trials.

 It is not clear in these circumstances whether QoL scores refl ect an early percep-

tion by the patient of disease progression or whether QoL status in some way infl u-

ences the course of disease. If the former, the level of QoL is merely predictive of 

outcome. If it affects outcome, there could be potential to use improvement in QoL

as an active form of therapy. Whatever the nature of the association, these fi ndings

underline the importance of evaluating QoL and using it when making medical deci-

sions. Similar results have been observed in various disease areas. For example, Jen-

kins (1992) observed that preoperative QoL partially predicts the recovery process in 

 Table  1.3       Quality of life in head and neck cancer patients 7–11 years after curative 
treatment  

Conventional 
radiotherapy ( n = 103)

Hypofractionated 
radiotherapy ( n = 101) p ‐value

EORTC QLQ‐C30 Function scales (mean scores)
Physical function 74 79 NS
Role function 72 83 0.03
Social function 73 83 0.02
Emotional function 77 84 0.02
Cognitive function 80 83 NS
Overall QoL 61 69 0.04

EORTC QLQ‐C30 Symptom scales (mean scores)
Pain 19 15 NS
Fatigue 32 25 0.04
Emesis 6 5 NS

GHQ scores
Mean score 20.8 19.7 NS
% cases 31% 32 % NS

 Source: Bjordal  et al ., 1994. Reproduced with permission of Elsevier.   
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heart surgery patients. Changes in QoL scores during treatment have also been shown

to have prognostic value.        

    Example from the literature  

 Coates  et al . (1997) showed that patients’ self‐assessment of QoL is an impor-l
tant prognostic factor of survival in advanced cancer patients. Adult patients 
with advanced malignancy from 12 institutions in 10 countries completed the
EORTC QLQ‐C30 questionnaire. Baseline patient and disease characteristics were 
recorded. 

Follow‐up information was obtained on 656 patients, of whom 411 had died. 
In addition to age and performance status, the QLQ‐C30 global QoL scale and
the scales of physical, role, emotional, cognitive and social function were each 
predictive of subsequent survival duration. Table   1.4    shows the association of 
survival with the scores for overall physical condition (Q29) and overall quality
of life (Q30). In this table, items Q29 and Q30 were each divided about their 
respective medians, and the hazard ratios show that patients with high scores 
were less likely to die than those below the median. For example, the hazard 
ratio of 0.89 for Q29 indicates that the rate of death in patients with high 
scores was only 89% of the death rate in those with low scores. 

Coates  et al . conclude that QoL scores carry prognostic information independ-l
ent of other recorded factors. 

 Table 1.4       Prognostic signifi cance for survival of two single‐item QoL scores in patients with 
cancer, after allowing for performance status and age

QoL Variable Hazard ratio 95% Confi dence Interval p ‐value

Physical condition (Q29) 0.89 0.82 to 0.96 0.003
Overall QoL (Q30) 0.87 0.80 to 0.94 0.001

 Source: Coates  et al ., 1997. Reproduced with permission of Elsevier.   

 1.6 Which clinical trials should assess QoL?

 It would be inappropriate to suggest that all  RCTs, even in cancer, HIV or chronic l
diseases, should make a formal assessment of QoL. Clearly, there are situations where

such information is not relevant. For example, when evaluating a potentially curative

treatment that is not very likely to have adverse side effects, or if the treatments and

side effects are similar in the various study arms, it might be unnecessary to make

such assessment. However, many trial groups now insist that the investigators should

at least consider the QoL implications and should positively justify not  including thet
assessment of QoL.
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 When is QoL assessment a relevant endpoint? Gotay and Moore (1992) propose the

following classifi cation of trials for QoL purposes: 

   1.  QoL may be the main endpoint. This is frequently true in palliative care, or when

patients are seriously ill with incurable disease.

   2.  Treatments may be expected to be equivalent in effi cacy, and a new treatment 

would be deemed preferable if it confers QoL benefi ts.

   3.  A new treatment may show a small benefi t in cure rates or survival advantage, but 

this might be offset by QoL deterioration.

   4.  Treatments may differ considerably in their short‐term effi cacy, but if the overall

failure rate is high then QoL issues should be considered.

 Furthermore, despite the optimism of those who launch trials that seek a survival break-

through, all too often completed trials show a limited survival advantage. Thus in these

cases the relevance of QoL assessment has to be considered, since any gain in therapeutic

effi cacy would have to be weighed against possible negative effects pertaining to QoL.   

 1.7 How to measure quality of life  

 Ask the patient 

 Observers are poor judges of patients’ opinions. Many studies have shown that inde-

pendent assessments by either healthcare professionals or patients’ relatives differ 

from the responses obtained when patients complete self‐reported questionnaires. In

some conditions observers appear to consistently overestimate QoL scores, in others,

underestimate. There is general agreement that patients’ opinions vary considerably 

from the expectations of both staff and relatives. It has been suggested that observers 

tend to underestimate the impact of psychological aspects and tend to emphasise the

importance of the more obvious symptoms. The impacts of pain, nausea and vomit-

ing have all been reported as being underestimated. Expected symptoms and toxicity 

tend to be accepted and hence ignored by clinical staff. Studies of nausea and vomit-

ing in cancer patients receiving chemotherapy have found that doctors assume these 

symptoms are likely to occur and, as a consequence, often report only the more severe 

events. However, patients who are reported as having no problems may assert that they

suffered quite a lot of vomiting (Fayers et al ., 1991).l
 Observers frequently misjudge the absolute levels of both symptoms and general QoL.

In addition, the patients’ willingness to trade QoL for possible cure may be misjudged.

Many patients are willing to accept unpleasant or toxic therapy for seemingly modest 

benefi ts in terms of cure, although a few patients will refuse treatment even when there is

a high chance of substantial gain. Physicians and nurses are more likely to say that they

would be unwilling to accept the therapy for such small potential benefi t. When patients

with cancer choose between two treatments, if they believe their disease is likely to be

cured they may be willing to accept a treatment that adversely affects their QoL. 



 1.8 INSTRUMENTS 19

 Observers, including health professionals, may tend to base their opinions of overall

QoL upon physical signs such as symptoms and toxicity. However, in many disease

areas, conventional clinical outcomes have been shown to be poorly correlated with

patients’ assessment of QoL. Thus, for example, in patients with asthma, Juniper  et al . l
(1993) observed that correlations between clinical assessments and how patients felt 

and functioned in day‐to‐day activities were only modest.       

    Example from the literature  

 An early investigation conducted by Jachuk  et al . (1982) into QoL concerned l
the effect of hypotensive drugs. Seventy‐fi ve patients with controlled hyperten-
sion each completed a questionnaire, as did a relative and doctor. A global,
summary question was included, about whether there was overall improvement,
no change or deterioration.

 As Table   1.5    shows, while the physicians assessed all patients as having
improved, approximately half the patients thought there was no change or 
deterioration, and all but one patient was assessed by their relatives as having
deteriorated. Patients attributed their deterioration as due to decline in energy,
general activity, sexual inactivity and irritability. Physicians, focusing upon con-
trol of hypertension, largely ignored these factors. Relatives commonly thought
there was moderate or severe impairment of memory, energy and activity, and
an increase in hypochondria, irritability and worry.

 Nowadays, clinical practice places greater emphasis on patient–physician com-
munication, and it is most unlikely that such extreme results would be observed
if this study were to be repeated. The modern physician would be expected to
have a far greater awareness of patients’ feelings, leading to smaller differences.

 Table  1.5     The results of overall assessments of QoL by 75 patients with controlled 
hypertension, their attending physicians, and the patients’ relatives  

Improved No change Worse Total

Physician 75  0  0 75
Patient 36 32  7 75
Relative  1  0 74 75

 Source: Jachuk  et al ., 1982. Reproduced with permission of the Royal College of General Practitioners.   l

 1.8 Instruments

 A large number of instruments have been developed for QoL assessment, and we

provide a range of examples to illustrate some of the approaches used. Those repro-

duced (in the Appendix) have been chosen on the grounds of variety, to show particular 

features, and because these particular instruments are among the most widely used in

clinical trials.
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 The aims and content of each instrument are described, together with an outline

of the scoring procedures and any constructed multi‐item scales. Most of the instru-

ments use fairly simple forms of scoring, and the following basic procedure is usu-

ally used. 

 First, the successive levels of each categorical item are numbered increasingly.

For example, a common scheme with four‐category items is to grade responses such

as ‘not at all’, ‘a little’, ‘quite a bit’ and ‘very much’ as being 0 to 3 respectively

or, if preferred, 1 to 4, as it makes no difference after standardising the fi nal scores.

Second, when a scale contains multiple items, these are usually summed. Thus

a four‐item scale, with items scored 0 to 3, would yield a working score ranging

from 0 to 12. Finally, the working score is usually standardised to a range of 0 to

100, and called the scale score . This enables different scales, possibly with differ-

ent numbers of items and/or where the items have different numbers of categories,

to be compared. In our example this would be achieved by multiplying by 100/12.

We term this procedure the standard scoring method. A number of instruments are d
now advocating the use of  T ‐scores, also called  TT norm‐based scoring , as described

in Chapter   9  .  

 Generic instruments 

 Some instruments are intended for general use, irrespective of the illness or condition

of the patient. These  generic  questionnaires may often be applicable to healthy peo-

ple, too. Some of the earliest ones were developed initially with population surveys in

mind, although they were later applied in clinical trial settings.

 There are many instruments that measure physical impairment, disability or handi-

cap. Although commonly described as QoL scales, these instruments are better called

measures of health status  because they focus on physical symptoms. They emphasise

the measurement of general health and make the implicit assumption that poorer health

indicates poorer QoL. One weakness about this form of assessment is that different 

patients may react differently to similar levels of impairment. Many of the earlier ques-

tionnaires to some degree adopt this approach. We illustrate two of the more infl uen-

tial instruments, the Sickness Impact Profi le (SIP) and the Nottingham Health Profi le

(NIP). Some scales specifi cally address activities of daily living, and we describe the

Barthel questionnaire.

 Few of the early instruments had scales that examine the subjective non‐physical

aspects of QoL, such as emotional, social and existential issues. Newer instruments, 

however, emphasise these subjective aspects strongly, and also commonly include

one or more questions that explicitly enquire about overall QoL. We illustrate this

approach by the SF‐36. Later, brief instruments that place even less emphasis upon 

physical functioning have been developed. Two such instruments are the EQ‐5D, that 

is intended to be suitable for use with cost–utility analysis, and the SEIQoL, which

allows patients to choose those aspects of QoL that they consider most important to

themselves. 
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 Sickness Impact Profi le (SIP)

 The SIP of Bergner et al . (1981) is a measure of perceived health status, as measuredl
by its impact upon behaviour. Appendix E1 shows an extract of SIP – the full question-

naire takes 16 pages. It was designed for assessing new treatments and for evaluating

health levels in the population, and is applicable across a wide range of types and

severities of illness. The SIP consists of 136 items, and takes about 20–30 minutes to

complete. The items describe everyday activities, and the respondents have to mark 

those activities they can accomplish and those statements they agree with. It may be 

either interviewer‐ or self‐administered. Twelve main areas of dysfunction are covered, 

but there is no global question about overall health or QoL. It has been shown that the

SIP is sensitive even to minor changes in morbidity. However, in line with its original

design objectives, it emphasises the impact of health upon activities and behaviour,

including social functioning, rather than on feelings and perceptions – although there

are some items relating to emotional well‐being.

 The items are negatively worded, representing dysfunction. Data from a number of 

fi eld studies were compared against assessments made by healthcare professionals and

students, leading to ‘scale values’. These scale values are used as weights when summing

the individual items to obtain the scale score. The standard scoring method is used for 

each of the 12 dysfunction scales. Two higher‐order dimensions, summarising physical and

psychosocial domains respectively, are recognised and these are scored in a similar manner.

 Nottingham Health Profi le 

 The NHP of Hunt et al . (1981) measures emotional, social and physical distressl
(Appendix E2). The NHP was infl uenced by the SIP, but asks about feelings and emo-

tions directly rather than by changes in behaviour. Thus, although the authors did not 

develop or claim it to be a QoL instrument, it does emphasise subjective aspects of 

health assessment. It was based upon the perceptions and the issues that were men-

tioned when patients were interviewed. When it was developed, the idea of asking

patients about their feelings was a novel concept.

 The version 2 contains 38 items in six sections, covering sleep, pain, emotional reac-

tions, social isolation, physical mobility and energy level. Each question takes a yes/

no answer. As with the SIP, each item refl ects departures from normal, and items are

weighted to refl ect their importance. Earlier versions included seven statements about 

areas of life that may be affected by health, with the respondent indicating whether 

there has been any impact in those areas. These statements were less applicable to the

elderly, unemployed, disabled or those on low income than are the other items, and are

usually omitted. The NHP forms a  profi le   of six scores corresponding to the different 

sections of the questionnaire, and there is no single summary index.

 The NHP is short compared to the SIP, and is easy to complete. The wording is simple

and easily understood. It is often used in population studies of general health evaluation,

and has been used in medical and non‐medical settings. It is also frequently used in
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clinical trials, although it was not designed for that purpose. However, it tends to empha-

sise severe disease states and is perhaps less sensitive to minor – yet important – changes

and differences in health state. The NHP assesses whether there are any health problems,

but is not suffi ciently specifi c to identify particular problems. Some items do not apply

to hospitalised patients, and the developers do not recommend it for these patients. Its

simplicity, while being for many purposes an advantage, means that it does not provide

suitable coverage for the conditions that apply to patients in many clinical trials.  

 Medical Outcomes Study 36‐Item Short Form (SF‐36) 

 The SF‐36 developed by Ware  et al . (1993) evaluates general health status, and wasl
intended to fi ll a gap between the much more lengthy questionnaires and other rela-

tively coarse single‐item measures (Appendix E3). It is designed to provide assess-

ments involving generic health concepts that are not specifi c to any age, disease or 

treatment group. Emphasis is placed upon physical, social and emotional functioning.

The SF‐36 has become the most widely used of the general health‐status measures. It 

can be either self‐assessed or administered by a trained interviewer. 

 As the name implies, there are 36 questions addressing eight health concepts (simpler 

12‐ and eight‐question forms are also available). There are two summary measures:

physical health and mental health. Physical health is divided into scales for physical

functioning (10 items), role‐physical (four), bodily pain (two) and general health (fi ve).

Mental health comprises scales for vitality (four items), social functioning (two), role‐

emotional (three) and mental health (fi ve). In addition, there is a general health transi-

tion question, which asks: ‘Compared to one year ago, how would you rate your general

health now?’ There is also a global question about the respondent’s perception of their 

health: ‘In general, would you say your health is: (excellent, very good, good, fair,

poor)?’ Most questions refer to the past four weeks, although some relate to the present.

A few questions, such as those for ‘role‐physical’, take yes/no responses, while some,

such as the physical functioning items, have three categories (limited a lot, limited a lit-

tle, not limited at all), and other items have fi ve or six categories for responses. 

 The designers of the SF‐36 selected, standardised and tested the items so that they

can be scored using the standard scoring method. More recently, norm‐based scoring

has been advocated (see Chapter   9  ).

 Most of the items appear broadly sensible. However, the physical functioning scale,

in common with many similar scales, poses questions about interpretation. Questions

ask whether your health limits you in ‘vigorous activities, such as running, lifting

heavy objects, participating in strenuous sports’ or in ‘walking more than a mile’.

It is not clear how those who never participate in such activities should respond –

for example, suppose someone who never participates in sports has severely impaired

health: if they respond ‘No, not limited at all’ they will receive a score indicating better 

functioning than might be expected. Some questionnaires therefore restrict physical 

functioning questions to activities that are expected to be applicable to everyone, while

others stress that the questions are hypothetical (‘we wish to know whether you could
participate in sports if you wanted to’).
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 For health economic evaluations, the SF‐6D has been derived from the 12‐item SF‐12

subset of the SF‐36 questionnaire (Brazier and Roberts, 2004). The SF‐6D provides a

preference‐based single index measure for health, estimated from values of the SF‐12.  

 EuroQol (EQ‐5D)

 The EQ‐5D of Brooks et al . (1996) is another general‐purpose instrument, this timel
emphasising both simplicity and the multi‐country aspects (Appendix E4). It takes about 

two minutes to complete and aims to capture physical, mental and social functioning. 

It is intended to be applicable over a wide range of health interventions. The EuroQol 

group, acknowledging its simplicity, recommend using it alongside other instruments. 

Most of the questionnaires we describe are  profi le   instruments because they provide

a descriptive profi le of the patient’s functional health and symptom experience. For 

medical decision‐making, therapeutic benefi ts have to be contrasted against changes 

in QoL: if more effi cacious therapy is associated with poorer QoL outcomes, is it 

worthwhile? Answering this involves weighing QoL against survival and combining

them into a single summary score, most commonly by determining patient ‘preference

ratings’ or ‘utilities’. Overall benefi ts of treatment or management policies can then 

be contrasted. The EQ‐5D, like the SF‐6D which is based on the SF‐36 and described 

above, is described as a  utility measure  or preference measure , in which the scores are

weighted on the basis of preferences (or utilities) for discrete health states or combina-

tions of health states derived from a reference sample. 

Five dimensions of QoL are recognised: mobility, self‐care, usual activities, pain/

discomfort and anxiety/depression. In the fi rst version of the EQ‐5D each of these was 

addressed by a simple three‐level response scale; a revised version, the EQ‐5D‐5L, 

extended this to fi ve levels per item as shown in Appendix E4 (Herdman  et al ., 2011).l
The principal EQ‐5D question is represented by a 20 cm vertical VAS, scored from 0 to 

100, on which the respondent should mark ‘your own health state today’, ranging from 

best imaginable health state to the worst imaginable health state. A single index is gener-

ated for all health states. Perhaps because of its extreme simplicity, the EQ‐5D has been 

less frequently used as the outcome measure for clinical trials. It has been used most 

widely for general healthcare evaluation, including cost–utility evaluation. It is espe-

cially used in the UK, where the government‐funded National Institute for Health and 

Care Excellence (NICE) declares: “Health effects should be expressed in QALYs. The 

EQ‐5D is the preferred measure of health‐related quality of life in adults” (NICE, 2013).   

Schedule for Evaluation of Individual Quality of Life (SEIQoL) 
and the Patient Generated Index (PGI)

The SEIQoL (Hickey et al ., 1996) and the PGI (Ruta l et al ., 1994) are examples of l
instruments that were developed to assess QoL from the individual’s perspective. For 

both instruments, the respondents identify areas of life that are particularly important 

to them, and the current level of functioning in each of these domains is evaluated. The 
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practical procedure is as follows. First, the patient is invited to nominate the fi ve most 

important aspects of their quality of life. Most patients readily list fi ve domains, but 

if they fi nd it diffi cult a standard list of prompts is used. Second, the patient is asked

to score each nominated item or aspect, according to its severity. The third and fi nal

stage is to provide relative weights for the importance of each domain. Although the

fi rst stage is similar for both the PGI and SEIQoL, the two instruments differ in the

way they implement the second and third stages. The PGI is somewhat simpler than

the SEIQoL, and is described fi rst. 

 For the second stage, the PGI (Appendix E5) invites the patient to score their chosen

items using scales from 0, ‘the worst you could imagine’, to 10, ‘exactly as you would 

like to be’. Then, for the third stage, the PGI asks patients to ‘spend’ a total of 10

imaginary points to improve areas of their life. At the second stage of the SEIQoL, the 

patient is offered a vertical 10 cm VAS for each of their chosen areas and asked to rate

themselves on the scale between ‘worst possible’ and ‘best possible’. Each SEIQoL

scale generates a score between 0 and 100. For the third stage, obtaining importance

weights, there are two approaches. The original SEIQoL then made use of a judgement 

analysis in which the patients grade a series of presented cases (Joyce et al ., 2003). l
A simpler direct‐weighting approach is adopted for the SEIQoL‐DW (Browne et al ., l
1997). In this, patients are provided with a plastic disc that consists of fi ve overlapping

segments corresponding to the fi ve domains that the patient has nominated; each seg-

ment can be rotated around the central pivot, allowing its exposed size to be adjusted

relative to the other segments. The patient is asked: ‘How do the fi ve domains compare

in importance to each other?’ This procedure generates fi ve weights that sum to 100%.

For both instruments, the investigator calculates a score by multiplying the individual’s

self‐rating in each of their chosen areas by the relative weight that they assigned to it,

and summing the products over the fi ve areas.

 Both the SEIQoL and the PGI recognise that sometimes seemingly trivial problems

may be of major signifi cance to certain patients, while other issues that are thought by

observers to be important may in fact be considered unimportant. Martin  et al. (2007) l
review studies using PGI, and Wettergren et al . (2009) review use of SEIQoL‐DW.l
Overall, patient‐generated outcome measures are cumbersome to implement, make

greater cognitive demands than traditional instruments. They appear to be useful pri-

marily in complementing other measures and in guiding management decisions for 

individual patients, but may be less practical for clinical trial settings or when compar-

ing groups of patients.   

 Disease‐specifi c instruments

 Generic instruments, intended to cover a wide range of conditions, have the advantage

that scores from patients with various diseases may be compared against each other 

and against the general population. On the other hand, these instruments fail to focus 

on the issues of particular concern to patients with disease, and may often lack the

sensitivity to detect differences that arise as a consequence of treatment policies which

are compared in clinical trials. This has led to the development of disease‐specifi c 
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questionnaires. We describe three contrasting questionnaires that are used in a single

disease area – cancer – and very different questionnaires that are widely used in epi-

lepsy and asthma.

 It may be observed that, even in the three cancer‐specifi c instruments, there is sub-

stantial variation in content and wording. Although all of these questionnaires assess 

similar content areas, the relative emphasis placed on any given QoL domain and the

specifi c ways in which questions are posed vary considerably. For example, in compar-

ison to the FACT‐G, the RSCL and the EORTC QLQ‐C30 include a relatively larger 

number of questions addressing physical symptoms. There are also semantic and sty-

listic differences: when assessing depression, the generic SF‐36, the FACT‐G and the

QLQ‐C30 use the following item phrasing, respectively: (i) “Have you felt so down 

in the dumps that nothing could cheer you up?” and “Have you felt downhearted and

blue?”; (ii) “I feel sad”; and (iii) “Did you feel depressed?” These items differ in both

the degree to which they rely on idiomatic expressions and in the directness with which

the questions are posed. 

 European Organisation for Research and Treatment of Cancer 
(EORTC) QLQ‐C30

 The EORTC QLQ‐C30 is a cancer‐specifi c 30‐item questionnaire (Aaronson  et al .,l
1993); see Appendix E6. The QLQ‐C30 questionnaire was designed to be multidi-

mensional in structure, appropriate for self‐administration and hence brief and easy to

complete, applicable across a range of cultural settings and suitable for use in clinical

trials of cancer therapy. It incorporates fi ve functional scales (physical, role, cognitive,

emotional and social), three symptom scales (fatigue, pain, and nausea and vomiting),

a global health‐status/QoL scale, and a number of single items assessing additional

symptoms commonly reported by cancer patients (dyspnoea, loss of appetite, insomnia,

constipation and diarrhoea) and the perceived fi nancial impact of the disease.

 In the QLQ‐C30 version 3.0 all items have response categories with four levels,

from ‘not at all’ to ‘very much’, except the two items for overall physical condition

and overall QoL, which use seven‐point items ranging from ‘very poor’ to ‘excellent’. 

The standard scoring method is used. High scale scores represent high response levels,

with high functional scale scores representing high/healthy levels of functioning, and

high scores for symptom scales/items representing high levels of symptomatology/

problems (Fayers et al ., 2001). l
 The QLQ‐C30 is available in a range of languages and has been widely used in mul-

tinational cancer clinical trials. It has been found to be sensitive to differences between

patients, treatment effects and changes over time.   

 EORTC disease‐ or treatment‐specifi c modules

 The EORTC QLQ‐C30 is an example of an instrument that is designed to be modular,

with the core questionnaire evaluating those aspects of QoL which are likely to be 
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relevant to a wide range of cancer patients. For each cancer site particular issues are

often important, such as specifi c disease‐related symptoms or aspects of morbidity

that are consequences of specifi c forms of therapy. The QLQ‐ELD14, described by

Wheelwright  et al . (2013), is one of several modules that address additional issues l
(Appendix E7). This supplements the core QLQ‐C30 with an additional 14 items for 

elderly patients with cancer.   

 Functional Assessment of Cancer Therapy – General (FACT‐G) 

 The Functional Assessment of Chronic Illness Therapy (FACIT) Measurement System is

a collection of QoL questionnaires targeting chronic illnesses. The core questionnaire, or 

FACT‐G, was developed by Cella  et al . (1993) and is a widely used cancer‐specifi c instru-l
ment (Appendix E8). Similar to the EORTC QLQ‐C30, the FACIT questionnaires adopt 

a modular approach and so a number of supplementary modules specifi c to a tumour 

type, treatment or condition are available. Non‐cancer‐specifi c FACIT questionnaires are

also available for other diseases, such as HIV infection and multiple sclerosis.

 The FACT‐G version 4 contains 27 items arranged in subscales covering four 

dimensions of QoL: physical well‐being, social/family well‐being, emotional well‐

being and functional well‐being. Items are rated from 0 to 4. The items are labelled 

from ‘not at all’ to ‘very much’, which is the same as for the QLQ‐C30 but with the 

addition of a central ‘somewhat’. Some items are phrased negatively, and should be 

reverse‐scored. Subscale scores are derived by summing item responses, and a total

score is derived by summing the subscale scores. Version 3 included an additional item

after each subscale, enabling patients to weight each domain on an 11‐point scale from

‘not at all’ to ‘very much so’. These questions were of the form: ‘Looking at the above

7 questions, how much would you say your PHYSICAL WELL‐BEING affects your 

quality of life?’ A similar set of items is optional for version 4.

 Individual questions are phrased in the fi rst person (‘I have a lack of energy’), as

compared with the QLQ‐C30 which asks questions in the second person (‘Have you

felt weak?’). Both questionnaires relate to the past week, both make similar claims

regarding validity and sensitivity and both target similar patients. Yet the FACT‐G

and the QLQ‐C30 are conceptually very different from each other, with the QLQ‐

C30 emphasising clinical symptoms and ability to function, in contrast to the FACT‐G

which addresses feelings and concerns (Luckett et al ., 2011).   l

 Rotterdam Symptom Checklist (RSCL)

 The RSCL (de Haes  et al ., 1996) is another instrument that is intended for measuringl
the QoL of cancer patients (Appendix E9). In the past the RSCL was used extensively

in European cancer clinical trials, although less so nowadays. It covers broadly similar 

ground to the EORTC QLQ‐C30 and has a similar number of questions. As its name 

implies, greater emphasis is placed upon the symptoms and side effects that are com-

monly experienced by cancer patients.
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 There are two features that are worthy of special note. First, the RSCL has an intro-

ductory text explaining ‘for all symptoms mentioned, indicate to what extent you have

been bothered by it …’ This is in contrast to the QLQ‐C30 and most other QoL instru-

ments, which merely inquire about the presence of symptoms. Thus one patient might 

have ‘a little’ stomach ache but, when asked if it bothers them, might respond ‘not at 

all’; another might respond that the same ache bothers them ‘quite a bit’. What is less

clear is whether most patients read the questionnaire with suffi cient care to appreciate

the subtle signifi cance of the instructions. The second feature relates to the ADL scale. 

Here, too, there are explicit instructions, stating: ‘We do not want to know whether you 

actually do these, but only whether you are able to perform them presently.’ Thus a

patient might not ‘go shopping’ but is requested to indicate whether they could if they

wanted to. This is in marked contrast with the equivalent scale on the SF‐36 that not 

only asks about actual functioning but also includes some strenuous tasks which are

perhaps less likely to be applicable to the chronically ill.

 The RSCL consists of 30 questions on four‐point scales (‘not at all’, ‘a little’, ‘quite

a bit’, ‘very much’), a question about activity level, and a global question about ‘your 

quality of life during the past week’ with seven categories. There are two main scales –

physical symptom distress and psychological distress – in addition to the scales for 

activity level and overall valuation. The standard scoring method is used.

 Quality of Life in Epilepsy (QOLIE‐89)

 In contrast with the previous examples, the QOLIE‐89 is a 13‐page, 89‐item question-

naire aimed at patients with epilepsy (Devinsky et al ., 1995); Appendix E10 showsl
extracts. It is based upon a number of other instruments, in particular the SF‐36,

with additional items from other sources. It contains fi ve questions concerning worry

about seizures, and questions about specifi c ‘bothersome’ epilepsy‐related limitations

such as driving restrictions. Shorter versions with 31 and 10 items are available. The

QOLIE‐89 contains 17 multi‐item scales that tap into a number of health concepts,

including overall QoL, emotional well‐being, role limitations owing to emotional sup-

port, social support, social isolation, energy/fatigue, seizure worry, health discour-

agement, attention/concentration, language, memory, physical function and health

perceptions. An overall score is derived by weighting and summing the scale scores.

There are also four composite scores representing issues related to epilepsy, cognition,

mental health and physical health.

 The QOLIE‐89 has been developed and tested upon adults. Epilepsy is a serious

problem for younger patients too, but children and adolescents experience very differ-

ent problems from adults. Adolescents may be particularly concerned about problems

of forming relationships with friends of the opposite sex, and anxious about possibili-

ties of marriage and their dependence upon parents. Children may feel excluded from

school or other activities, and may be teased by other children. Very young children

may be unable to complete the questionnaire alone, and parents or others will have to 

assist. Thus QoL questionnaires intended for adults are unlikely to be satisfactory for 
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younger age groups. One example of a generic QoL questionnaire that has been used

for children with epilepsy is the 16‐dimensional 16D, which Apajasalo  et al . (1996) l
used in young adolescents aged 12–15, comparing normal children against patients

with epilepsy. One interesting feature of the QOLIE‐89 is that there are fi ve questions 

about general QoL issues. Questions 1, 2, 3, 49 and 89 use various formats to enquire

about health perceptions, overall QoL, overall health and change in health.

 Paediatric Asthma Quality of Life Questionnaire (PAQLQ) 

 The PAQLQ developed by Juniper  et al . (1996) has been designed to measure the prob-l
lems that children between the ages of seven and 17 experience as a result of asthma;

extracts from the self‐administered version are shown in Appendix E11. The PAQLQ

has 23 items relating to three dimensions, namely symptoms, activity limitations and

emotional function. Items are scored from 1 to 7. Three of the activity questions are

‘individualised’, with the children identifying important activities at the beginning of 

the study. There is a global question, in which children are asked to think about all the 

activities they did in the past week, and to indicate how much they were bothered by

their asthma during these activities. The items refl ecting each dimension are averaged,

forming three summary scales that take values between 1 and 7.

 Parents often have a poor perception of their child’s health‐related QoL, and so

it is important to ask the children themselves about their experiences. Since chil-

dren may have diffi culty in completing the self‐administered questionnaire, Juniper 

et al . (1996) suggest using the interviewer‐administered version, administered by a

trained interviewer who has experience of working with children. Children may be

strongly infl uenced by adults and by their surroundings, and so detailed guidelines

and interviewing tips are provided. The PAQLQ has been tested in children aged

between seven and 17 years, and has demonstrated good measurement properties in

this age group.    

 Instruments for specifi c aspects of QoL 

 The instruments described above purport to measure general QoL, and include at least 

one general question about overall QoL or health. In many clinical trials this may

be adequate for treatment comparison, but sometimes the investigators will wish to

explore particular issues in greater depth. We describe four instruments that are widely

used in clinical trials to explore anxiety and depression, physical functioning, pain

and fatigue. These domains of QoL are particularly important to patients with chronic 

or advanced diseases. Many other instruments are available, both for these areas and

others. Additional examples are  coping  (Hürny  et al ., 1993),  l satisfaction  (Baker and

Intagliata, 1982),  existential beliefs  (Salmon  et al ., 1996) and  l self‐esteem  (Rosenberg,

1965). Since these questionnaires evaluate specifi c aspects of QoL, in order for a

patient assessment to be called ‘quality of life’ these instruments would normally be 

used in conjunction with more general questionnaires. 
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 Hospital Anxiety and Depression Scale (HADS) 

 The HADS was developed by Zigmond and Snaith (1983) and was initially intended

as a clinical screening tool to detect anxiety and depression (Appendix E12). It has 

become widely used in clinical trials for a wide range of conditions, including arthritis,

bowel dysfunction, cancer, dental phobia, osteoporosis and stroke. The HADS consists

of 14 questions that are completed by the patients. Each question uses a four‐point 

scale. Seven of these questions were designed to address anxiety, and the other seven

depression. The HADS deliberately excludes items that may be associated with emo-

tional or physical impairment, such as dizziness and headaches; it emphasises the psy-

chological signs or consequences of anxiety and depression.

 Two particular features of the HADS are interesting from the point of view of scale

design. The questions addressing anxiety and depression alternate (odd and even items,

respectively), and half of the questions are worded positively and half negatively (e.g. 

‘I feel cheerful’ and ‘I get sudden feelings of panic’).

 Each item is scored 0 to 3, where 3 represents the state associated with the most 

anxiety or depression. The items are summed after suitable ordering, yielding two sub-

scales ranging from 0 to 21. Based upon psychiatric diagnosis, HADS ratings of 11 or 

more are regarded as defi nite cases that would normally require therapy; ratings of 7 or 

less are non‐cases; those scoring 8–10 are doubtful or borderline cases that are usually

referred for further psychiatric assessment.

 Another widely used instrument is the Beck Depression Inventory (BDI) (Beck et 
al ., 1961), which measures existence and severity of depression. It can be either self‐l
rated or administered orally and emphasises cognitive rather than affective symptoms.

The PHQ‐9 is another popular depression questionnaire, and is briefer than the BDI

(Spitzer et al ., 1999).l

 McGill Pain Questionnaire (MPQ)

 Pain is a frequent symptom in many disease areas, and can be distressing. Not surpris-

ingly, many instruments have been developed to assess pain. One such instrument, used

extensively in clinical trials, is the Brief Pain Inventory (BPI) short form (Cleeland and

Ryan, 1994). Further, many QoL instruments contain one or more items assessing

pain. Examples include simple numerical rating scales, in which the respondents rate

themselves in the range from 0 for no pain up to 10 for worst imaginable pain, and the 

more descriptive items as seen in the EORTC QLQ‐C30 and the FACT‐G. 

 The MPQ is one of the most widely used tests for the measurement of pain (Melzack,

1975). The MPQ full version has 20 main groups of items, each with between two and

six adjectives as response categories, such as fl ickering, quivering, pulsing, throbbing,

beating, pounding. It takes fi ve to 15 minutes to complete. Based upon a literature

search of terms used to describe pain, the MPQ uses a list of descriptive words that the

subject ticks. The words are chosen from three classes of descriptors – sensory (such

as temporal, spatial, pressure, thermal), affective (such as tension, fear) and evaluative

(such as intensity, experience of pain). There is a six‐point intensity scale for present 
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pain, from no pain through to excruciating pain. Three major measures are derived: a 

pain rating index using numerical scoring, the number of descriptive words chosen,

and the value from the pain intensity scale. Pain‐rating index scores can be calculated

either across all items or for three major psychological dimensions, called sensory–

discriminative, motivational–affective and cognitive–evaluative.

 The short version, termed the SF‐MPQ (Melzack, 1987), is shown in Appendix

E13. It has 15 items that are graded by the respondent from none (0) through to

severe (3). There is also a 10 cm VAS, ranging from ‘no pain’ through to ‘worst possible

pain’, and the same six‐point intensity scale as in the full version. It takes two to fi ve

minutes to complete. Each description carries a weight that corresponds to severity of 

pain. This leads to a summary score that ranges from 0 (‘no pain’) to 5 (‘excruciating 

pain’). The SF‐MPQ has subscales for affective and sensory components of pain, as

well as a total score. In 2009 the SF‐MPQ was revised to include an additional 7 items

for neuropathic pain, and all 22 items are now rated from 0 to 10.

 Pain is a complicated and controversial area for assessment, although some of the

problems serve to illustrate general issues in QoL assessment. For example, the Zung

(1983) self‐rating Pain and Distress Scale measures physical and emotional distress

caused by pain, rather than severity of pain itself. This recognises that severity of pain,

either as indicated by pain stimuli or by the subject’s verbal description, may result in 

different levels of distress in different patients. One level of pain stimulus may pro-

duce varying levels of suffering, as determined by reactions and emotions, in different 

patients. Also, pain thresholds can vary. Another issue to be considered when assessing

pain is that analgesics can often control pain very effectively. Should one be making

an allowance for increasing dosages of, say, opiates when evaluating levels of pain? In

some studies it may be appropriate to measure ‘uncontrolled pain’, in which case one

might argue that it is irrelevant to enquire about analgesics. On the other hand, high

doses of analgesics can be accompanied by disadvantages.  

 Multidimensional Fatigue Inventory (MFI) 

 The MFI of Smets  et al . (1995) is a 20‐item self‐report instrument designed to measure l
fatigue (Appendix E14). It covers fi ve dimensions, each of four items: general fatigue,

physical fatigue, mental fatigue, reduced motivation and reduced activity. There are

equal numbers of positively and negatively worded statements, to counter possible

response bias, and the respondent must indicate to what extent the particular statement 

applies to him or her. The fi ve‐point items take responses between ‘yes, that is true’

and ‘no, that is not true’, and are scored 1 to 5, where 5 corresponds to highest fatigue.

The fi ve scale scores are calculated by simple summation. 

 Four of the scales appear to be highly correlated, with mental fatigue behaving dif-

ferently from the others. This suggests that there may be one or two underlying dimen-

sions for fatigue. However, for descriptive purposes, and for a better understanding

of what fatigue entails in different populations, the authors suggest that the separate 

dimensions be retained and that the fi ve scales should not be combined. If a global

score is required, the general fatigue scale should be used.
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 Many other fatigue questionnaires exist. Some are designed to be disease specifi c,

targeting for example patients with arthritis or with cancer; some assume fatigue is uni-

dimensional, while others use for example a three‐dimensional model. Fatigue mod-

ules have been developed to complement the EORTC‐Q30 and the FACT‐G.

 Barthel Index of Disability (BI)

 Disability scales were among the earliest attempts to evaluate issues that may be

regarded as related to QoL. They are still commonly employed, but mainly as a simple

indication of one aspect of the patient’s overall QoL. The BI (Mahoney and Barthel,

1965) was developed to measure disability, and is one of the most commonly used of 

the class of scales known as ADL scales. ADL scales focus upon a range of mobility,

domestic and self‐care tasks, and ignore issues such as pain, emotions and social func-

tioning. The assumption is that a lower ADL score implies a lower QoL.

 The BI is used to assess functional dependency before and after treatment, and to

indicate the amount of nursing care that is required. It has been used widely for assess-

ing rehabilitation outcome and stroke disability, and has been included in clinical trials.

Unlike any of the other scales that we have described, it need not be completed by the 

patient personally but is more intended for administration by a nurse, physiotherapist 

or doctor concerned with the patient’s care. It therefore provides an interesting con-

trast against the subjective self‐assessment that has been adopted by many of the more

recent measures. The BI examines the ability to perform normal or expected activities.

Ten activities are assessed, each with two or three response categories, scored 5, 10

or 15; items are left blank and scored 0 when patients fail to meet the defi ned criteria.

Overall scores range for 0 (highest dependency) to 100 (least dependency). It takes

about one minute to assess a patient.

 The original BI uses a crude scoring system, since changes in points do not appear 

to correspond to equivalent changes in all the scales. Also, patients can be at the

highest (0) point on the scale and still become more dependent, and can similarly

exceed the lowest (100) value. Modifi ed versions of the BI largely overcome these

defi ciencies. For example, Shah et al . (1989) expanded the number of categories and l
propose changes to the scoring procedures (Appendix El5). The BI and its modifi ed 

versions continue to be used widely as a simple method of assessing the effectiveness

of rehabilitation outcome.

 Many ADL scales exist, and the Katz et al . (1963) index is another widely usedl
example. The concept here is that loss of skills occurs in a particular sequence, with

complex functions suffering before others. Therefore six items were chosen so as to

represent a hierarchical ordering of diffi culty. A simplifi ed scoring system is provided,

in which the number of activities that require assistance are summed to provide a 

single score. Thus while ‘0’ indicates that no help is required, ‘6’ means that there

is dependency for all the listed activities. The Katz index has been used with both

children and adults, and for a wide range of conditions. In contrast to the BI, which

measures ability, the Katz index measures independence.
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 Instrumental activities of daily living (IADL) scales include items that refl ect abil-

ity to live and adapt to the environment. This includes activities such as shopping and 

travelling, and thus these scales evaluate one’s ability to live independently within

the community, as opposed to needing help with basic functions such as dressing and

washing oneself. One example is the Functional Activity Questionnaire (FAQ), which

was designed for use in community studies of normal ageing and mild senile dementia

(Pfeffer et al ., 1982).l

 1.9 Computer‐adaptive instruments 

 Instruments developed in the twentieth century were mainly fi xed format and paper 

based. Most are intended for self‐completion by patients or other respondents, although

some are designed with other modes of administration in mind such as by interviewer 

or over telephone. More recently, advances in computer technology have led to a new

generation of instruments designed specifi cally for computer administration. These 

instruments are typically ‘adaptive’, in the sense that there is a large pool of potential

items and each respondent is presented with a different set of items that are dynami-

cally selected according to the respondent’s previous answers. To some extent this mir-

rors the usual dialogue between a physician and patient: if a patient has said that they 

have no trouble walking long distances, why ask if they are housebound? It is more

informative and effi cient to tailor the interview as it progresses. However, computer‐

adaptive instruments use statistical algorithms to identify dynamically the optimal

choice of items. They also calculate scores that are calibrated using a consistent metric

across patients, enabling comparisons of PROs both between individual patients and

in groups of patients.

 Many of the instruments described above are available in their full original paper‐

based form, as short‐form versions and, more recently, teams such as the EORTC

group are generating in computer‐adaptive versions (Petersen  et al ., 2010). Other l
instruments are designed mainly for computer adaptive use; a prominent example is

PROMIS (Cella et al ., 2010; Reeve l et al ., 2007), which is developing a wide range of l
instruments that measure concepts such as pain, fatigue, physical function, depression, 

anxiety and social function (www.nihpromis.org); PROMIS instruments are availa-

ble as computer adaptive tests that require three to seven items for precise scores, or 

four‐ to 10‐item short form versions. Computer‐adaptive instruments are described in

Chapter   8  .   

 1.10 Conclusions

 Defi nitions of QoL are controversial. Different instruments use different defi nitions,

and frequently no specifi c model for QoL is stated formally. There is a wide range of 

QoL instruments available, although this range is likely to be reduced once the purpose

http://www.nihpromis.org
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of evaluating QoL is considered. In a clinical trial setting, the disease area and thera-

pies being evaluated will usually limit the choice. Common features of the instruments

are that the patients themselves are asked, there are frequently several subscales, the 

scales are often based upon multiple items, and the scales represent constructs that 

cannot be measured directly. In Chapters   3  –7 we shall explain methods for construct-

ing such scales. Most importantly, we describe the desirable measurement properties

of scales. We show how to ‘validate’ scales, and how to confi rm whether an instrument 

appears to be consistent with the hypothetical model that the designers intended.                
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                                                          2
 Principles of measurement scales

      Summary

 The main methods for developing and validating new questionnaires are introduced,

and the different approaches are described. These range from simple global questions

to detailed psychometric and clinimetric methods. We review traditional psychometric 

techniques, including summated scales and factor analysis models, as well as psycho-

metric methods that place emphasis upon probabilistic item response models. Whereas

psychometric methods lead to scales for QoL that are based upon items refl ecting

patients’ levels of QoL, the clinimetric approach makes use of composite scales that 

may include symptoms and side effects of treatment. This chapter contrasts the differ-

ent methods, which are then explained in detail in subsequent chapters.    

 2.1 Introduction

 Questionnaires for assessing QoL usually contain multiple questions, although a few

may attempt to rely upon a single global question such as ‘Overall, what has your 

quality of life been like over the last week? (very good, better than average, about 

average, worse than average, very bad)’. Some QoL questionnaires are designed such

that all items are combined together; for example items might be averaged to produce

an overall score for QoL. Most instruments, however, recognise that QoL has many

dimensions and will attempt to group the items into separate scales corresponding to

the different dimensions. Thus we explore the relationship between items and scales,

and introduce the concepts underlying scales and their measurement.  

 2.2 Scales and items

 Each question on the QoL questionnaire is an expression in words for an item. Most 

QoL instruments consist of many questions, representing many items. Some of these 

items may aim to measure a simple aspect of QoL, such as a physical symptom. In
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such cases, sometimes a single item will suffi ce to encapsulate all that is required. 

Other QoL concepts may be more complex, and the developers of an instrument might 

decide that it is preferable to use several questions that can be combined to form a

multi‐item scale . 

 For example, some drugs may cause vomiting, and therefore questions for patients

receiving potentially emetic drugs might aim to assess the level of vomiting. This is

typically true for cytotoxic chemotherapy, which is used as a treatment for cancer. Some

cancer‐specifi c instruments contain a single question about vomiting. An example is

the question ‘Have you vomited? (not at all, a little, quite a bit, very much)’ on the 

EORTC QLQ‐C30. However, a single question about vomiting may be considered

too imprecise to measure severity, frequency and duration of vomiting, and usage of 

anti‐emetics. The QLQ‐C30 already contained 30 questions, and it was felt undesir-

able to lengthen it. The developers considered it more important to retain questions

about other symptoms and functions rather than add extra items about vomiting. Thus 

a single question about vomiting and one about nausea was thought adequate for 

general‐purpose assessment of QoL. However, vomiting can sometimes be an outcome

of particular interest, in which case studies might benefi t from the addition of supple-

mentary questions on this topic.

 Symptoms are often conceptually simple. For example, vomiting has a clear defi ni-

tion and there is little controversy about its meaning. Multi‐item scales are frequently

used when assessing more complex issues. For example, the more psychological

dimensions may be less well defi ned in many people’s perception. Even when there is a

commonly agreed single defi nition, it may be misunderstood by the patients who com-

plete the questionnaire. For example, terms such as ‘anxiety’ and ‘depression’ are rather 

more abstract in nature than most clinical symptoms, and different investigators may

adopt differing defi nitions. Psychological literature distinguishes these two terms, but 

patients may be less certain of their distinction and may interpret anxiety and depression

in many different ways. They may also have widely differing opinions as to the sever-

ity intended by ‘very anxious’. Because of the nature of psychological constructs, it is

usually impossible to rely upon a single question for the assessment of a patient. Most 

psychometric tests will contain multiple items addressing each psychological aspect. 

 QoL instruments commonly contain a mixture of single‐item and multi‐item scales.

A major aspect of scale design is the determination of the number of items that should

comprise a particular scale and, if more than one item is appropriate, the assessment of 

how consistently these items hang together.

2.3 Constructs and latent variables

Some psychological aspects of QoL will have clear, precise and universally agreed

defi nitions. As we have noted, others may be more contentious and may even refl ect 

the opinions of an individual investigator. Many of these psychological aspects are not 

directly and reliably measurable, and in some cases it may be debatable as to whether 

the concepts that are being described really do exist as distinct and unique aspects of 
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QoL. These concepts constitute psychological models that may be regarded as con-

venient representations of QoL issues in patients. They are commonly described as

being postulated constructs ,  latent traits  or factors  .

 These hypothetical constructs that are believed or postulated to exist are represented

or measured by  latent variables . Examples of latent variables are QoL itself, or its

constituent components (such as anxiety). Thus latent variables are the representations

of constructs and are used in models. The aims of numerical methods in QoL research

may largely be summarised as testing the adequacy and validity of models based upon

postulated constructs, and estimation of the values of the latent variables that comprise

those models. The term  factor  , apart from its use as a synonym for constructs, is com-r
monly used to denote lower‐level constructs such as when one construct, for example

overall QoL, is decomposed into a number of components, or factors . Thus physical

functioning, role functioning, social functioning and emotional functioning are latent 

variables that are all aspects, or factors, of QoL. 

 Constructs and latent variables are abstract concepts. Thus Nunnally and Bernstein

(1994) describe constructs as ‘useful fi ctions’ and ‘something that scientists “construct”

or put together in their own imaginations’. They also note that the name given to any one

specifi c construct is no more than a word and that, although the name may appear to imply

a meaningful set of variables, there is no way to prove that any combination of these vari-

ables ‘measures’ the named construct. Since latent variables cannot be measured directly,

they are usually assessed by means of multi‐item tests or questionnaires. QoL instruments

often contain 20 or more questions. Sometimes a single global question is also used, for 

example: ‘How would you rate your overall quality of life during the past week?’

 In contrast to the (unobserved) latent variables that refl ect hypothetical constructs,

the so‐called  manifest variables  are the observed responses made by patients to ques-

tionnaire items.

 When a single latent trait, or factor, underlies the data, the construct is described as

being unidimensional . Many models for QoL assume that it can be represented by a num-l
ber of lower‐level factors, such as physical functioning, emotional functioning and cogni-

tive functioning. Therefore QoL is often described as being multidimensional in nature. l
Most QoL instruments recognise the multidimensional nature of QoL and thus aim to

evaluate a number of distinct dimensions, with each of these dimensions being addressed

either by single items or by multi‐item scales. In contrast, some instruments that are

designed to target individual PROs may identify only a few dimensions – for example, a

pain severity questionnaire might recognise a single dimension for pain severity.  

 2.4 Single global questions versus multi‐item scales

 Global questions

 As Gill (1995) commented, “The simplest and most overtly sensible approach to meas-

ure QoL is to use global rating scales. These ratings, which have been successfully used

to assess pain, self‐rated health, and a myriad of other complex clinical phenomena, 
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can allow expression for the disparate values and preferences of individual patients.”

Investigators can ask patients to give several global ratings, such as one for overall

QoL and another for health‐related QoL or for physical well‐being. Global single‐

item measures allow the subject to defi ne the concept in a way that is personally

meaningful, providing a measure that can be responsive to individual differences.

Global single‐item indicators require that subjects consider all aspects of a phenom-

enon, ignore aspects that are not relevant to their situations, and differentially weight 

the other aspects according to their values and ideals in order to provide a single rating.

A global single‐item measure may be a more valid measure of the concept of interest 

than a score from a multi‐item scale.

 Unfortunately, there is considerable disagreement whether it is meaningful to ask 

a patient such questions as ‘Overall, what would you say your quality of life has been

like during the last week? (excellent, very good, good, fair, poor, very poor, extremely

poor)’. Some authors argue that responses to these global questions are unreliable

and diffi cult to interpret, and that it is better to ask multiple questions about the 

many aspects of QoL. They suggest that responses to the individual questions can be

aggregated to form a summary  global score  that measures overall QoL, using either an

unweighted summation that attaches equal importance to all questions or a weighted

summation that uses patients’ opinions of the relative importance of questions. Other 

authors dissent, some maintaining that QoL is a multidimensional construct and that it 

is meaningless to try to sum the individual items to form a single overall score for QoL.

 In practice, as described in the preceding chapter, many instruments include at least 

one global question in addition to a number of multi‐item scales. Often a global ques-

tion is used for overall QoL, for overall health, or for similar concepts that are assumed

to be broadly understood by the majority of patients. In a similar way, global single

questions are also used to provide a single rating for individual domains, such as a

global question for overall depression.

Multi‐item scales

Multi‐item scales are commonly used to assess specifi c aspects of QoL that are likely

to be unidimensional constructs. Measures from multi‐items usually have several

advantages over a score estimated from the responses to a single item. 

 One of the main objections to the use of single items in global questions is that 

latent variables covering constructs such as QoL, role functioning and emotional func-

tioning are complex and ill‐defi ned. Different people may have different ideas as to

their meaning. Multi‐item scales are often used when trying to measure latent variables 

such as these. Many aspects of scale development have their origins in psychometric 

testing. For example, from the earliest days it was accepted that intelligence could

not be defi ned and measured using a single‐question intelligence test. Thus multiple

questions were recognised to be necessary to cover the broad range of aspects of intel-

ligence (such as verbal, spatial and inductive intelligence). An intelligence test is there-

fore an example of a multi‐item test that attempts to measure a postulated construct.

Under the  latent variable model  we assume that the data structure can be divided upl
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into a number of hypothetical constructs, such that each distinct construct is a latent 

variable representing a unidimensional concept. Since these constructs may be abstract 

and therefore not directly measurable, they are commonly assessed using multi‐item

questionnaires.

 Psychometric theory also favours multi‐item tests because they are usually more

reliable and less prone to random measurement errors than single‐item measures for 

assessing attributes such as intelligence, personality or mood. For example, in educa-

tional and intelligence tests, multi‐item scales reduce the probability of obtaining a 

high score through either luck or the correct‐guessing of answers.

 Another very important reason for using multi‐item tests is that a single item with,

for example, a seven‐category response scale lacks precision and cannot discriminate

between fi ne degrees of an attribute, since for each patient it can assume only one of 

the specifi ed response levels. By contrast, tests involving large numbers of items are 

potentially capable of very fi ne discrimination. Gaining precision is frequently the rea-

son for including more items in a multi‐item scale as each item adds more information

about the latent variable. As we shall see in Chapter   8  , this is also the reason for using

computer adaptive tests that at each stage select the most informative successive items

until adequate precision is obtained.

 Many QoL instruments assess more than one domain. Thus they will contain either 

single items or multiple items per domain, and may present separate scores for each

domain. These scores, and the instruments that produce them, are commonly termed

profi le  if they describe related domains, and  battery  if they represent scores of inde-

pendent concepts (Figure   2.1   ).

    Figure   2.1     Scales, indexes, profi les and batteries.

● Single rating, single-item scale
A single question that is used to provide a score, such as a pain rating or a depression
rating.

● Multi-item scale
A scale formed by multiple related items. The items should represent a single domain or 
concept.

● Scale score
A summary score for a single- or multi-item scale. 

● Index
A summary score for related items or independent concepts. 

● Profi le
Multiple scores of multiple related domains.

● Battery
Multiple scores of independent domains or concepts.
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2.5 Single‐item versus multi‐item scales

Reliability

A reliable test is one that measures something in a consistent, repeatable and reproduc-

ible manner. For example, if a patient’s QoL were to remain stable over time, a reliable

test would be one that would give very similar scores on each measurement occasion.

In Chapter   4   we show that reliability of a measurement can be measured by the squared 

ratio of the true‐score standard deviation ( SD ) over the observed‐score SD , and in

Chapter   5   we extend the discussion to include multi‐item scales. It is often stated that 

multi‐item scales are more reliable than single‐item tests. This is a reasonable claim – 

in some circumstances.

 Consider a questionnaire such as the HADS. The anxiety subscale comprises ques-

tions that include ‘I feel tense or “wound up”’, ‘Worrying thoughts go through my

mind’ and ‘I get sudden feelings of panic’. A patient with a given level of anxiety will

tend to answer positively to all these items. However, there will be variability in the

responses, with some patients responding more strongly to one question than another.

This patient variability would render a single‐item test unreliable. However, by averaging

the responses from a large number of questions we effectively reduce the impact of the

variability. In statistical terms, the reliability of the scale is increased by including and

averaging a number of items, where each item is associated with an independent  random
error term . Cronbach’s coeffi cient α  is a measure of reliability of multi‐item scales (seeα
Chapter   5  ), and can be used to calculate the potential gain of adding extra items to a scale.

 Many psychological concepts, for instance depression, are subjective states and dif-

fi cult to defi ne precisely. If asked a single question such as ‘Are you depressed?’, patients

may vary in the perception of their state and may also be unsure as to how to classify

themselves. Thus a large random error may be associated with global questions. Spector 

(1992) writes: “Single items do not produce responses by people that are consistent over 

time. Single items are notoriously unreliable.” On the other hand, as we shall show, esti-

mates of gain in reliability for multi‐item scales are based upon conditions that are often

inapplicable to the items found in QoL scales. Therefore it does not necessarily follow

that increasing the number of items in a QoL scale will increase its overall reliability. A

review of published empirical studies suggests that global questions regarding QoL can

possess high reliability (Youngblut and Casper, 1993). Thus opinions continue to differ 

as to whether or not single‐item global questions are reliable.   

Precision

Numerical precision concerns the number of digits to which a measurement is made.

If a scale has a range from 0 to 100, a measurement made to the nearest 1 is more 

precise than one rounded to the nearest 10. Precision is important because it indicates

the potential ability of the scale to discriminate amongst the respondents. Precision is

related to reliability, inasmuch as an imprecise measurement cannot be reliable.
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 Single‐item global questions are frequently categorical in form, and these offer lim-

ited precision. For example, the SF‐36 asks: ‘In general, would you say your health is:

…?’ (response categories from 1 = excellent to 5 = = poor), while the EORTC QLQ‐C30 =
asks: ‘How would you rate your overall quality of life during the past week?’ (response

categories from 1 = very poor to 7 = = excellent). These questions have a precision that is=
delimited by the number of valid categories from which the respondent must choose, and

the QLQ‐C30, with seven categories, potentially offers more precision that the SF‐36 with

fi ve. Although it might seem tempting to allow a larger number of response categories,

this can lead to diffi culties in distinguishing shades of meaning for adjacent ones. Offering

a large number of categories also leads to unreliability in the sense that, in repeated test-

ing, respondents will not consistently choose the same answer from the closely adjacent 

possibilities. When using labelled response options, verbal rating scales  (VRS) with a 

maximum of four or fi ve response categories are often recommended, and it would seem 

of little value to go beyond seven categories. For symptoms, a common format is to use an 

11‐point  numerical rating scale  (NRS) in which 0 represents absence of symptoms and

10 indicates the worst possible grading; for many applications this may provide adequate 

precision, although in other situations a multi‐item scale may be preferred. 

Multi‐item tests, on the other hand, can have greater precision. For example, if four‐

point categorical questions are used, and fi ve questions are summed into a summary 

score, the resultant score would have 20 possible categories of response. 

Some single‐item assessments attempt to overcome this by using visual analogue 

scales (VAS) in which a line, typically 10 cm long, is labelled at each end by extreme

values. Respondents are invited to mark the line at a distance from the two ends accord-

ing to their level of QoL. In principal such scales can provide fi ne discrimination, since

the investigator may choose to measure the positions of the response very precisely.

In practice, however, there must be doubt as to whether patients can really discrimi-

nate between fi ne differences of position along the line. (VRS, NRS and VAS are also 

described in Section 3.8).  

Validity 

The items of a multi‐item scale can be compared against each other, to check whether 

they are consistent and whether they appear to be measuring the same postulated

underlying construct. Psychometric tests of validity are to a large extent based upon

an analysis of the inter‐item correlation structure. These validation tests cannot be 

employed on a scale that contains only a single item. It has been argued that the abil-

ity to check the internal structure of multi‐item scales is an essential feature, and the

inability to do the same for single‐item measures is their most fundamental problem.

Blalock (1982) points out that with a single measure of each variable one can remain

blissfully unaware of the possibility of measurement error, but in no sense will this

make the inferences more valid.

This criticism of single‐item scales serves merely to indicate the need to adopt suitable 

methods of validation. Internal validity, as typifi ed by Cronbach’s reliability coeffi cient 

α  (see Chapter   5  ), can only be calculated for multi‐item scales and cannot be explored α
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when there is but a single item. However, insight into properties analogous to internal

validity may be obtained by introducing additional, temporary items. During the scale

development phase, redundant items could be added to the questionnaire purely for vali-

dation purposes; they could be abandoned once the scale is approved for use. 

 Both single‐ and multi‐item scales can, and should, be investigated for external

validity. This places emphasis upon an examination of the relationships and corre-

lations with other items and scales, and with external variables such as response to

treatment. Assessment of all scales should include evaluation of test–retest reliability,

sensitivity and ability to detect expected differences between groups such as treatment 

or disease, and responsiveness to changes over time (Chapter   4  ).

Scope 

QoL, like many constructs, is a complex issue and not easily assessed by a single ques-

tion. Many patients, when asked: ‘How would you rate your overall quality of life?’ may

reply: ‘Well, it depends what you mean by “QoL”. Of course I’ve got lots of symptoms,

if that’s what you mean. But I guess that is to be expected.’ In other words, the global

question oversimplifi es the issues and some patients may have diffi culty in answering

it. They fi nd it more straightforward to describe individual aspects of QoL. This is often

advocated as a reason for multi‐item questionnaires and is perhaps the most pertinent 

argument for caution in the use of global questions. If patients have diffi culty under-

standing or answering a question, their responses must surely be regarded with suspicion.

 An investigator who uses multi‐item tests can choose items so that the scope and

coverage of the questionnaire is made explicit. Areas of interest can be defi ned by the

selective inclusion of items, and the scope of the questionnaire can be widened by

including as many questions as are deemed necessary to cover all the topics of interest. 

Alternatively, the scope can be made more restricted or tightly defi ned, by excluding

unwanted items, either at the questionnaire‐design stage or during analysis. Multi‐item

questionnaires allow the investigator greater freedom for creating his or her own defi -

nition of QoL – even though this may not correspond to the patient’s view of what is

meant by ‘quality of life’.   

2.6 Effect indicators and causal indicators

Much of psychometric theory is based on the premise that there exist hypothetical

‘latent’ constructs such as QoL, and that scales can be constructed from items that 

refl ect the respondent’s level of the latent construct. Over the years it has become appar-

ent that several types of items can be distinguished, according to their relationship with

the latent variable that is being assessed. These are known as refl ective (or effect) and

formative (subdivided into causal and composite) indicators. Essentially, psychometric

theory is based largely on refl ective (effect) indicators, which also implies that models

for ‘parallel items’ are applicable (Section 2.7).
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 It must be emphasised that the refl ective model describes the relationship between

the observed items (‘indicators’) and the latent construct; frequently a completely dif-

ferent perspective is obtained by redefi ning the latent variable, as we describe at the 

end of this Section. For example, when exploring QoL as the latent variable, pain

impacts on QoL but does not necessarily refl ect the level of QoL; on the other hand,

pain may refl ect severity or progression of illness.  

 Refl ective (effect) indicators 

 The majority of items to be found in personality, intelligence or educational attainment 

tests and other psychometric assessments are designed to refl ect either a level of ability 

or a state of mind, and this refl ective model has dominated the psychometric methods 

that have been developed for test or questionnaire design. These items are commonly 

given a variety of descriptive names, including effect indicator  or, because they indi-r
cate or ‘refl ect’ the level of the latent variable, refl ective indicator.  They are also the

most common type of item in PRO or QoL instruments and that is why we draw so

heavily on methods developed in these other fi elds. However, as we shall see there are 

some notable exceptions and in those cases other methods of questionnaire design and

scoring should be considered.

 Items that are refl ective indicators do not alter or infl uence the latent construct that 

they measure. (Although learning effects can interfere with the measurement of intel-

ligence or education, appearing to alter the latent construct, they are less important for 

our discussion of QoL.)  

 Causal indicators

 However, the symptoms assessed in QoL scales may cause a change in QoL. If a

patient acquires serious symptoms, their overall QoL is affected by those symptoms.

In fact, the reason for including symptoms in QoL instruments is principally because

they are believed to affect QoL. Conversely, having a poor QoL does not imply that 

the patient has specifi c symptoms. Unlike educational tests, in which a person with

the highest ability has the greatest probability of answering all questions successfully, 

a patient with poor QoL need not necessarily be suffering from all symptoms. Symp-

toms and similar items are  causal indicators  (Fayers and Hand, 1997a). Side effects are 

another good example of variables that are causal indicators in relation to overall QoL.

Although symptoms are indicators of disease and side effects are consequences that 

are refl ective of treatment, neither treatment nor disease is the focus when assessing

QoL and, in relation to the assessment of QoL, symptoms and side effects are purely

causal. Typical characteristics of causal items are that one on its own may suffi ce to 

change the latent variable; it is unnecessary – and usually rare – that patients must 

suffer from all items in order to have a poor QoL (Fayers  et al ., 1997a). For example,l
few patients will experience all possible symptoms and side effects, but one serious

symptom – such as pain – suffi ces to reduce overall QoL.
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 Variables may frequently be partly effect and partly causal indicators. They may

also exchange roles. For example, a patient may experience symptoms, become

distressed, and then perceive – and report – the symptoms as being worse than they

are. An initially causal item has acquired additional refl ective properties. Another 

example is the phenomenon of anticipatory nausea and vomiting. Cytotoxic chemo-

therapy for cancer commonly induces these side effects. Some cancer patients who

have experienced these problems after their initial course of treatment may start 

vomiting prior to the administration of a subsequent course. Again, a variable that 

might seem to be purely causal has acquired some of the properties of an effect 

indicator. The reverse may also apply. A distressed patient may become unable

to sleep; so insomnia is a refl ective indicator of psychological distress. Contin-

ued insomnia, however, may then cause additional anxiety and distress. Thus there

will often be uncertainty and ambiguity about the precise role of variables in QoL

assessment. Disease or treatment‐related symptom clusters are likely to be pre-

dominantly causal; it may be less clear whether psychological and other items are

mainly causal or refl ective in nature. 

 How do causal indicators affect QoL assessment? Many models assume that the

observed items depend solely upon the latent variable. That is, if QoL is ‘high’, high

levels of the items should refl ect this. Furthermore, if the observed values of the items

are correlated, these correlations should arise solely because of the effect of the latent 

variable. These assumptions are clearly untrue for causal indicators. Here, the correla-

tions between, say, symptoms arise mainly because of the changing disease patterns.

The correlations between a variable that is a causal indicator and the latent variable,

QoL, are likely to be weak or obscured by the stronger correlations between symptom

clusters.

Example  

The Hospital Anxiety and Depression Scale (HADS) questionnaire is an 
instrument with a simple latent structure (Appendix E12). Zigmond and 
Snaith (1983) designed it such that seven questions should relate to anxiety, 
and seven to depression. The design assumes that ‘anxiety’ and ‘depression’ 
are meaningful concepts, and that they can be quantifi ed. It is postulated 
that they are two distinct constructs. It is assumed that anxiety and depres-
sion cannot be measured reliably and adequately by single questions such 
as ‘How anxious are you? (not at all, a little, quite a bit, very much)’, and 
that multiple questions must be employed. In common with most question-
naires that assess  psychological   aspects of QoL, the HADS items are predomi-
nantly refl ective indicators. If anxious, patients are expected to have high
scores for the anxiety items; if depressed, they should score highly on the
depression items.
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 The distinction between causal indicators and refl ective indicators has become

widely recognised in the fi eld of structural equation modelling. However, the implica-

tions of this distinction are less frequently recognised in clinical scale development,

even though these two types of items behave in fundamentally different ways in meas-

urement scales, and have considerable impact upon the design of scales. As we shall

see, the inter‐item correlations can be more diffi cult to interpret with causal indicators,

and thus the methods of Chapter   5   become less useful (e.g. Cronbach’s  α  is usually

irrelevant for causal indicators), exploratory factor analysis of Chapter   6   can some-

times prove misleading (although more complex structural models that may be helpful

can be specifi ed), and item response models of Chapters   7   and 8 become inappropriate.

 Composite indicators

 Some indicator variables may fi t neither the refl ective nor the causal models just described.

Consider an Activities of Daily Living (ADL) instrument. This instrument may well pro-

vide a global score for ADL. Perhaps it contains items such as ability to walk a short dis-

tance, or ability to eat food unassisted. These items are neither effects of ADL nor do they

‘cause’ ADL to change. Instead, they are part of the defi nition of what we mean by ADL,

and by including them in the model we are defi ning ADL as meaning mobility and ability

to eat by oneself. Another example is given by the example in Section 5.7, where pain was

evaluated by four items targeting, respectively, pain in abdomen, anus, rectum, or when

urinating; these items are but weakly correlated, and are composite indicators that defi ne

what the investigators mean by ‘pain’ in the context of colorectal cancer.

 Composite indicators thus serve to defi ne, or ‘form’, their latent variable. In recognition

of this, a score that is yielded from such instruments is commonly described as an index. x
Indexes exist in many forms; fi nancial indexes include the FTSE‐100, the Dow Jones

Industrial Average, Nasdaq Index and many others – and in every case the index is defi ned

by and labelled according to the items included in the respective basket. These and simi-

larly formed indexes are defi ned by their composite indicators  (e.g. Bollen and Bauldry,

2011). Formative indicators as originally defi ned by Fornell and Bookstein (1982) are the

same as composite indicators. Confusingly, however, the modern trend is towards using

the label formative indicator as an umbrella term that includes  r both  causal indicators and

composite indicators – that is, everything that does not fi t the refl ective model.  

 Formative indicators

 The terms causal indicator and r effect indicator  are widely used in the fi eld of structuralr
equation modelling (Bollen, 1989). They are unfortunate choices of words, since in

ordinary speech ‘cause’ and ‘effect’ are commonly regarded as dynamic and opposite. 

In our context, changes in so‐called effect indicators need not be an effect ‘caused’ by

the latent variable; they merely refl ect its level. In an educational test, correct answers

to questions are neither ‘caused’ by high ability nor cause high ability. As already

noted, an alternative widely used term for effect indicator is the more neutral refl ective
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indicator , because it refl ects the level of the latent variable but need not in a strict r
sense be an effect or consequence caused by that latent variable. In statistical terms,

a good refl ective indicator is one that is highly correlated with the latent variable, and

no implication of causality need be present. Thus the fl avour of such an indicator is 

captured by such phrases as ‘it refl ects the latent variable’ or ‘it is a manifestation of 

the latent variable’. Similarly, some authors prefer the term formative indicator instead r
of causal indicator.   

Distinguishing causal from refl ective indicators 

How can one identify causal indicators? Perhaps the easiest method is the  thought test. t
For example, if we consider vomiting: think of the question ‘Could severe vomiting

affect QoL level?’ Yes, almost certainly. ‘Could QoL level affect vomiting?’ Possibly,

but it is more likely that vomiting is a consequence of the treatment or the disease.

Hence, most would conclude, vomiting is likely to be a causal indicator for QoL. Jarvis

et al . (2003) propose a seven‐item check list for determining whether a particular iteml
is formative or refl ective. In this, a construct should be modelled as having formative 

indicators if the following conditions prevail:

1.  the indicators are viewed as defi ning characteristics of the construct,

2.  changes in the indicators are expected to cause changes in the construct, 

3.  changes in the construct are not expected to cause changes in the indicators, 

4.  the indicators do not necessarily share a common theme,

5.  eliminating an indicator may alter the conceptual domain of the construct, 

6.  a change in the value of one of the indicators is not necessarily expected to be as-

sociated with a change in all of the other indicators, and

7.  the indicators are not expected to have the same antecedents and consequences.

Table   2.1    compares refl ective and formative models, and many of these features

also serve to distinguish between the two models. Coltman  et al . (2008) provide an l
expanded discussion contrasting these models.

Impact of formative models 

For an index based on formative indicators, both causal or composite, correlation

between the items is usually of little relevance (apart from very high correlations that 

may sometimes be indicative of item redundancy), so the methods of Chapters   5   to 8

are irrelevant. Face and content validity in the form of comprehensive coverage of the
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components in the index is usually paramount. It is particularly important to include 

items for all of the issues that impact on (causal model) or defi ne (composite model) 

the latent variable, especially if they occur frequently or are rated important by patients.

Irrelevant items must not be included, as they might distort the index that is being cre-

ated. These issues are addressed most strongly by qualitative methods for face and 

content validity, rather than the correlation‐based or other psychometric approaches to

construct validity. 

 Thus the development of scales based on refl ective or formative models should fol-

low different principles. This will affect the initial choice and specifi cation of candi-

date items, and the subsequent selection, retention or deletion of items. Two studies are

reported in the examples of Section 3.15, illustrating the substantial differences that 

occur when scales are developed using methods for formative items instead of psycho-

metric models with refl ective items. The distinction between the two types of indica-

tors is of fundamental importance to the design and validation of new instruments,

particularly when they are intended to combine multiple items into summary scales.

Effect indicators may lead to homogeneous summary scales with high reliability coef-

fi cients, whereas causal indicators should be treated with greater caution (Fayers and

Hand, 1997a).  

Re‐specifying the latent variable

We have discussed how a symptom such as pain might be conceptually regarded as a

causal indicator when assessing QoL. In this model, QoL is the latent variable and it is

assumed that the aim is to obtain a rating for patients’ level of QoL. Instead, suppose

we are interested in simply rating the level of pain severity. To do this, we now defi ne

pain severity as the latent variable, and we seek items in the pain questionnaire that 

are indicators of pain level. These items can arguably be viewed as refl ective of pain 

severity, and the aim of scale validation now becomes to evaluate whether a refl ective

model is reasonable, and to test the performance of the individual items.

 In other words, it is essential to recognise that items are not in themselves inherently

refl ective or formative. They only acquire these attributes when they are regarded as

indicators of a specifi ed latent variable, and the same item may change its status accord-

ing to the perspective from which it is viewed. A set of pain items may be refl ective for 

severity of pain, and then standard psychometric methods will be perfectly applicable;

the same items can at the same time be formative indicators for an index score of QoL,

and for that purpose a different approach to scaling and scoring will be necessary.   

2.7 Psychometrics, factor analysis and item response theory 

The theory of multi‐item tests is based upon measurement models that make various

assumptions about the nature of the items. These form what is often called  traditional 
psychometrics  and are based largely on either summated scales, in which the scores on 
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multiple items are added together, or linear models such as factor analysis models. In

contrast, models that stress the importance of item response models, in which patients

with a particular level of ability have a  probability of responding positively   to different 

questions, are often called modern psychometrics . 

 Historically, the early psychometricians were interested in exploring ill‐defi ned

constructs such as intelligence, to see if there is an innate form of general intelli-

gence. It was thought that this might be distinct from specifi c abilities such as ver-

bal or mathematical intelligence, which might be infl uenced by education (see

Section 6.6). This led to the creation of multi‐item tests that enabled correlation‐based

models to be explored for attempting to separate these postulated constructs. Thus one

major reason for using what are known as parallel tests is that it becomes possible to

explore dimensionality and factor‐structure. The use of multiple items also increases

the reliability and precision of the assessment. 

 Parallel items

 One of the most common models is founded upon the theory of parallel tests . This pos-

its that each individual measurement item is a test or a question that refl ects the level 

of the underlying construct – that is, all items should be refl ective indicators (Section

2.6). For example, when evaluating anxiety, each question should refl ect the underly-

ing level of a patient’s anxiety. Each item should be distinct from the others, yet will

nevertheless be similar and comparable in all important respects. The item responses

should differ only as a consequence of random error. Such items are described as being

parallel. There are a number of assumptions inherent in this model, of which the most 

important are:

   1.  Each of the items (say, x i  for the  i th item) is a test that gives an unbiased estimate of 

the latent variable (θ ). That is, on average, the value of each item equals the valueθ
of the latent variable plus random variability (the  error term ). Thus  x   i = θ + e i , 
where e i  is an error term that has, on average, a mean value of zero.

   2.  The e i  error terms are uncorrelated. That is, any two items ( x  ( i , x jx  ) should only ap-

pear to be correlated because the latent variable varies. If we consider a group of 

patients with an identical level of QoL (constant  θ ), their θ x  values should be uncor-x
related with each other. 

   3.  Each item is assumed to have the same amount of potential error as any other item.

That is,  SD (e i ) =  SD (e je  ). This implies that, for a group of patients corresponding to

any one particular value of the latent variable, the items x i  and  x   jx   have equal  SD s.

   4.  The error terms are uncorrelated with the latent variable. That is, the correlation

between e i  and  θ  is zero.θ

 The theory of parallel tests underpins the construction of simple summated scales

in which the scale score is computed by simply adding together all of the item scores.
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These scales are often called  Likert summated scales   , after the infl uential papers by

Likert (1932, 1952). The Likert method is most successful when the response scale for 

each item covers a wide range of scale levels.

 However, the constraints of strictly parallel tests have been recognised as being

unnecessarily restrictive. Most of the psychometric properties are retained even when

the  SD s of the error terms are allowed to differ, so that SD ( e i ) ≠ SD( e je  ). Such models

are known as  randomly parallel tests , or  tau‐equivalent tests  since  τ  (tau) is the mathe-τ
matical symbol that is often used to represent the true score for a test. This implies that 

the items are still parallel with respect to how much they are infl uenced by the latent 

variable, but they may have different error  SD s arising from extraneous non‐specifi ed 

factors. Thus in tau‐equivalent tests, like parallel tests, the mean value  x   i of item  i  is on

average equal to  θ . θ
 Much of the early development of psychometric questionnaires was centred upon 

educational testing, in which examination questions can be carefully designed so as to

comply with these exacting demands. For QoL instruments, one might anticipate that 

some items in a scale might take responses that are on average higher (or lower) than

other items in the scale. In psychometric terms, these may be  essentially tau‐equivalent 
tests , in which the items have different constant ‘bias’, or shift in value, relative to the

latent variable. Thus the mean value of item i  is  θ +  k i  where  k i  is the constant bias for 

item  i . One thing in common with all these models is the assumption that the tests con-

sist of refl ective indicators that are solely linear functions of the latent variable (with 

a random error component included). Many of the traditional psychometric methods

remain applicable to essentially tau‐equivalent tests (Lord and Novick, 1968).

 The majority of QoL instruments have been designed upon the principles of parallel 

tests and Likert summated scales. The related psychometric methods (see Chapter   5  ) to

a large extent assume that the scales contain solely refl ective indicators. This is usually

a reasonable assumption for educational, intelligence and personality tests, as well as

for many other psychological and sociological tests. The inter‐item correlations that 

exist between causal indicators in many clinical fi elds of application may render many

psychometric methods inapplicable.  

 Factor models

 Parallel tests and Likert summated scales are unidimensional models; that is, they

assume that all the items are measuring a single construct, or factor. If an instrument 

is thought to consist of several multi‐item scales, each will have to be analysed sepa-

rately. By comparison,  factor analysis   is a much more general approach that can model 

a number of factors simultaneously, using the inter‐item correlations and SD s to esti-

mate the models and carry out statistical ‘goodness‐of‐fi t’ tests. The factor structure

models are linear combinations of the observed variables, with the latent variables

being estimated by weighted summation that refl ects the importance of each of these

variables. The basic factor analysis models belong to traditional psychometrics, and

they assume that all items are refl ective indicators such that the inter‐item correlations

arise through the relationship between these observed variables and the latent variable.
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 However, when causal items are present, the so‐called exploratory factor analy-

sis model breaks down. For example, many symptoms will be correlated because 

they are related to disease progression or treatment side effects; these correlations

indicate nothing about the relationship between the symptoms and QoL.  Structural 
equation models  (SEMs) provide generalisations of the factor model, and also include 

multiple‐indicator multiple cause  (MIMIC) models. These models are able to handle 

causal indicators, but place far greater demands upon the data and do not provide

a solution in every circumstance. Variables that are composite indicators, and form

indexes, do not fi t factor models, SEMs or MIMIC models.

 Factor analysis seems to work – even with formative indicators!

 Exploratory factor analysis is widely used in publications that purport to validate QoL

instruments. Mostly, the results appear to be sensible. Which might appear to con-

tradict the assertions about formative indicators and misleading correlations. How-

ever, although factor analysis is promoted as a form of validation for exploring the

dimensionality and constructs underlying latent variables such as QoL, we will show 

in Chapter   6   that all it really aims to do is identify clusters of variables that are highly

correlated. Thus if a QoL instrument contains several items about mobility, it would be

unsurprising to fi nd that those items are strongly correlated and thus form a ‘factor’;

but the presence of a such a factor cannot be taken as reassurance that mobility is a

dimension of QoL. In Chapter   6   we provide additional examples where factor analysis

leads to misleading results when formative items are present. Usually, however, the 

resultant factors which represent clusters of correlated items will  appear sensible, but l
for the wrong reasons.  

Item response theory 

While most QoL and other clinical scales have been developed and based upon tradi-

tional psychometric theory, with summated scales being particularly common, newer 

instruments make greater use of modern psychometric theory. This largely centres on 

item response theory  (IRT). For this model, items may have varying ‘diffi culty’. It is

assumed that patients will have different probabilities of responding positively to each

item, according to their level of ability (that is, the level of the latent variable). Whereas 

traditional methods focus upon measures such as averages, IRT places emphasis upon

probabilities of responses.

The design of scales using IRT methods is markedly different from when traditional 

methods are used. Likert summated scales assume items of broadly similar diffi culty,

with each item having response categories to refl ect severity or degree of response

level. In contrast, IRT scales are based upon items of varying diffi culty. In educational 

testing, where IRT was to a large extent pioneered, each item will frequently have only

two response categories (gradings), such as yes/no or right/wrong. By using items 

with a wide range of diffi culty, ability can be scored with a high level of precision. We
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cannot separate the most able students from those only slightly less competent if all

the questions are too easy; thus an exam should include some diffi cult questions that 

enable discrimination at this level. Similarly, easy questions are needed to distinguish

among the weaker students.

 Unlike the early psychometricians, who were using parallel tests to explore the number 

of dimensions that underlie concepts such as intelligence, the proponents of IRT instead

assume that the dimensions have to a large extent been agreed upon. The focus becomes

assessment, with the highest effi ciency and precision. In addition, the items in educational

tests have to be changed from year to year to prevent cheating. A means of calibrating

questions is required, to ensure a consistency of grades over time. IRT offers this facility. 

 IRT models, like factor models, assume that the observed variables refl ect the value

of the latent variable, and that the item correlations arise solely by virtue of this rela-

tionship with the latent variable. Thus it is implicit that all items are refl ective indi-

cators. This model is inappropriate for symptoms and other causal items. IRT also

underpins computer adaptive tests (CATs), and one of the assumptions of CATs is that 

items are exchangeable so that different respondents may receive different subsets of 

items; clearly that cannot be true if the items are formative indicators, either causal of 

composite indicators.   

2.8 Psychometric versus clinimetric scales

Feinstein (1987) argues that many clinical scales possess fundamentally different attrib-

utes from psychometric scales, and that their development and validation should there-

fore proceed along separate paths. He proposed the name clinimetrics  for the domain

concerned with the construction of clinical indexes. A ‘good’ and useful clinimetric

scale may consist of items comprising a variety of symptoms and other clinical indexes,

and does not necessarily need to satisfy the same requirements that are demanded of 

other scales. Fayers and Hand (2002) characterise this by noting that psychometricians

try to measure a single attribute with multiple items . The validation methods described 

in Chapter   5   are then used to demonstrate that the multiple component items are all

measuring (more or less) the same single attribute (latent variable). Clinicians try to

measure  multiple attributes with a single index , and aim their strategies at choosing andx
suitably emphasising the most important attributes to be included in the index.    

Example  

The Apgar (1953) score is used to assess the health of newborn babies. This 
index combines fi ve seemingly disparate symptoms related to heart rate, respira-
tory rate, refl ex responses, skin colour and muscle tone. Despite this, it provides 
an effective and well‐established predictor of neonatal outcome. Each item is 
scored from 0 to 2, and a sum‐score of 7 or more indicates good prognosis.
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 In many applications of clinimetrics, as with Apgar scores, the primary aim is to

develop a diagnostic tool, or a prognostic or predictive index. In those settings causal

items are particularly frequent because they will be powerful predictors. Of course, the 

development of these predictive indexes is likely to be fundamentally different from

developing a QoL instrument because an external criterion variable – the outcome

being predicted – is available for patients who have been followed up. Thus statistical 

methods usually centre on regression or similar techniques.

 When a single attribute (latent variable) is being assessed using multiple items, the

investigators will often have a model for the structural relationships in mind. Thus

psychometricians usually think in terms of how the latent variable manifests itself in

terms of the observed variables. This leads to the use of factor analysis and other tech-

niques for the extraction of scores. On the other hand, the summary indexes that clini-

cians often seek to encapsulate the values from a number of measured attributes may

sometimes be completely arbitrary, and are defi ned rather than modelled. Sometimes

various target criteria are employed when developing an index, such as its prognostic or 

predictive ability for some future outcome such as length of subsequent survival or cure.

 When measuring QoL, one might defi ne a hypothetical construct for the latent vari-

able ‘overall QoL’. Using a psychometric model, one would seek indicators that are 

postulated to refl ect overall QoL, and would then collect experimental data to explore

and test the model, and to determine whether the variables fi t the model. Using a clini-

metric approach, one could identify those items that patients regard important for good

QoL (that is, causal items affecting QoL), and use these to defi ne a summary index. 

Whereas the psychometric approach emphasises constructing, validating and testing 

models, the clinimetric approach usually involves defi ning and developing an index

that is ‘clinically sensible’ and has desirable properties for prognosis or prediction.

 The distinction between clinimetric indexes  and psychometric scales  has

far‐reaching implications for the assessment of reliability and validity. Fayers and Hand

(2002) show that it is also closely related to the distinction between causal indicators
and  refl ective indicators , and these concepts explain and justify most of the supposed 

differences between psychometric scales and clinimetric indexes. The greater part of 

psychometric theory presumes that all of the items in a scale are refl ective indicators. 

Clinimetric indexes behave differently from psychometric scales principally because

they can contain both formative indicators and refl ective indicators.   

 2.9 Suffi cient causes, necessary causes and scoring items

 In epidemiology, the concepts of causal variables have been highly developed.

Thus in 1976 Rothman introduced the concept of  necessary and suffi cient causes
(Rothman, 1976). An epidemiological example is infection with Mycobacterium tuber-
culosis  (TB). Nothing else can cause TB, and so bacterial infection by this mycobacte-

rium is a necessary  condition. It is also a suffi cient cause for TB because no additional

factors are needed; this mycobacterium on its own is suffi cient  to cause TB. Althought
necessary causes are only infrequently applicable to scale development, the presence 
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of suffi cient causes can be of considerable importance. For example, symptoms are

examples of causal items that may also sometimes be suffi cient causes; a single symp-

tom, such as pain, may be suffi cient to cause QoL to become low. If a QoL instrument 

contains a scale consisting of several symptoms, a high level of symptomatology for 

one symptom may be suffi cient to impair QoL, irrespective of the values of the other 

symptoms.

 This concept of causal indicators often being suffi cient causes has a number of 

implications for scale development. The latent variable, QoL, is not equally refl ected

by all the component items of the scale. There are no grounds to assume that a sum-

mated scale will be applicable and, to the contrary, frequently it is unlikely that all the

items in a symptom scale will be equally important as determinants of QoL. For exam-

ple, suppose disease progression can cause severe pain in some patients, but causes 

severe nutritional problems in others. A high score on either one of these symptoms

would suffi ce to reduce QoL, and the maximum symptom score could be a better 

predictor of QoL than the mean of the two items. Thus, instead of a simple summated

scale that gives equal weight (importance) to each item, other functions, for example

maximum scores, may be more appropriate. When items represent causal variables that 

are also suffi cient causes, linear models such as Likert summated scales and weighted

sum‐scores may be unsatisfactory predictors of QoL.  

2.10  Discriminative, evaluative and predictive 
instruments 

Throughout the stages of scale development, validation and evaluation it is impor-

tant to consider the intended use of the measurement scale. Guyatt  et al . (1993) drawl
attention to the need to distinguish between discriminative, evaluative and predictive

instruments. Some scales are intended to differentiate between people who have a bet-

ter QoL and those with a worse QoL; these are discriminative scales . Other scales are

intended to measure how much QoL changes; these are evaluative scales . Scales may

also be designed to  predict   future outcomes for patients. If an instrument is intendedt
to be discriminative, it may be less important to include symptoms that are common to

all patients and unlikely to differ between the various treatment groups. For example,

fatigue is not only common for patients with thyroid disease but is also common among

patients without the disease, and hence it might be considered an unimportant item in

a purely discriminative instrument. However, fatigue is indeed an important symptom

for people with thyroid disease, and a change in fatigue over time could be a key item 

for evaluating effects of therapy.

 In general, an instrument that is primarily intended to be evaluative  or predictive 

should be  responsive  to within‐patient changes over time. However, if an instrument 

is intended to be mainly discriminative, patient‐to‐patient differences are more impor-

tant than responsiveness. A  discriminative  instrument should yield consistent meas-

urements when applied repeatedly to a patient whose condition is stable and has not 
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changed; that is, it should provide repeatable, reproducible results. In particular, it 

should possess high  test– tt retest reliability . It should in addition be sensitive  to between‐

patient differences.

 Sensitivity, responsiveness and repeatability are important to all instruments (Chap-

ter   4  ), but when the instrument is intended for specifi c applications one or the other 

property may receive greater priority or, alternatively, different standards may be set 

for acceptability of the instrument. Thus the emphasis will vary according to the pri-

mary objectives in developing the instrument.   

 2.11  Measuring quality of life: refl ective, causal and
composite indicators? 

 QoL instruments commonly contain both refl ective and causal indicators. Whereas the

level of QoL is refl ected in the values of refl ective indicators, it is affected by causal

items. However, psychometric methods, which have formed the basis for development 

and validation for the majority of QoL instruments, are founded upon the assumption

that all of the items are refl ective indicators. The concept of causal indicators explains

many of the differences between psychometric and clinimetric methods, and why psy-

chometric methods are less appropriate in the context of these variables and why the 

clinimetric approach is often preferable.

 Fayers and Hand (2002) and Fayers (2004) demonstrate that the distinction between

causal and refl ective indicators affects all stages of instrument development, from

selection of items through validation to scoring and hence analysis. Thus, for example,

when selecting items for an instrument, the psychometric approach leads to items that 

are multiple (parallel) refl ective indicators for each scale, while for causal indicators

such as symptoms and for other items that are formative indicators the most important 

considerations are content validity and breadth of coverage.

 Essentially, QoL instruments serve two very different functions, and should be

designed accordingly. On the one hand, they serve to alert the clinician about problems

concerning symptoms and side effects, and help in the management of patients. For 

this purpose, the clinician will often want the results of each symptom reported sepa-

rately. Where multi‐item symptom scales are needed, they are often best constructed

on clinimetric principles. However, sometimes scale scores have been formed simply

by summing disparate symptoms and other physical aspects, even when these cannot 

form a coherent clinical scale indicating the level of QoL. Such scores may, however,

provide a health‐related measure of total symptom burden.

 On the other hand, many QoL instruments are intended to assess overall QoL

as well as its aspects. For this, refl ective indicators may be the most effective, and

they should be chosen and validated using psychometric techniques. These refl ective

indicators might be expressions of patients’ perception of their QoL, or how aspects 

of their QoL status are impaired or reduced. That is, the indicators should refl ect the

effects of impairment rather than being items that cause impairment.
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 It might be thought, therefore, that QoL is best assessed by forming scales consist-

ing solely of refl ective indicators. However, this is tantamount to arguing that if, for 

example, a patient who suffers many symptoms can cope with their problems and nei-

ther reports nor shows visible outward signs of suffering, then their QoL is fi ne. This

clearly raises philosophical issues regarding perceptions and meaning of ‘good QoL’.

Thus most investigators intuitively feel the need to include information about symp-

toms and functional problems in any assessment of QoL. Equally, clinicians would

generally try to relieve symptoms even though patients might claim that they can cope

with their problems or disabilities.

 An alternative approach to the assessment of overall QoL is simply to ask the patient,

and many instruments do contain a global question such as ‘How would you rate your 

overall quality of life during the past week?’ Gill and Feinstein (1994) advocate that 

all instruments should contain such questions.  

2.12 Further reading 

Much of the work on formative models and causal/composite items has been in fi elds

outside of healthcare, with burgeoning interest in management, business, consumer 

and marketing research. In 2008, the  Journal of Business Research   dedicated a whole

issue to formative indicators (Diamantopoulos, 2008). Other useful papers are Colt-

man  et al.  (2008), and Diamantopoulos and Siguaw (2006), both reviewing differences 

between refl ective and formative models; Turner  et al . (2009a) considers implicationsl
on scoring of scales, while Lee and Cadogan (2013) observe that for formative variables

to have utility in theoretical models, the loadings of the formative indicators should be

specifi ed as part of the construct defi nition prior to any analysis. Edwards and Bagozzi

(2000) were early enthusiasts of formative models, although more recently Edwards

(2011) comments “The shortcomings of formative measurement lead to the inexorable

conclusion that formative measurement models should be abandoned”, and suggests

alternative ways of constructing measurement models.   

2.13 Conclusions

The distinction between causal, composite and refl ective indicators, although rarely

recognised, carries far‐reaching implications regarding the methods of scale construc-

tion and validation, as does the distinction between psychometric and clinimetric meth-

ods. The majority of QoL instruments contain a mixture of causal and refl ective items.

 Most instruments also contain both single‐ and multi‐item scales, and the majority

of the modern QoL instruments include at least one global question assessing overall

reported QoL.

 The following chapters explore the ways in which such instruments may be vali-

dated and examined for evidence of reliability and sensitivity.       
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                                                          3
 Developing a questionnaire           

      Summary

 Chapter   1   explained some of the basic principles of assessing patient‐reported outcomes

and QoL, together with examples of existing instruments. Chapter   2   discussed the prin-

ciples of single‐ and multi‐item scales. We now provide an overview of the principles

that are involved in the initial stages of developing a questionnaire. This chapter focuses

in particular on the early and crucial  qualitative  aspects of questionnaire design.    

 3.1 Introduction

 The development of a new QoL instrument requires a considerable amount of painstak-

ingly detailed work, demanding patience, time and resources. Some evidence of this

can be seen from the series of publications that are associated with such instruments

as the SF‐36, the FACT‐G and the EORTC QLQ‐C30. These and similar instruments

have initial publications detailing aspects of their general design issues, followed by

reports of numerous validation and fi eld‐testing studies.

 Many aspects of psychometric validation are described in the chapters that follow.

These depend on collecting and analysing data from samples of patients or others.

However, the statistical and psychometric techniques can only confi rm that a scale is

valid in so far as it performs in the manner that is expected. These quantitative tech-

niques rely upon the assumption that the items and their scales in a questionnaire have

been carefully and sensibly designed in the fi rst place, by the rigorous application of 

formal qualitative methods. 

 Thus the scale development process should follow a specifi c sequence of stages, and

details of the methods and the results of each stage should be documented thoroughly. 

Reference to this documentation will, in due course, provide much of the justifi cation

for claiming content validity. It will also provide the foundation for the hypothetical 

models concerning the relationships between the items on the questionnaire and the

postulated domains of QoL and other PROs, and this construct validity  can then be 

explored using quantitative methods.
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 The importance of the initial qualitative stages cannot be overemphasised. If an impor-

tant PRO has been overlooked and therefore omitted from the instrument, later quantita-

tive validation will be unable to detect this. Thus, no amount of subsequent quantitative

validation can compensate for a poorly designed questionnaire; unfortunately, many forms

of so‐called validation will leave the investigator completely unaware that the foundations

are unsound. Conversely, if the initial development has been carried out with full rigour,

the subsequent validation stages will serve to collect evidence in support of the instrument,

and will enable fi ne‐tuning of the fi nal product; it is rare to see major changes needed to an

instrument that has been designed using careful application of qualitative methods.  

3.2 General issues 

Before embarking on developing a questionnaire, the research questions should have

been formulated clearly. In the case of QoL, this will include specifi cation of the objec-

tives in measuring QoL, a working defi nition of what is meant by ‘quality of life’, the

identifi cation of the intended groups of respondents, and proposals as to the aspects or 

main dimensions of QoL that are to be assessed. When the focus is on specifi c PROs,

such as fatigue or depression, similar levels of detail should be specifi ed. Examples of 

objectives  are whether the instrument is intended for comparison of treatment groups 

in clinical trials (a discriminative instrument), or for individual patient evaluation and

management. Possible  defi nitions  of QoL might place greater or lesser importance

upon symptoms, psychological, spiritual or other aspects. According to the specifi c 

defi nition of the target  respondents , there may be particular emphasis upon disease‐

and treatment‐related issues. All these considerations will affect decisions about the

dimensions  of QoL to be assessed, the number of questions, feasible length of the

questionnaire and the scope and content of the questions.

 When an instrument is intended for use in clinical trials, there is a choice between

aiming at a general assessment of health‐related QoL that is applicable to a wide range 

of patients, or a detailed evaluation of treatment‐ or disease‐specifi c PROs. The for-

mer has the advantage of providing results that can be contrasted across patients from

trials in completely different disease groups. This can be important when determin-

ing healthcare priorities and allocation of funding. The SF‐36 is an example of such 

an instrument. However, disease‐specifi c instruments can provide information that 

focuses upon the issues considered to be of particular importance to the patient groups

under investigation. Treatment‐specifi c instruments will clearly be the most sensitive

ones for detecting differences between the treatment groups.  

3.3 Defi ning the target population

Before considering the issues to be addressed by the instrument, it is essential to

establish the specifi cation of the target population. What is the range of diseases to

be investigated, and are the symptomatology and QoL issues the same for all disease
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subgroups? What is the range of treatments for which the questionnaire should be

applicable? For example, in cancer there can be a wide range of completely differ-

ent treatment modalities, from hormonal treatment to surgery. Even within a class of 

treatments, there may be considerable variability; the drugs used in cancer chemo-

therapy include many with completely different characteristics and toxic side effects.

A QoL instrument that will be used for more than the immediate study should ensure

that it is appropriate for the full range of intended treatments. Similarly, patient char-

acteristics should be considered. For example, what is the age range of the patients,

and might it include young children who have very different priorities and may also

require help in completing the questionnaire? Will the target group include very ill

patients, who may have high levels of symptomatology and who may fi nd it diffi cult 

or even distressing to answer some questions? Might a high proportion of patients

be relatively healthy, with few symptoms? If so, will the questions be suffi ciently

sensitive to discriminate between patients who report ‘no problems’ in response to

most items?

 The detailed specifi cation of the intended patient population and their target disease

states is second in importance only to the specifi cation of the scientifi c question and

the defi nition of QoL or of the PROs that are to be investigated. All of these aspects

should be carefully specifi ed and recorded.   

 3.4 Phases of development

 Adapting the structure used in The EORTC Guidelines for Developing Questionnaire
Modules  (Johnson et al ., 2011), we recognise four phases of development.  l

 Phase 1: Generation of QoL issues

 This phase is aimed at compiling an exhaustive list of relevant QoL issues that cover 

the domain(s) of interest. In the process of compiling this list, three sources are used:

(i) literature (including existing questionnaires); (ii) patients with the relevant con-

dition and all relevant stages of disease and treatment; (iii) healthcare professionals 

(such as physicians, nurses, psychologists, dieticians) with clinical expertise in the 

area of the questionnaire.  

 Phase 2: Construction of the item list

 The list of QoL issues from Phase 1 is converted into questions with suitable format 

and time frame. During this phase a model of the hypothetical constructs will emerge,

and the forming of multi‐item scales should be anticipated by including, where perti-

nent, several similar or related items either to broaden the scope of the construct or to 

increase it precision or reliability.   
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Phase 3: Pre‐testing

The aim of pre‐testing the questionnaire is to identify and solve potential problems in

its administration (e.g. the phrasing of questions or the sequence of questions) and to

identify missing or redundant issues. Furthermore, Phase 3 may also be used to gather 

initial insights into the scale structure and the scoring of multi‐item scales. Pre‐testing

is also relevant if previously developed items are used in a new setting, because:

1.  the meaning of questions can be affected by the context of the neighbouring questions;

2.  items may require adaptation when used in different languages and cultural set-

tings than those of the initial development; 

3.  questions developed originally for a particular target group may perform differ-

ently when applied in a new setting;

4.  the scale structure and the scoring of multi‐item scales should be explored.

 Pre‐testing consists of:

●    administering the questionnaire to new patients belonging to the target popula-

tion, to obtain a response score for each item, together with rating of relevance and

importance; and

●    conducting structured interviews with each patient after completion of the question-

naire to ensure completeness and acceptability of the items in the list.  

 The pre‐testing may also include so‐called cognitive interviewing to investigate the

patients’ understanding of the items in more detail (Section 3.13).

 By the end of this Phase 3 there should be a near‐fi nal provisional instrument, with

the aim of using Phase 4 to confi rm the validity of the postulated constructs and scaling.

Phase 4: Field‐testing 

The questionnaire and its scale structure should be fi eld‐tested in a large, international

group of patients in order to determine its acceptability, reliability, validity, responsive-

ness and cross‐cultural applicability. 

 It is necessary to fi eld test the questionnaire because:

1.  the sample size needed to carry out the requisite psychometric evaluation is sub-

stantially larger than that used typically in Phase 3;

2.  completion of the questionnaire in Phase 3 is typically done in the presence of a

researcher and the instrument may perform differently when completed without 

such supervision;

3.  items may require adaptation when used in different languages and cultural set-

tings than those of the initial development (that is in Phases 1 and 3).   
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 Field‐testing consists of:

●    administering the instrument to patients belonging to the target population, but who

were not involved in Phases 1 or 3; and 

●    completion of a debriefi ng questionnaire by each patient after completion of the

instrument.  

 It is anticipated that Phase 4 will lead to few minor modifi cations of the instrument 

and its scoring. At this stage, any changes of substance would raise the question of 

whether there is a need for further validation studies, to confi rm the validity following 

the proposed changes.

 Work in each of the four phases will be elaborated in following sections of this

chapter.    

 3.5 Phase 1: Generation of issues

 The fi rst phase of developing a QoL instrument is to generate an exhaustive list of all QoL

issues and PROs that are relevant to the domains of interest, using literature searches,

interviews with healthcare workers and discussions with patients. It is essential to have

exhaustive coverage of all symptoms that the patients rate as being severe or important.

After identifying all of the relevant issues, items can be generated to refl ect these issues.

 Some issues, such as anxiety, are often assessed using several items in order to

increase the reliability of the measurement. Therefore, at the next stage (Phase 2) the 

developer will need to decide whether to cover each issue selected for inclusion in the

questionnaire with one or more items. 

 Literature search

 The initial stage in item generation usually involves literature searches of relevant 

journals and bibliographic databases, to ensure that all issues previously thought to be

relevant are included. Any existing instruments that address the same or related areas

of QoL assessment should be identifi ed and reviewed. From these sources, a list of 

potential QoL issues for inclusion in the questionnaire can be identifi ed.      

    Example from the literature

 Testicular cancer (TC) is the most common type of cancer in men aged 15–45
years, and its incidence is increasing. There is a high survival rate, and so pre-
serving QoL and minimising adverse effects of cancer therapy are major issues.
Holzner et al . (2013) describe the development of a TC‐specifi c questionnaire, l
designed to complement the EORTC QLQ‐C30.
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Specialist interviews 

The list generated by the initial search should be reviewed by a number of healthcare

workers who are experienced in treating or managing patients from the disease area in

question. This will usually include physicians and nurses, and may well also involve

psychiatrists and social workers.

 An extensive literature search was conducted to establish an initial list
of QoL issues potentially relevant to TC patients. This list was evaluated in
semi‐structured interviews with experts in the fi eld and with patients to
clarify whether further issues should be included. The literature search in the
databases MEDLINE and PsychINFO covered the years 1996–2006. The authors
present the details of their searching strategy.

 The literature search revealed 37 articles and 26 questionnaires providing
QoL issues relevant to TC patients. Following this literature search and expert
discussion, an initial list of 20 QoL areas containing 69 issues of potential 
relevance to TC patients was assembled. This list was edited to remove overlap
and redundancy and was assessed in semi‐structured interviews with TC experts
from nine countries.

 Based on this selection procedure, the number of QoL issues on the list was
reduced to 37.

They should address issues of content validity: are the issues that are currently pro-

posed relevant, or should some be deleted? If they are recommended for deletion,

why? Some possible reasons for deletion of an issue may be because (i) it overlaps

closely with other issues that are included, possibly by being too broad in scope; (ii) it 

is irrelevant to the target group of patients; (iii) it lacks importance to QoL evaluation;

    Example from the literature  

 Holzner  et al . (2013) collected expert ratings on relevance, priority and breadthl
of coverage from 28 experts (11 urologists, six radiation oncologists, three 
psychologists, two medical oncologists, two physicians, two junior physi-
cians, a nurse and an urologist in training). They were working at centres in 
Austria (10), the Netherlands (7), Italy (7), Canada (3) and England (1). Their 
average professional experience was 11.9 years. Items were rated separately for 
patients receiving treatment and for patients after treatment.

Twenty‐six of the 37 items met all inclusion criteria relating to priority, relevance 
and breadth of coverage. The remaining 11 items failed to meet one criterion, 
mainly patient‐rated relevance. The authors describe revisions made to eight items. 
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and (iv) it concerns extremely rare conditions and affects only a small minority of 

patients. Care should be taken to ensure that issues are not deleted at this stage simply

because of any fi xed opinions of the development team, or simply because the ‘special-

ists’ are unaware of the occurrence of particular symptoms or problems. 

 Of equal importance is that the questionnaire should be comprehensive. What other 

issues should be added to the list? If new issues are proposed, details of the reasons

should be recorded for subsequent justifi cation in reports or publications.

 Following this stage, a revised list of issues will have been generated.

 Patient interviews

 The revised list of issues should be reviewed by a group of patients who are representa-

tive of those in the intended target population. For example, the group should contain

patients of different ages and with a range of disease severities. Their brief will be

similar to that of the healthcare specialists: to recommend candidate items for deletion,

and to identify omissions.      

    Example from the literature  

 Holzner  et al . (2013) also asked a patient group that included 62 TC patients froml
three countries to evaluate the items. Comments by patients were very rare and 
neither had a substantial impact on item wording nor on generating new items. 

 3.6 Qualitative methods

 We have outlined an interview process, and a similar approach is also described in

Section 3.12 about pre‐testing the questionnaire. An alternative is to use  focus groups  , 

either as well as or instead of individual interviews. Considerable research has been

carried out into these qualitative methods. We can only briefl y cover a few points here,

and recommend further reading for example as cited at the end of this chapter. The

methods detailed below are largely, but not exclusively, adapted from the approach 

described by Johnson et al . (2011).  l

 Interviews

 Interviews can be structured or unstructured. A structured interview  uses pre‐specifi ed 

questions, and frequently the answers are also pre‐specifi ed as a set of valid response

options. Thus in its most extreme form a structured interview can be viewed as an

interviewer‐administered questionnaire. At the opposite extreme, a completely

unstructured interview  may be almost unscripted and resemble a conversation. Not 

surprisingly, semi‐structured interviews  are generally agreed to be the most effective.
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These will use open‐ended questions that accept a free‐text answer, such as ‘What do 

you think are the most important issues affecting patients with …?’ The responses are 

normally audio‐taped, to allow objective analyses to be made later and to allow the 

interviewer to concentrate on the interview itself rather than the note‐taking.

 Semi‐structured interviews are built around a number of key questions that have

been carefully planned, composed and scripted in advance. If the interviewer consid-

ers any opinions unclear or worthy of expansion, additional probing should be used. 

For example, after the general question mentioned above – ‘What do you think are

the most important issues …?’ – some natural probes might concern how and why the

mentioned issues affect the respondent, and the interviewer might attempt to solicit an

importance or impact rating. The most obvious of these probes should have been pre‐

planned and a suitable phrasing pre‐scripted whenever possible, although the actual

wording, ordering and choice of questions will vary according to the issues raised and

the direction of responses that the interviewee makes. As the probing becomes deeper, 

so the less scripted the questions will inevitably become.

 Interviewing is a skill, and there are many books and courses on this topic. The inter-

viewer should be sympathetic and encouraging, be sensitive to the respondent’s verbal

and non‐verbal communication, and must probe without leading the respondent or infl u-

encing their choice of response. Open questions should be used throughout: ‘How does it 

affect you?’, ‘Why do you feel that way?’, ‘What is most important to you?’ and ‘When

does this happen?’ are all examples of open questions that avoid implying particular 

responses. In contrast, a question such as ‘Does xxx affect you?’ (yes/no) is a deprecated

closed question with restricted response options and with possible bias if it infl uences

some respondents to think that ‘xxx’ is particularly likely to be affecting them.

 Appropriate methods for developing conceptual issues and frameworks for qualita-

tive interview research, developing the interview discussion guide, reaching saturation,

analysis of data and developing a theoretical model are available (Brod  et al ., 2009). l
 When there is a provisional list of issues from patient interviews and the litera-

ture review, this list should be administered to a limited number of patients (usually

not more than 10 in total), followed by a debriefi ng interview to determine what the

various issues mean to the patients, the extent to which patients have experienced the

problems, limitations or positive experiences during the period of their disease and to 

check for any signifi cant omissions.

Focus groups 

A focus group is formed by inviting a number of respondents to meet and discuss the

relevant issues. The investigator or a representative acts as moderator or facilitator of r
the group, and has the key responsibility of guiding the group into discussion, without 

infl uencing the opinions being expressed. The moderator should facilitate the discussion,

encourage interaction and ensure that all members of the group have an opportunity

to voice their views. The discussions should be electronically recorded for subsequent 

analysis, and it can be helpful to have either a video‐recording or an independent person

keeping records of who speaks when, and non‐verbal reactions and interaction.
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 Some facilitators prefer to have a single focus group comprising a wide range of 

respondents; others fi nd it easier and more productive to have a number of focus groups, 

with each group containing similar individuals who are more likely to understand each

other and reach consensus about the issues that affect their specifi c condition. 

 It remains controversial whether focus groups offer advantages over individual

interview approaches. In both cases the communication skills and open‐mindedness of 

the facilitator/interviewer remain paramount. It is essential that the respondents care-

fully consider the relevant issues and are encouraged to voice all their opinions – but 

they should in no way be infl uenced by the prejudices of the investigators. Compared

to individual interviews, focus groups tend to reach less extreme conclusions and the 

results will usually be less polarised. Individual interviews allow greater expression by

idiosyncratic individuals and deviant cases. Resources permitting, there can be advan-

tages in using a combination of both focus groups and interviews.     

    Example from the literature  

 McEwan  et al . (2004) used focus groups to explore the issues concerning ado-l
lescents with epilepsy. Six focus groups were conducted, with between two and 
fi ve participants in each. Participants were stratifi ed into focus groups according 
to age (12–13, 14–15 and 16+ years) to enable the exploration of changes in 
factors related to QoL at different age points. Groups lasted two hours with a
half‐hour refreshment break. Groups were audiotaped for verbatim transcription.

 Confi dentiality and housekeeping issues were addressed at the beginning of 
the fi rst sessions, and participants were informed that they could write down any
issues that they felt were too personal to discuss. Each focus group discussion was
divided into three main parts. First, an icebreaker in which everybody introduced
themselves and described their hobbies and interests. Participants were then asked
to identify the places and people important in their daily lives, which led natu-
rally into discussion about the impact of epilepsy. Identifi ed items were recorded
on a fl ipchart for continued reference during the group. The remainder of this
part involved unstructured discussion about the topics, in which adolescents were
encouraged to generate issues of most relevance to them. The moderator’s role was
to encourage the fl ow and elaboration of discussion using refl ective statements
and questions and to check the relevance of items for the whole group.

 During the second part of the session, two picture sheets were distributed,
refl ecting some of the issues identifi ed in previous literature. This was designed
to promote discussion, should participants have had diffi culty generating spon-
taneous conversation. This also provided an opportunity for testing out the
relevance of previously determined items.

 Finally, towards the end of the session, participants were given the opportu-
nity to write down more sensitive issues. At this point, participants were also
asked to record the three main ways in which epilepsy affected their daily lives.
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Sample selection

The patients chosen, either for interview or as members of a focus group, should rep-

resent full coverage of the target population. If an instrument will target the young 

and the elderly, or those with mild illness and those who are severely ill, then all these

groups must be represented. When developing an instrument for use internationally or 

in a heterogeneous society, patients from the various cultural groups should be repre-

sented. A balance must be struck between including extreme cases and emphasising

the maximum variability in the sample, as opposed to balancing the representation

of the major criterion groups – such as age groups, males and females, and disease

groups. Thus the sample selected should represent the range and diversity of the peo-

ple for whom the instrument will be applicable. This is usually a  purposively selected 

sample in which breadth of coverage, as opposed to proportional representation, is

emphasised; a sample based on statistically accurate proportions representing the num-

ber of people from the total population in the various subgroups would be much larger.    

3.7 Sample sizes

It is always diffi cult to prescribe a sample size for qualitative studies. Focus groups are

commonly between three to a dozen individuals (plus the moderator and perhaps a person

to take notes), with fi ve to seven being found most effective when studying complex issues.

A balance must be struck between keeping the group manageably small while recruiting

individuals to represent all the relevant age/gender/cultural/disease/treatment perspectives.

 Similarly, six to eight patients are commonly found to be suffi cient when explor-

ing issues for which there is a reasonable degree of concordance. Larger numbers 

are clearly required if the QoL experiences vary substantially from individual to indi-

vidual, or if there might be important differences between particular subgroups of 

patients. Qualitative data are usually analysed at intervals during the data collection,

and while new issues continue to emerge more respondents are recruited. When it is

apparent that no new themes are being discovered, the study is described as having 

reached data saturation  and may be terminated.

Example from the literature  

The EORTC Guidelines for Developing Questionnaire Modules recommend that 
5–10 patients should be interviewed from each different treatment group or 
disease stage, with similar numbers of patients recruited from each partici-
pating country (Johnson  et al ., 2011). The age and gender distribution of l
recruited patients should refl ect that of the target population. Interviews
should continue until no new issues arise. A minimum of 20 patients should be
interviewed; usually no more than 30 are required.
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 Saturation

 In instrument development, saturation refers to the point in the data collection process

when no new concept‐relevant information is being elicited from individual interviews

or focus groups. There is no fi xed rule on either the sample size or the number of 

iterations needed to reach saturation. Francis  et al . (2010) suggest that if there arel
two or three main stratifi cation factors, one simple algorithm is to specify at least 

10 interviews will be conducted, with a subsequent stopping rule of saturation achieved

when three further interviews have been conducted with no new themes emerging.

Thus under this scheme the stopping criterion would be tested for interviews 11, 12, 

13; then interviews 12, 13, 14; and so on, until three consecutive interviews provide no

    Example from the literature  

 Johnson  et al . (2010) report the development of a questionnaire for elderlyl
patients with cancer, intended as another supplementary module for use with
the QLQ‐C30. Patients were recruited for qualitative data collection (generation 
of additional issues) until no new issues were emerging. The authors antici-
pated at least 30 patients in each age group would be required. Recruitment
was stopped when the researchers were satisfi ed that data saturation had been
achieved. This occurred when at least 40 patients had been recruited in each 
age group. 

Johnson  et al . suggest that having developed a provisional list of issuesl
from patient interviews and the literature review, this list is administered to 
a limited number of patients (usually not more than 10 in total), followed 
by a debriefi ng interview to determine what the various issues mean to the
patient, the extent to which patients have experienced the problems, limi-
tations, or positive experiences during the period of their disease and to
check for any signifi cant omissions. The provisional list of issues and the core 
instrument should be presented to healthcare professionals, for feedback on 
appropriateness of content and breadth of coverage. At least fi ve health pro-
fessional should be included; it is usually unnecessary to recruit more than
20 individuals, drawn from all countries represented. The healthcare profession-
als may be of any relevant discipline and should have experience with treating 
patients belonging to the target population. 

These recommendations have been applied successfully by the EORTC Group 
when developing a number of disease‐ and dimension‐specifi c modules to 
accompany the QLQ‐C30.
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additional information. Saturation can be evaluated and documented through a satura-

tion table structured to show the elicitation of information by successive focus group 

or interview (individual or by set), organised by concept code. For practical purposes

of budgeting projects, it is not uncommon to set a sample size of 20–30 interviews,

even though saturation may occur earlier in the interview process. Saturation is then

documented for where it occurs in the process, often during the interviewing process

or sometimes at the end of all interviews.

 Brod et al . (2009) propose that preliminary judgements regarding reaching satura-l
tion can be made by the construction of a ‘saturation grid’ in which major domains

(topics or themes) are listed along the vertical, and each group/interview is listed along 

the horizontal. This preliminary saturation grid can be constructed as the interviews

proceed to help assist in the determination that saturation is likely to have (or not) been

reached and make a determination as to whether additional groups will be necessary. 

Saturation is reached when the grid column for the current group is empty, suggesting

that no new themes or concepts have emerged.

 Experience suggests that a saturation grid based on fi eld notes is highly correlated

with the feeling of ‘I have heard all this before.’ A rule‐of‐thumb, when combining

both individual and focus group interviews, is that approximately three to four focus

groups, in combination with four to six individual interviews, are generally suffi -

cient to reach saturation whereby no new information is gained by further interviews.

However, heterogeneity of sample, data quality, diffuse or vague areas of enquiry

and facilitator skills will infl uence the exact number of interviews required to reach

saturation.    

3.8 Phase 2: Developing items

The next phase of development is to translate the nominated issues into questions. A

decision must be made regarding the format of these questions. Most of the individual

questions to be found on QoL questionnaires either take responses in binary format, 

such as yes/no, or are ordinal in nature.  Ordinal scales  are those in which the patients

rank themselves between ‘low’ and ‘high’, ‘not at all’ and ‘very much’, or some simi-

lar range of grading. The example instruments in the Appendix illustrate a variety of 

formats for ordinal scales. 

Ordered categorical or Likert summated scales

The most common ordinal scale is the labelled categorical scale  or verbal rating scale
(VRS). For example, the EORTC QLQ‐C30 items have four‐point labelled categories

of ‘Not at all’, ‘A little’, ‘Quite a bit’ and ‘Very much’. These labels have been chosen

by defi ning the two extremes, and then devising two intermediate labels with the inten-

tion of obtaining a very roughly even spread. However, there is little evidence that the
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difference between, say, categories ‘Not at all’ and ‘A little’ is emotionally, psycho‐

physically or in any other sense equal to the difference between ‘A little’ and ‘Quite a

bit’ or between ‘Quite a bit’ and ‘Very much’. Thus there are no grounds for claiming

that these ordinal scales  have the property of being  interval scales . 

 Labelled categorical scales usually have four or fi ve categories, although six or 

even seven are sometimes used. Fewer than four categories are usually regarded as

too few, while studies have shown that many respondents cannot reliably and repeat-

edly discriminate between categories if there are more than six or seven. There are

divided opinions about the advantages or disadvantages of having an odd number 

of categories for a symmetrical scale. For example, question 11 of the SF‐36 ranges

from ‘Defi nitely true’ to ‘Defi nitely false’, leading to a middle category of ‘Don’t 

know’. Some investigators argue that it is better to have an even number of categories

so that there is no central ‘Don’t know’ or neutral response and respondents must 

make a choice.

 A scale with more than fi ve categories may be presented with only the two endpoints

labelled; this is known as a  numerical rating scale  (NRS). For example, question 30

on the EORTC QLQ‐C30, ‘How would you rate your overall quality of life during

the past week?’, takes responses 1–7, with only the two ends labelled: ‘Very poor’ to

‘Excellent’. Although it may seem more likely that this could be an interval scale, there

is little scientifi c evidence to support the intervals between successive score points as

being equal. The NRS format is commonly used for assessing symptoms, frequently

with 11‐point scales from 0 to 10 in which 0 represents absence of the symptom and 10

indicates the worst possible severity of the symptom. The Edmonton Symptom Assess-

ment Scale (ESAS) is a PRO instrument for use in palliative care that uses NRS‐11 for 

pain, tiredness, nausea, depression, anxiety, drowsiness, appetite, well‐being, short-

ness of breath and other problems (Bruera et al ., 1991).l
 Ordered categorical scales, when scored in steps of one, are commonly called Lik-

ert summated scales . Despite the on‐going arguments about the lack of equal‐interval

properties, these scales have consistently shown themselves to provide useful sum-

maries that appear to be meaningful, even when averaged across groups of patients.   

 Visual analogue scales

 Visual analogue scales (VAS) consist of lines, usually horizontal and 10 cm long, the

ends of which are marked with the extreme states of the item being measured. Patients

are asked to mark the line at a point that represents their position between these two

extremes. The responses are coded by measuring their distance from the left‐hand end

of the line. These scales have been used in the assessment of PROs for many years.

Although some patients may take some time to get used to them, most fi nd them easy

to complete.

 VAS are generally thought to have equal‐interval properties, although this is not 

necessarily true. In particular, McCormack et al . (1988), reviewing the distribution 

of responses to VAS questions, suggest that many respondents cluster their answers
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as high, middle or low. For analyses of the readings, some investigators use the read-

ing in millimetres of the distance along the scale, resulting in readings between 0

and 100.

 VAS can take many forms. An example of an instrument with a scale that is similar 

to a VAS is the EQ‐5D (Appendix E4), which contains a ‘thermometer’ scale. It is

vertical, graduated with 100 tick marks and labelled at every tenth.

 It has been claimed that the VAS is more sensitive and easier for patients to com-

plete than ordered categorical scales, although this has been disputed in some reviews

(McCormack  et al ., 1988). However, VAS are used less frequently in QoL instrumentsl
than ordered categorical scales, possibly because they take greater space on the page 

and demand more resources for measuring the responses. It will be interesting to see

whether VAS methods become more widely used now that interactive computer data‐

capture methods are available.

Example from the literature  

Selby  et al . (1984) describe an instrument containing VAS for assessing QoL inl
cancer patients. They called the scales linear analogue self‐assessment (LASA) 
scales. These included a ‘Uniscale’ assessing overall QoL, and 30 scales for indi-
vidual items. Each scale was 10 cm long. Three items are shown in Figure   3.1   . 

    Figure   3.1    The Linear Analogue Self Assessment scale (LASA) is an example of a visual 
analogue scale.
 Source: Selby et al ., 1984, Figure 2. Reproduced with permission of Macmillan Publishers Ltd on behalf l
of Cancer Research UK.

PLEASE SCORE HOW YOU FEEL EACH OF THESE ASPECTS OF YOUR LIFE WAS
AFFECTED BY THE STATE OF YOUR HEALTH DURING TODAY (24H)

Nausea
 extremely severe 
nausea  no nausea

Physical activity
 completely unable   normal physical
to move my body   activity for me

Depression
extremely   not depressed
depressed  at all 
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 Guttman scales

 A Guttman scale consists of several items of varying diffi culty. An example is found

in many activities‐of‐daily‐living (ADL) scales. These usually consist of a number 

of items that represent common functions or tasks, sequenced in order of increas-

ing diffi culty. Guttman scales are also sometimes called hierarchical scales , since the

questions can be ranked as a hierarchy in terms of their diffi culty or challenge to the

respondents.

 A Guttman scale is a rigidly hierarchical scale. If a patient can accomplish a diffi -

cult task at the upper end of the scale, they  must  be able to accomplish all of the easier t
tasks. For the EORTC QLQ‐C30, and for most other ADL and physical functioning 

scales, this is clearly untrue. Although climbing stairs, for example, might be regarded

as more diffi cult than taking a short walk, a few patients might be able to climb stairs

yet be unable to take a walk. Thus the EORTC physical function scale is  not  a truet
Guttman scale, because the ordering of item diffi culty is not fi xed and constant for 

all patients. As discussed in Chapter   7  , item response theory (IRT) provides a more

appropriate model. IRT assumes that items are of varying diffi culty with a probability

    Example from the literature  

 In the area of pain measurement, VAS, VRS and 10‐ or 11‐step NRS are all widely 
used for self‐reported assessment of pain intensity. Hjermstad  et al . (2011)l
identifi ed 54 studies that compared two or more methods. All studies reported 
very high compliance, although a few found slightly lower compliance with VAS,
associated with older age and greater trauma or impairment. Two studies found
that VRS was preferred by the less educated or the elderly, while in a few other 
studies NRS was preferred. In all studies there were high correlations between
the scales, with eleven studies preferring the NRS approach, seven the VRS, 
and four the VAS. Two of the statistical modelling papers suggested that psy-
chometric properties of the VRS were better for research purposes and that the 
numerical appearance of the NRS/VAS provide false impressions of being reliable 
measures. It was noted that ratings were not mathematically equivalent across 
the different approaches. 

 In conclusion, the 0–10 NRS, the (7‐step) VRS and the VAS all work quite 
well. The authors concluded that the most important choice is not the type of 
scale  per se  , but the conditions related to its use, which include a standardised 
choice of anchor descriptors, methods of administration, time frames, informa-
tion related to the use of scales, interpretation of cut‐offs and clinical signifi -
cance, and the use of appropriate outcome measures and statistics in clinical 
trials. They indicated a slight preference for NRS‐11 because it makes slightly
less cognitive demand and it may also be easier for very elderly patients.



72 DEVELOPING A QUESTIONNAIRE 

of positive response that varies according to each patient’s ability. That is, IRT incor-

porates a probabilistic element for responses, whereas a Guttman scale is strictly

deterministic and depends solely upon the patient’s ability. Hence, Guttman scales are

rarely used nowadays.        

3.9 Multi‐item scales 

Instead of using a single question or item, many scales are devised using multiple

items. There are several reasons for doing this. Greater precision may be obtained

by using several related items instead of a single item. For example, instead of ask-

ing: ‘Are you depressed?’ with, say, a fi ve‐point rating scale, it may be better to

ask a number of questions about characteristics of depression, with each of these

items being scored on a fi ve‐point scale; most depression questionnaires are devel-

oped on this basis. Another advantage of using multiple items for a concept such

as depression is that the items can be chosen to cover the full breadth of a complex

construct – providing better content validity. Multi‐item scales are also frequently

developed as a means of improving the repeatability/reliability of the assessment;

Example  

The physical functioning scale of the EORTC QLQ‐C30 contains fi ve items of vary-
ing diffi culty, shown in Figure   3.2   . In versions 1.0–2.0, each item was scored 
‘Yes’ or ‘No’. Originally developed with the intention of being scored as a Gutt-
man scale, it is hierarchical in concept with items ranging from ‘easy’ (eating, 
dressing and washing) to ‘diffi cult’ (carrying heavy loads). Subsequent experi-
ence showed that the hierarchy was violated and it was therefore not scored 
as a Guttman scale. In a revision of the instrument (version 3.0), the yes/no 
responses were replaced with four‐point ordinal scales. 

    Figure   3.2      Physical functioning scale of the EORTC QLQ‐C30 versions 1.0 and 2.0.

No Yes
Do you have any trouble doing strenuous activities,
like carrying a heavy shopping bag or a suitcase? 1 2

Do you have any trouble taking a long walk? 1 2

Do you have any trouble taking a short walk outside
of the house?

1 2

Do you need to stay in bed or a chair during the day? 1 2

Do you need help with eating, dressing, washing
yourself or using the toilet? 1 2
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often individual characteristics or items can fl uctuate more than a set of items that 

form a broadly based multi‐item scale.

 Quite often items are also grouped simply as a convenient way of summarising a

number of closely related issues. Methods such as factor analysis can identify groups

of items that are highly correlated, and if these items are thought to be measuring a 

single construct it may be logical to group them together as a multi‐item scale. Finally,

a clinimetric index (such as the Apgar score, which is used to assess the health status

of newborn children) may be formed using clinical judgement to develop a cluster 

of sometimes‐heterogeneous items that are deemed clinically related. Some well‐

developed clinimetric indexes provide useful summary scores.

 The defi ning characteristic of multi‐item scales is that the individual items are

intended to be combined in some manner, to form a summary score or index. The

most common method of combining or aggregating items is simply to sum them

(or, equivalently, to average them). This is often called summated ratings , and the 

scales are also known as Likert summated scales . Alternatively, IRT can be used 

(Chapter   7  ). 

 3.10 Wording of questions

 Having identifi ed the issues considered relevant and having made some decisions

regarding the format of the questions, the next stage is to convert the items into ques-

tions. It should go without saying that questions should be brief, clearly worded, easily

understood, unambiguous and easy to respond to. However, the experience of many 

investigators is that seemingly simple, lucid questions may present unanticipated prob-

lems to patients. All questions should be extensively tested on patients before being

used in a large study or a clinical trial.

 The book by Bradburn et al . (2004) focuses on wording and designing ques-

tionnaires. The following suggestions are merely a sample of the many points to

consider.

   1.  Make questions and instructions brief and simple. Ill patients and the elderly,

especially, may be confused by long, complicated sentences.

   2.  Avoid small, unclear typefaces. Elderly patients may not have good eyesight.

   3.  Questions that are not applicable to some patients may result in missing or 

ambiguous answers. For example, ‘Do you experience diffi culty going up

stairs?’ is not applicable to someone who is confi ned to bed. Some patients may

leave it blank because it is not applicable, some might mark it ‘Yes’ because they

would have diffi culty if they tried, and others might mark it ‘No’ because they

never need to try and therefore experience no diffi culty. The responses cannot be

interpreted.
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4.  If potentially embarrassing or offending questions are necessary, consider put-

ting them at the end of the instrument or making them optional. For example,

the FACT‐G has a question about satisfaction with sex life, but precedes this

with ‘If you prefer not to answer it, please check this box and go to the next 

section.’

5.  ‘Don’t use no double negatives.’ For example, a question such as ‘I don’t feel less

interest in sex (Yes/No)’ is ill advised.

6.  If two or more questions are similar in their wording, use underlining, bold or ital-

ics to draw patients’ attention to the differences. For example, questions 4 and 5 

of the SF‐36 are very similar apart from the underlined phrases ‘as a result of your 

physical health ’ and ‘ as a result of any emotional problemsy p  ’. 

7.  Use underlining and similar methods also to draw attention to key words or 

phrases. For example, many of the instruments underline the time frame of the

questions, such as ‘during the past 7 daysg p y  ’.

8.  Consider including items that are positively phrased as well as negatively phrased

items. For example, the HADS includes equal numbers of positive and nega-

tive items, such as ‘I feel tense or “wound up”’ and ‘I can sit at ease and feel

relaxed.’ 

3.11  Face and content validity of the proposed 
questionnaire

The results from interviews of staff and patients, and from focus groups, will all have

been transcribed and interpreted by the investigators. Despite care, it is likely that 

there will be errors of interpretation, ambiguities and omissions. It is common practice

in qualitative studies to present the conclusions to the interviewees for  respondent 
validation . The interviewees are invited to confi rm whether their intended meaning 

is captured by the instrument, and to identify discrepancies or omissions from the

resultant questionnaire. Thus, when developing questionnaires, the proposed question-

naire should be shown to patients and staff, asking them to review it for acceptability,

comprehensiveness, relevance of items, clarity of wording and ambiguity of items. 

It is prudent to do this before the next stage, the pre‐testing, which involves a larger 

number of patients completing the questionnaire and answering structured debriefi ng 

questions.  

3.12 Phase 3: Pre‐testing the questionnaire 

It is essential that new QoL questionnaires be extensively tested on groups of patients

before being released for general use. This testing is best carried out in two stages. 
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First, before the main  fi eld‐test  , a pilot or  t pre‐test   study should be conducted (the t
EORTC group describe the pre‐test as  Phase 3  and the fi eld‐test as Phase 4 ). The 

purpose of this initial study is to identify and solve potential problems. These might 

include ambiguous or diffi cult phrasing of the questions and responses, or might relate 

to the layout and fl ow of the questions.

 For the pre‐test, patients should fi rst be asked to complete the provisional ques-

tionnaire and then debriefed using a pre‐structured interview. The EORTC group

(Johnson et al . 2011) suggest that they could be asked about individual items, for 

example: ‘Was this question diffi cult to respond to?’, ‘Was it annoying, confusing

or upsetting?’, ‘How would you have asked this question?’ and ‘Is this experi-

ence related to your disease or treatment?’ If resources do not permit an item‐

by‐item scrutiny, the whole instrument could be reviewed instead, for example:

‘Were there any questions that you found irrelevant?’, ‘Were there questions that 

you found confusing or diffi cult to answer?’ and ‘Were any questions upsetting or 

annoying?’

 Whichever approach is used, there should be some general questions about the

whole instrument: ‘Can you think of other important issues that should be covered?’

and ‘Do you have other comments about this questionnaire?’ There should also be 

questions about how long the questionnaire took to complete and whether assistance

was obtained from anyone.

 An important aspect of the pre‐testing phase is the identifi cation of items that have

ambiguous, diffi cult or poorly worded questions. These items should be rephrased. 

Results of the pre‐testing should also identify any potentially serious problems with 

the questionnaire. Before carrying out the fi eld study, the wording of items may need

to be changed, items deleted or additional items introduced.    

    Example from the literature  

 Johnson  et al . (2010) report the Phase 3 testing of their questionnaire for l
elderly (aged over 70) patients with cancer. They reported diffi culty with ques-
tions about carers (family members or professional), which required clarifi -
cation for accurate translation. Issues about approaching death were clearly 
important to some patients but found this issue had to be handled sensitively, 
to avoid distress to patients. It was decided to keep the issue but to phrase the 
item in relation to ‘approaching the end of life’, which was more acceptable to 
patients. 

One item ‘Have you felt that your life is meaningful?’ was considered by nine 
patients to be misleading or unclear and was rejected; it was thought likely that
this single item lacked an appropriate context in the older‐person question-
naire, which could account for the loss of clarity for patients. 
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Representative sample 

The pre‐testing will usually involve between 10 and 30 patients, selected as represent-

ing the range of patients in the target population. These should not be the same patients

as those who were used when identifying the issues to be addressed. If a questionnaire

is intended to be applicable to various subgroups of patients for whom the QoL issues

might vary, it is important to ensure that there is adequate representation of all these

types of patients and the sample size may have to be increased accordingly. Thus if a 

QoL questionnaire is intended to address issues associated with different modalities of 

treatment, it should be tested separately with patients receiving each of these forms of 

therapy. For example, an instrument for cancer patients could be tested in those receiv-

ing surgery, chemotherapy or radiotherapy. It is crucial to ensure that patients receiving

each form of therapy are able to complete the questionnaire without diffi culty, distress

or embarrassment, and that all patients feel the relevant issues have been covered.

Example from the literature  

Johnson  et al . (2010) report that the aim of their Phase 3 study was to assessl
the content, acceptability and relevance of the provisional item list in a large 
representative group of older cancer patients from different countries and lan-
guages. Sampling was monitored to ensure an even distribution of patients 
across six tumour sites. A sampling frame was constructed to defi ne patients 
with localised or advanced disease and in three treatment stages (before, dur-
ing or after treatment). Patients receiving only palliative care were included 
as a separate category. This created seven potential groups defi ned by disease
stage and treatment. As recommended in the EORTC Quality of Life Group Guide-
lines (Johnson et al ., 2011), they aimed to recruit 15 patients to each of thel
seven disease/treatment groups, creating a target of 105 patients. (A matched
group of patients aged 50–69 years was also recruited, making 210 in total.)

 Sampling was monitored to ensure even distribution of patients across six
tumour sites. However, the sampling frame was revised when it became appar-
ent that recruitment to some categories was very diffi cult.

Missing data

Interpretation of results is diffi cult when there is much missing data, and it is best to

take precautions to minimise the problems. For example, questions about sexual inter-

est, ability or activity may cause problems. In some clinical trials these questions might 

be regarded as of little relevance, and it may be reasonable to anticipate similar low lev-

els of sexual problems in both treatment arms. This raises the question of whether it is

advisable to exclude these potentially embarrassing items so as to avoid compromising
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    Example from the literature  

 Fayers  et al . (1997b) report that in a wide range of UK MRC cancer trials,l
approximately 19% of patients left blank a question about ‘(have you been 
bothered by) decreased sexual interest’. Females were twice as likely as males
to leave this item blank. Possible interpretations are that some patients found 
the question embarrassing, or that they did not have an active sexual interest 
before their illness and therefore regarded the question as not applicable. Per-
haps wording should be adapted so that lack of sexual activity before the illness
(not applicable) can be distinguished from other reasons for missing data. 

 3.13 Cognitive interviewing

 Cognitive interviewing techniques can be seen as an extension of the pre‐testing phase

based on a psychological understanding of the process people go through when answer-

ing a questionnaire item. Tourangeau (1984) and Tourangeau  et al . (2000) develop al
model describing the response process consisting of four phases:

   1.  comprehension of the question

   2.  retrieval from memory of relevant information

   3.  decision processes

   4.  response processes.

 Based on Tourangeau’s work, Willis (2005) developed the ‘cognitive interview-

ing’ technique. The principle is to elucidate each element in the process and to target 

the interview to the potential problems that may be suspected (for example, problems

related to comprehension if the item is lengthy and complicated).

 There are two main approaches to cognitive interviewing:

   1.  Think‐aloud interviewing: the respondent is instructed to report the response pro-

cess orally by describing his or her thoughts and considerations. Ideally, the person 

goes though each of the steps and reveals any doubts and uncertainties through the 

process. Typically, some respondents will give excellent insights in their thought 

processes, and these results can be analysed according to the four‐step model.

However, the task is mentally quite demanding and not all respondents will accept 

the task or will experience diffi culties giving informative responses. 

   2.  Verbal probing: After the respondent has completed the questionnaire (or just a

questionnaire item) the interviewer asks a number of probes prepared in advance.

patient compliance over questionnaire completion. Other strategies are to place embar-

rassing items at the end of the questionnaire, or to make their completion optional.      
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Unspecifi c and specifi c probes used can be used. Unspecifi c probes correspond to 

what we mentioned as standard probes in pre‐testing. An example is ‘Could you

repeat the question you were just asked with your own words?’ (Paraphrasing). 

Each of the four steps in Tourangeau’s model should be addressed. Specifi c probes

will address potential problems suspected from a review of the items or from pre-

vious interviews.     

Example from the literature  

Willis (2005, pp. 8–9) describes results from nine cognitive interviews con-
cerning the item ‘How many times did you go to the dentist the past year?’  
Three main problems were identifi ed. First, it was not clear whether ‘the dentist’ 
included oral surgeons, dental hygienists, etc. Second, the interpretation of 
‘the past year’ varied considerably, with one respondent perceiving it as the 
prior calendar year and one person reporting the visits since 1 January. Finally, 
respondents experienced a signifi cant degree of uncertainty, and this raised the 
question of whether the exact number of visits was necessary. 

 In order to address the concerns, the following solutions were considered:

1.  To modify the wording of ‘the dentist’ to ‘your main dentist’ or ‘any dentist’. 

2.  To use ‘the past 12 months’ instead of ‘the past year’. 

3.  Whether categorical responses, including the option ‘one to three times’ (in 
contrast to those not going at all, or going very frequently), would be suf-
fi cient. Such a modifi cation would simplify the response process for many 
respondents.   

Such cognitive interviews may be critical to refi ne items and avoid ambiguity or other 

diffi culties in the fi nal questionnaire. These interviews may be conducted individually

or in a focus group, and rely on intensive verbal probing of volunteer participants by a

specially trained interviewer. Cognitive testing is designed to identify otherwise unob-

servable problems with item comprehension, recall and other cognitive processes that 

can be remediated through question rewording, reordering or more extensive instru-

ment revision.    

    Example from the literature

 Fortune‐Greeley et al . (2009) conducted 39 cognitive interviews to evaluate l
items for measuring sexual functioning across cancer populations. The study 
population refl ected a range of cancer types and stages. Trained same‐gender 
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 Cognitive interviews may be used in relation to existing instruments or as an inte-

grated part of the development process, as an extension of what was described as

pre‐testing. 

    Example from the literature  

 Watt  et al . (2008) integrated cognitive interviews in the development of al
questionnaire for thyroid patients and interviewed 31 patients. The data from
interviews were analysed according to Tourangeau’s model. Fifty‐four problems 
involved comprehension, one retrieval, 23 judgement, 28 response, and 20
could not be coded in relation to the four‐stage model. The interviews were 
conducted in six rounds and Watt noted that the number of problems declined
from an initial average of six per interview to two, mainly due to a reduction in 
the number of problems associated with comprehension. 

interviewers were used. Interviews were recorded, as were non‐verbal signs 
such as apprehension. The investigators reported fi ndings about the relevance 
of the items, recall period, wording changes to improve sensitivity, appropri-
ateness, clarity and item ordering.

 Participants identifi ed problems with the wording of some items that 
prompted important revisions. It is instructive that participants identifi ed 
these problems despite many rounds of review by investigators and survey 
methodology specialists. In brief, a few of the fi ndings that led to modifi ca-
tions were as follows:

 One of the original items read, “When having sex with a partner, how often 
have you needed fantasies to help you stay interested?” Two participants 
thought the word “needed” implied a negative judgement towards the use of 
sexual fantasies. The item was reworded to read, ‘When having sex with a part-
ner, how often have you used fantasies to help you stay interested?’

 Participants with low literacy had diffi culty with the term distracting 
thoughts in the item “How often have you lost your arousal (been turned off) 
because of distracting thoughts?”

 Originally, the item “Are you married or in a relationship that could involve 
sexual activity?” was presented before the item “Over the past 30 days, have 
you had any type of sexual activity with another person?” Five out of 20 
participants thought that the question was asking about sexual activity with 
someone other than their partner.

 In conclusion, cognitive interviews were critical for item refi nement in the 
development of the PROMIS measure of sexual function. 
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3.14 Translation

If a fi eld study is to be conducted in a number of different countries, the QoL question-

naire will need to be translated into other languages. The translation process should be

carried out just as rigorously as the instrument development process, to avoid introduc-

ing either errors into the questionnaire or shifts in nuances that might affect the way

patients respond to items. The aims of the translation process should be to ensure that 

all versions of the questionnaire are equally clear, precise and equivalent in all ways 

to the original.

 As a minimum, translation should involve a two‐stage process. A native speaker 

of the target language who is also fl uent in the original language should fi rst make a

forward translation. Some guidelines recommend two or more independent forward

translations followed by the development of a consensus version. Then another transla-

tor (or two) who is a native speaker of the original language should take the translated

version and make a back‐translation into the original language. This second translator 

must be ‘blind’ to the original questionnaire. Next, an independent person should for-

mally compare each item from this forward–backward translation against the original, 

and must prepare a written report of all differences. The whole process may need to be

iterated until it is agreed that the forward–backward version corresponds precisely in

content and meaning to the original.

 Following translation, a patient‐based validation study has to be carried out. This

will be similar in concept to the pre‐testing study that we described, and will examine 

whether patients fi nd the translated version of any item confusing, diffi cult to under-

stand, ambiguous, irritating or annoying.

 Differential item functioning (Section 7.10) also provides a powerful tool for iden-

tifying translation problems, but this requires large datasets of, say, several hundred 

patients for each translation.

 Marquise et al . (2005) review translation issues in depth, and Wild  l et al . (2005,l
2009) make detailed recommendations for translations.  

3.15 Phase 4: Field‐testing 

The fi nal stage in the development of a new questionnaire is fi eld‐testing. The objec-

tive of fi eld‐testing is to determine and confi rm the acceptability, validity, sensitiv-

ity, responsiveness, reliability and general applicability of the instrument to the target 

group, including cultural and clinical subgroups.

 The fi eld study should involve a large heterogeneous group of patients, and this

should include patients who are representative of the full range of intended respond-

ers. We have already emphasised the need to include a wide range of patients when

determining the issues to be assessed and developing the wording of the questions.

At the fi eld‐testing stage, it becomes even more important to ensure that the sample

includes patients who are representative of the full range of the target population, and

that sample sizes are adequate to test the applicability of the instrument to all types
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of patient. For example, it may be relevant to include males and females, elderly and 

young, sick and healthy, highly educated and poorly educated. Societies often include

individuals from diverse cultures and ethnic origins, and even an instrument intended 

for use within a single country should be tested for applicability within the relevant 

cultural, ethnic or linguistic groups. Questions that are perceived as relevant and unam-

biguous by one group may be misunderstood, misinterpreted and answered in ways

that are unexpected by the investigator. In some cases, questions that are acceptable to

the majority of people may prove embarrassing or cause distress to minority groups. 

 A debriefi ng questionnaire should be used. This will be similar in style to the ques-

tionnaire administered during the pre‐test stage: ‘How long did the questionnaire take

to complete?’, ‘Did anyone help complete the questionnaire, and what was the nature of 

that help?’, ‘Were any questions diffi cult to answer, confusing or upsetting?’, ‘Were all

questions relevant, and were any important issues missed?’ and ‘Any other comments?’

 The analysis of the fi eld study should make use of the techniques described in Chap-

ters   4   and 5 to examine validity, reliability, sensitivity and responsiveness. In addition,

the following basic issues should be considered. 

 Missing values

 The extent of missing data should be determined and reported. This includes not only

missing responses in which the answers are left blank, but also invalid or uninter-

pretable responses that will have to be scored ‘missing’ for analyses of the data. For 

example, a patient might mark two answers to a categorical question that permits only

a single response. If a question is unclear or ambiguous, there can be a high propor-

tion of invalid responses of this type. If the reason for missing data is known, this too

should be reported. For example, patients might indicate on the debriefi ng form that a

question is diffi cult to complete or upsetting.

 In general, it is to be expected that for any one item there will always be a few (1%

or 2%) patients with missing data. This fi gure will obviously be reduced if there are 

resources for trained staff to check each questionnaire immediately upon completion,

asking patients to fi ll in the omitted or unclear responses. Whenever items have miss-

ing values for more than 3–4% of patients, the questions should be re‐examined. Pos-

sible reasons for missing values include:

● Problems with the wording of response options to a question . Patients may feel that 

none of the categories describes their condition. Alternatively, they may be unable to

decide between two options that they feel describe their state equally well.

● Problems with the text of an individual question . Patients may fi nd the question dif-

fi cult to understand or upsetting.

● Problems specifi c to particular subgroups of patients . It might be found that elderly

patients have a higher‐than‐average proportion of missing values for questions that 

they regard as less applicable to them (such as strenuous activities), or which are

cognitively demanding. 
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● Problems with translation of a question or culture‐related diffi culties of interpreta-
tion . Items that have been developed for one cultural group may present problems

when translated or used in other groups. For example, the question ‘When eating,

can you cut food with a knife?’ might be used to evaluate the strength of grip of 

arthritis patients, but would be inappropriate in Chinese as the Chinese do not use

knives when eating their meal. 

● Problems understanding the structure of the questionnaire . If a group of consecu-

tive missing responses occurs, it can indicate that respondents do not understand the

fl ow of the questions. For example, this might happen following fi lter  questions of r
the form: ‘If you have not experienced this symptom, please skip to the next section.’

● Problems with a group of related items . If responses to a group of items are miss-

ing, whether or not consecutive questions on the questionnaire, it might indicate that 

some respondents regard these questions as either embarrassing or not applicable. 

● Exhaustion . This can be manifested by incomplete responses towards the question-

naire’s end.    

Missing forms 

The proportion of missing forms (questionnaires that are not returned) should be

reported, too. Again, any information from debriefi ng forms or any reasons recorded

by staff should be described. A high proportion of missing forms might indicate poor 

acceptability for the instrument. For example, it may be too complicated, too lengthy 

and tedious to complete, or it may ask too many upsetting or irritating questions.

Patients may think the layout is unclear. The printing may be too small, or the ques-

tionnaire may have been printed with an injudicious choice of paper and ink colours.   

Distribution of item responses 

The range and distribution of responses to each item should be examined. This might 

be done graphically, or by tabulating the responses of those questions that have few 

response categories.

Ceiling effects , in which a high proportion of the total respondents grade themselves

as having the maximum score, are commonly observed when evaluating instruments, 

especially if very ill patients are sampled and frequently occurring symptoms are

measured. The presence of ceiling effects (or fl oor effects , with an excess of minimum

values) indicates that the items or scales will have poor discrimination. Thus sensitivity

and responsiveness will be reduced. 

 The interpretation of ceiling effects is affected by the distinction between refl ective

and formative/causal indicators (Section 2.6). For refl ective indicators, the response

categories should ideally be chosen so that the full range will be used and the dis-

tribution of responses should ideally be spread across these response categories. If 
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the respondents rarely or never use one of the responses to a four‐category item, the

question becomes equivalent to a less sensitive one with only three categories. If all

respondents select the same response option, no differences will be detected between

the groups in a comparative study and the question becomes uninformative. An exam-

ple of such an extreme case might arise when there are questions about very severe

states or conditions, with most or even all of the respondents answering ‘none’ or ‘not 

at all’ to these items. It is questionable whether it is worth retaining such items as com-

ponents of a larger summated scale, since they are unlikely to vary substantially across

patient groups and will therefore tend to reduce the sensitivity of the summated‐scale

score. Thus an abundance of ceiling or fl oor effects in the target population could sug-

gest an item should be reviewed, and possibly even deleted.

 For formative variables such as symptoms, there are different considerations. In

particular, it is important to maintain comprehensive coverage of formative items. A

symptom may be rare, but if it relates to a serious, extreme or life‐threatening state it 

may be crucially important to those patients who experience it. Such symptoms are 

important and should not be ignored, even though they manifest fl oor effects. Equally,

a symptom that is very frequent may result in ceiling effects and, in an extreme case,

if all respondents report their problems as ‘very much’, the item becomes of limited

value for discriminative purposes in a clinical trial. That item may, however, still be

extremely important for descriptive or evaluative purposes, alerting clinical staff to the

extensive problems and symptoms that patients encounter.

 Questionnaires often use the same standardised responses for many questions. For 

example, all questions might consistently use four or fi ve response categories ranging

from ‘not at all’ through to ‘very much’. Although this is generally a desirable approach,

it may be diffi cult to ensure that the same range of response options is appropriate to

all items. Ceiling effects can indicate simply that the range of the extreme categories is

inadequate. For example, possibly a four‐point scale should be extended to seven points.

 Item reduction

 While items were being generated, there was also the possibility of deleting any that 

appeared unimportant. However, the number of patients and clinicians included in the 

initial studies is usually small, and the decision to delete items would be based upon

the judgement of the investigator. In the later stages of instrument development, there

is greater scope for using psychometric methods to identify redundant or inappropriate

items.

 Ideally, a questionnaire should be brief, should cover all relevant issues, and should

explore in detail those issues that are considered of particular interest to the study.

Clearly, compromises must be made: fi rst, between shortening a questionnaire that is

thought to be too lengthy, while retaining suffi cient items to provide comprehensive

coverage of QoL (content validity) and, second, between maintaining this breadth of 

coverage while aiming for detailed in‐depth assessment of specifi c issues. Sometimes

the solution will be to use a broadly based questionnaire covering general issues, and 



84 DEVELOPING A QUESTIONNAIRE 

These results can be explained in terms of formative and refl ective items. The clinimet-

ric strategy favoured the inclusion of symptoms that are formative items. The psycho-

metric strategy favoured the physical‐disability items because they were measuring a

single latent variable and were therefore more highly and more consistently correlated

with each other.    

 As well as seeking to reduce the number of items in a scale, there is also scope for 

reduction at the scale level itself. Correlations between different multi‐item scales can

be investigated, to check whether any are so highly correlated that it would appear they

are measuring virtually the same thing.

 At all stages, face validity and clinical sensibility should be considered. The prin-

cipal role of psychometric analysis is to point at potential areas for change, but one

would be ill‐advised to delete items solely on the basis of very strong or very weak 

correlations.  

supplement this with additional questionnaires that address specifi c areas of interest in 

greater depth (see for example Appendixes E12 and E13). This modular approach is

also adopted by the EORTC QLQ‐C30 and the FACT‐G. 

 Chapter   5   describes several psychometric methods that may be used to indicate

whether items could be superfl uous. For multi‐item scales, multitrait analysis  can

identify items that are very strongly correlated with other items, and are therefore

redundant because they add little information to the other items. It can also detect 

items that are only weakly correlated with their scale score and are therefore either 

performing poorly or making little contribution. Cronbach’s α  can in addition be used

to explore the effect of removing one or more items from a multi‐item scale. If the α
reliability remains unchanged after deleting an item, the item may be unnecessary. 

Item response theory (Chapter   7  ) provides another approach for investigating the con-

tribution made by each item to the total test information. However, as the following

example illustrates, many of these methods may be inappropriate for clinimetric scales
that have  formative variables  , as described in Sections 2.6 and 2.8.

Example from the literature  

Marx  et al . (1999) report the application of clinimetric and psychometric meth-l
ods in the reduction of 70 potential items to a 30‐item Disabilities of Arm, 
Shoulder and Hand health measurement scale. The clinimetric strategy relied 
upon the ratings of patients to determine which items to include in the fi nal 
scale. Fifteen items were selected in common by both methods. The clinimet-
ric methods selected a greater number of symptoms and psychological func-
tion items. In contrast, the psychometric strategy selected a greater number of 
physical‐disability items, and factor analysis suggested that the items consti-
tuted a single factor. 
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 Cultural and subgroup differences 

 There may be subgroups of patients with particular problems. Older patients may have 

different needs and concerns from younger ones, and may also interpret questions dif-

ferently. There may be major cultural differences, and a questionnaire developed in 

one part of the world may be inappropriate in another. For example, respondents from

Mediterranean countries can be less willing to answer questions about sexual activity

than those from Northern Europe. Subjects from oriental cultures may respond to some

items very differently from Europeans.

 The fi eld study should be designed with a suffi ciently large sample size to be able 

to detect major differences in responses according to gender, age group or culture.

However, it is diffi cult to ensure that similar patients have been recruited into each 

subgroup. For example, in a multi‐country fi eld study there might be country‐specifi c

differences in the initial health of the recruited patients. Some countries might enter 

patients with earlier‐stage disease, and the treatment or management of patients may

differ in subtle ways. Thus observed differences in, for example, group mean scores 

could be attributable to ‘sampling bias’ in patient recruitment or management, and it 

is extremely diffi cult to ascribe any observed mean differences to cultural variation in

the response to questions.

 Methods of analysis might include comparison of subgroup means and  SD s. How-

ever, to eliminate the possibility of sampling bias, differential item functioning (DIF) 

is an attractive approach for multi‐item scales. DIF analysis, described in Section 7.10,

allows for the underlying level of QoL for each patient, and examines whether the

individual item responses are consistent with the patients’ QoL.

    Example from the literature  

 Juniper  et al . (1997) describe the development of an asthma QoL question-
naire, and demonstrate that different approaches lead to appreciably different 
instruments. They show that methods based on factor analysis will lead to 
exclusion of some items that are considered important by patients, and inclu-
sion of other items that are considered unimportant. Fayers  et al . (1998b)
noted that the discrepancies in item selection under the two approaches – 
clinimetric or psychometric – could without exception be fully explained in 
terms of causal (formative) indicators and refl ective indicators. Fayers  et al . 
also agreed that clinimetric considerations, including patients’ assessment of 
item importance, should dominate the decisions concerning an item’s inclu-
sion or exclusion. 

 This and the previous example show that choice of model – refl ective or 
formative – can have a major impact on the selection of items included in 
multi‐item scales. 
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      Example

 There may be different semantic interpretation of words by different cultures.
Nordic and Northern European countries interpret ‘anger’ as something that is
bad and to be avoided; in Mediterranean countries, ‘anger’ is not only accept-
able, but there is something wrong with a person who avoids expressing it. Thus
the interpretation of an answer to the question ‘Do you feel angry?’ would need
to take into account the cultural background of the respondent.

3.16 Conclusions

Designing and developing new instruments constitutes a complex and lengthy pro-

cess. It involves many interviews with patients and others, studies testing the question-

naires upon patients, the collection of data, and statistical and psychometric analyses

of the data to confi rm and substantiate the claims for the instrument. The full develop-

ment of an instrument may take many years. If at any stage inadequacies are found

in the instrument, there will be a need for refi nement and re‐testing. Many instru-

ments undergo iterative development through a number of versions, each version being 

extensively reappraised. For example, the Appendix shows version 3.0 of the EORTC

QLQ‐C30 and version 4 of the FACT‐G. The instruments described in the appendices 

to this book, like many other instruments, will have undergone extensive development 

along the lines that we have described.

 In this chapter we have emphasised the qualitative aspects of instrument develop-

ment. In our experience, this is the most crucial phase in developing a new instrument. 

As noted in the introduction to this chapter, the subsequent validation using quantita-

tive methods as described in the next chapters of this book will only be of value if it 

builds on a secure foundation developed by the application of a rigorous qualitative

approach.

 The contrast between the EORTC QLQ‐C30 and the FACT‐G is in this respect 

informative. Both instruments target the same population: cancer patients in general.

Yet these are two very different instruments, the one focusing on clinical aspects and the

other on patients’ feelings and concerns. Both instruments have been exhaustively vali-

dated. Thus we can see that the initial conceptual foundations determined the nature of 

each instrument, and no amount of subsequent validation has narrowed the gap between

them. The conceptual basis of the postulated constructs should be considered when

choosing instruments for use in studies, as it will affect the interpretation of results. 

 The role of qualitative methods involving not only experts but, most importantly,

patients, is now well recognised (Reeve et al ., 2013; US FDA, 2009). Thus when devel-l
oping a new instrument it is essential to fully document the qualitative procedures and

results, and in particular the involvement and role of patients from the earliest stages of 

instrument specifi cation and development. This has now become standard for all new

instruments. However, many legacy instruments either do not have the documentation
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or even failed to involve patients. The United States Food and Drug Administration

(US FDA, 2009) states that documentation provided to the FDA to support content 

validity should include all item generation techniques used, including any theoreti-

cal approach; the populations studied; source of items; selection, editing, and reduc-

tion of items; cognitive interview summaries or transcripts; pilot testing; importance

ratings; and quantitative techniques for item evaluation. Furthermore, “With existing

instruments, it cannot be assumed that the instrument has content validity if patients 

were not involved in instrument development. New qualitative work similar to that 

conducted when developing a new instrument can provide documentation of content 

validity for existing instruments if patient interviews or focus groups are conducted

using open‐ended methods to elicit patient input”. Rothman  et al . (2009) address thel
issues for evaluating and documenting content validity for the use of existing instru-

ments and their modifi cation.

 Developing new instruments is a lengthy and time‐consuming task. In summary,

our advice is: don’t develop your own instrument – unless you have to. Wherever pos-

sible, consider using or building upon existing instruments. If you must develop a new

instrument, be prepared for much hard work over a period of years.   

 3.17 Further reading

 One of the fi rst groups to develop and publish comprehensive guidelines for develop-

ing QoL instruments was the EORTC Quality of Life Group. These guidelines have

been infl uential in the writing of this chapter, and are recommended to those devel-

oping questionnaires. They are:  EORTC Quality of Life Group Module Development   

Guidelines , currently in a fourth edition, by Johnson  et al . (2011), and  l EORTC Quality  

of Life Group Translation Procedure  (3rd edn.) by Dewolf et al . (2009). These manualsl
are downloadable from the website http://groups.eortc.be/qol/manuals. The translation

issues are also summarised in Koller et al . (2007). l
 Much of the methodological research into questionnaire development has been car-

ried out in other disciplines, such as survey methodology. In recent years cognitive

psychology has had a major impact on the understanding of how respondents react to 

questions, and how to use cognitive‐based methods to identify weaknesses in question-

naires. Useful books on modern approaches include:  Asking Questions: The Defi nitive  

Guide to Questionnaire Design , by Bradburn  et al . (2004),  l Cognitive Interviewing:
A Tool for Improving Questionnaire Design , by Willis (2005) and  Focus Groups: A
practical guide for applied research,  by Kreuger and Casey (2000). Brod  et al.  2009 

and Rothman  et al . (2009) discuss qualitative methods for ensuring content validity,l
Lehoux  et al . (2006) explore focus groups and Kerr  l et al  (2010) cover data saturation.l

 In addition to Dewolf et al . (2009) mentioned above, translation issues are reviewedl
in detail by Marquise  et al . (2005) and Wild  l et al . (2005, 2009), who also provide refer-l
ences to key publications in this area.

 The COREQ checklist offers useful guidance for the reporting of qualitative studies

(Tong et al ., 2007).                               l

http://groups.eortc.be/qol/manuals
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4
Scores and measurements: validity, 
reliability, sensitivity

Summary

In this chapter we explore properties that are common to all forms of measures. This 
includes both single-item measurements, such as the response to a single global ques-
tion, and summary scores derived from multi-item scales, such as the scores from the 
summated scales that are used in many QoL instruments. These properties include 
validity, reliability, sensitivity and responsiveness. This chapter focuses upon those 
aspects of the properties that apply to single items and summary scale scores. Chapter 5  
discusses related techniques that apply to multi-item scales, when the within-scale 
between-item relationships can be examined.

4.1  Introduction

All measurements, from blood pressures to PRO measures, should satisfy basic prop-
erties if they are to be clinically useful. These are primarily validity, reliability, repeat-
ability, sensitivity and responsiveness.

Validity describes how well a measurement represents the attribute being measured, 
or how well it captures the concept that is the target of measurement. From a statistical 
aspect, validity is similar to bias, in that a biased measurement is somehow missing the 
fundamental target.

Validation of instruments is the process of determining whether there are grounds for 
believing that the instrument measures what it is intended to measure, and that it is useful 
for its intended purpose. For example, to what extent is it reasonable to claim that a ‘quality- 
of-life questionnaire’ really is assessing QoL? Since we are attempting to measure an 
ill-defined and unobservable latent variable (QoL), we can only infer that the instrument 
is valid in so far as it correlates with other observable behaviour. This validation process 
consists of a number of stages, in which it is hoped to collect convincing evidence that 
the instrument taps into the intended constructs and that it produces useful measurements 
reflecting patients’ QoL. Validity can be subdivided into three main aspects.
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Content validity concerns the extent to which the items are sensible and reflect the 
intended domain of interest. Criterion validity considers whether the scale has empiri-
cal association with external criteria, such as other established instruments. Construct 
validity examines the theoretical relationship of the items to each other and to the 
hypothesised scales. Of these three types of validity, construct validity is the most 
amenable to exploration by numerical analysis. Two aspects of construct validity are 
convergent validity and discriminant validity. Some items or scales, such as anxi-
ety and depression, may be expected to be highly correlated, or convergent. Others 
may be expected to be relatively unrelated, or divergent, and possessing discriminant  
validity. If a group of patients with a wide range of diagnoses and treatments is included, 
a very high scale-to-scale correlation could imply low discriminant validity and might 
suggest that the two scales measure similar things. On the other hand, if scale-to-scale 
correlations do not correspond roughly to what is expected, the postulated relation-
ships between the constructs are questionable.

Reliability and repeatability concern the random variability associated with meas-
urements. Ideally, patients whose status has not changed should make very similar, or 
repeatable, responses each time they are assessed. If there is considerable random vari-
ability, the measurements are unreliable. It would be difficult to know how to interpret 
the results from individual patients if the measurements are not reliable. Poor reliabil-
ity can sometimes be a warning that validity might be suspect, and that the measure-
ment is detecting something different from what we intend it to measure.

Sensitivity is the ability of measurements to detect differences between patients or 
groups of patients. If we can demonstrate that a measurement is sensitive and detects 
differences believed to exist between groups of patients, such as differences between 
poor and good prognosis patients, we will be more confident that it is valid and meas-
uring what we believe it to be measuring. Sensitivity is also important in clinical trials 
since a measurement is of little use if it cannot detect the differences in patient out-
comes that may exist between the randomised groups.

Responsiveness is similar to sensitivity, but relates to the ability to detect changes 
when a patient improves or deteriorates. A measurement has limited use for patient 
monitoring unless it reflects changes in the patient’s condition. A sensitive measure-
ment is usually, but not necessarily, also responsive to changes.

Validity, reliability, sensitivity and responsiveness are interrelated, yet each is sepa-
rately important. Assessing validity, in particular, is a complex and never-ending task. 
Validity is not a dichotomy and, in outcomes research, scales can never be proved to be 
‘valid’. Instead, the process of validation consists of accruing more and more evidence 
that the scales are sensible and that they behave in the manner that is anticipated.

For a discussion of statistical significance and p-values mentioned in this chapter 
see Section 5.2.

4.2  Content validity

Content validity relates to the adequacy of the content of an instrument in terms of 
the number and scope of the individual questions that it contains. It makes use of the 
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conceptual definition of the constructs being assessed, and consists of reviewing the 
instrument to ensure that it appears to be sensible and covers all of the relevant issues. 
Thus content validation involves the critical examination of the basic structure of the 
instrument, a review of the procedures used for the development of the questionnaire, 
and consideration of the applicability to the intended research question. In order to claim 
content validity, the design and development of an instrument should follow rigorously 
defined development procedures. It has been defined as: “Content validity is the extent 
to which a scale or questionnaire represents the most relevant and important aspects of a 
concept in the context of a given measurement application” (Magasi et al., 2012).

Item coverage and relevance

Comprehensive coverage is one of the more important aspects of content validity, and 
the entire range of relevant issues should be covered by the instrument. An instrument 
aiming to assess symptomatology, for example, should include items relating to all 
major relevant symptoms. Otherwise there could be undetected differences between 
groups of patients. In an extreme case, important side effects may remain undetected 
and unreported. Although these side effects may have a substantial effect upon QoL, 
a single global question about overall QoL may lack the specificity and sensitivity to 
detect a group difference. Comprehensive coverage is essential at the domain level, 
but is also particularly important for multi-item scales that consist of formative (causal 
or composite) indicators; it should be less important for reflective indicators within a 
scale, where all items are regarded as being parallel and interchangeable (as is also a 
fundamental assumption of computer adaptive tests – see Chapter 8).

The extent of item coverage is not amenable to formal statistical testing, and depends 
largely upon ensuring that the instrument has been developed according to a rigorous 
pre-defined methodology. The item generation process should include input from spe-
cialists in the disease area, a review of published data and literature, and interviews with 
patients suffering from the illness. Evidence of having followed formal, documented 
procedures will tend to support claims regarding the content validity of the instrument.

At the same time, all the items that are included should be relevant to the concept 
being assessed, and any irrelevant items should be excluded. Item relevance is com-
monly approached by using an expert panel to assess whether individual items are appro-
priate to the construct being assessed, and also by asking patients their opinion as to 
the relevance of the questions. Methods of construct validation can also indicate those 
items that appear to be behaving differently from other items in a scale (see Section 5.4). 
These items can then be critically reviewed, to decide whether they really do or do not 
relate to the construct that is being evaluated. Items should also be excluded if they are 
redundant because they overlap with or duplicate the information contained in other items.

Face validity

Face validity involves checking whether items in an instrument appear on the face 
of it to cover the intended topics clearly and unambiguously. Face validity is closely 
related to content validity, and is often considered to be an aspect of it. The main  
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distinction is that face validity concerns the critical review of an instrument after it has 
been constructed, while the greater part of content validation consists of ensuring that 
comprehensive and thorough development procedures were rigorously followed and 
documented.

Example from the literature

Branski et al. (2010) compared the content of nine QoL instruments for patients 
with voice disorders (Table 4.1). The variation in content was substantial. In 
part this may be attributable to the different objectives of the instruments: 
the last four (VHI-10 to pVHI) were developed without using patient interviews 
and of these three were intended for proxy administration to children. None-
the-less, the overall differences are striking: of the first five, some focused on 
communication and social problems, while the remainder addressed emotional, 
physical and functional problems.

Table 4.1  Number of items and content of nine instruments that assess voice problems

Instrument

VHI V-RQOL VOS VAPP VoiSS VHI-10 PVOS PV-RQOL pVHI
Number of items 30 10 5 28 30 10 4 10 23

Domains
Communication problems ✓ ✓ ✓ ✓

Social ✓ ✓ ✓ ✓ ✓ ✓

Emotional ✓ ✓ ✓ ✓ ✓ ✓

Physical ✓ ✓ ✓ ✓ ✓

Functional ✓ ✓ ✓ ✓ ✓

Work/school ✓ ✓ ✓

Voice sound and variability ✓

VHI; Voice Handicap Index; VRQOL; Voice Related Quality of Life; VOS; Voice Outcome Survey; VAPP; Voice 
activity and participation profile; VoiSS; Voice Symptom Scale; VHI-10; Voice Handicap Index-10; PVOS; 
Pediatric Voice Outcome Survey; PVRQOL; Pediatric Voice-Related Quality of Life; pVHI; Pediatric Voice 
Handicap Index.
Source: Branski et al., 2010. Reproduced with permission of Elsevier.

Content validity is optimised by including a wide range of individuals in the devel-
opment process, and face validity may be maximised in a similar way. Thus when 
confirming face validity the opinion of experts (such as doctors, nurses and social 
scientists) should be sought, and patients should be asked whether the instrument 
seems sensible. Although investigators describing the validation of instruments often 
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Example from the literature

Luckett et al. (2011) compare the EORTC QLQ-C30 and FACT-G cancer-specific 
questionnaires with a view to informing choice between them. There is substan-
tial evidence for the reliability and validity of both questionnaires in a range of 
cancer settings, and both are available in a large number of languages; psycho-
metric data were not decisive in recommending one measure or the other. How-
ever, there are major differences in the content, social domains, scale structure 
and overall character of these two instruments.

A first important difference concerns the way in which ‘social HRQoL’ is 
conceptualised and measured in the QLQ-C30 versus FACT-G. Low correlations 
between the QLQ-C30’s social functioning (SF) and FACT-G’s social well-being 
(SWB) reflect differences in their content; items in SF assess impacts on social 
activities and family life while those in SWB focus on social support and  
relationships.

In addition to the physical, emotional, social and functional/role scales 
offered by both measures, the QLQ-C30 provides brief scales for cognitive 
functioning, financial impact and a range of symptoms either not assessed by 
the FACT-G or else subsumed within its well-being scales. While the QLQ-C30’s 
approach enables scores to be generated for outcomes that may be of specific 
interest, it provides 15 scores compared with the FACT-G’s five, which compli-
cates analysis and raises issues of multiple hypothesis testing.

An overall score on the QLQ-C30 is generated by averaging responses to just 
two questions (global health and quality of life), while the FACT-G allows sum-
mation of all 27 items. The QLQ-C30 and FACT-G both look and feel different. 
With the exception of its emotional scale, the QLQ-C30 confines its questions 
to relatively objective aspects of functioning, whereas the FACT-G encourages 
respondents to reflect on their thoughts and feelings throughout. Studies ask-
ing patients and health professionals about relative face validity, ease of com-
prehension and overall preference have been inconclusive, although the trend 
has generally favoured the QLQ-C30.

Thus both instruments claim face and content validity, yet they differ sub-
stantially in their content. In part, this reflects the different design teams, with 
the QLQ-C30 placing greater emphasis on clinical aspects as compared to the 
FACT-G which is more psycho-social in content.

state that consensus opinion was sought and that the instrument is believed to have 
good face validity or content validity, explicit details are often lacking. It is important 
to describe the composition and functioning of the individuals involved in the develop-
ment and validation processes.
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4.3  Criterion validity

Criterion validity involves assessing an instrument against the true value, or against 
some other standard that is accepted as providing an indication of the true values for 
the measurements. It can be divided into concurrent validity and predictive validity.

Concurrent validity

Concurrent validity means agreement with the true value. Such a ‘gold standard’ is not 
available for PROs since they measure postulated constructs that are experimental and 
subjective. Therefore the most common approach involves comparing new question-
naires against one or more well-established instruments. This may be reasonable if the 
objective of developing a new instrument is to produce a shorter or simpler question-
naire, in which case the more detailed, established instrument may be believed to set 
a standard at which to aim. More frequently, the rationale for creating a new instru-
ment is that the investigators believe existing ones to be suboptimal. In this case, the 
comparison of new against established is of limited value since the latter has, in effect, 
already been rejected as the gold standard. Another approach is to use indirect methods 
of comparison. A detailed interview, using staff trained in interviewing techniques, 
might yield estimates of the constructs that are perhaps believed to be approximations 
to true values for a patient.

Example

Anxiety and depression are psychological concepts that have traditionally 
been assessed by using in-depth interviews to rate their severity and to detect 
patient ‘cases’ needing psychiatric intervention. If the psychiatric assessment 
is regarded as an approximation of the true level of these states, it can serve as 
a criterion against which a patient’s self-completed questionnaire is compared. 
Anxiety and depression are perhaps different from more complex QoL scales, 
in that there is (arguably) a clearer definition and better consensus among 
psychiatrists of the meaning of these terms. On that assumption, it would 
seem reasonable to regard a brief patient-questionnaire, taking a few minutes 
to complete, as a convenient method for estimating the ‘true’ values of the 
detailed interview.

As already mentioned, a new instrument is usually compared against values 
obtained from other well-established or lengthier instruments, an in-depth interview, 
or an observer’s assessment. If agreement between the two methods is considered to 
be poor, the concurrent validity is low. It may be difficult to determine with certainty 
whether one or both of the methods has low validity, but the low level of agreement 
serves as an indicator that something may be amiss.
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Predictive validity

Predictive validity concerns the ability of the instrument to predict future health sta-
tus, future events or future test results. For example, it has frequently been reported 
that overall QoL scores are predictive of subsequent survival time in cancer trials, 
and that QoL assessment is providing additional prognostic information to sup-
plement the more objective measures, such as tumour stage and extent of disease. 
The implication is that future health status can serve as a criterion against which 
the instrument is compared. Thus, for purposes of criterion validity, future status 
is regarded as a better indicator of the current true value of the latent variable than 
the observed patient responses from the instrument being developed. To make such 
an assumption, the investigator will have to form a conceptual model of the con-
struct being assessed and its relationship with future outcomes. Therefore predic-
tive validity is more conveniently discussed from the perspective of being an aspect 
of construct validity.

Example from the literature

When developing the HADS instrument, Zigmond and Snaith (1983) asked 
100 patients from a general medical outpatient clinic to complete the ques-
tionnaire. Following this, they used a 20-minute psychiatric interview to 
assess anxiety and depression; this provided the criterion against which the 
two scales of the HADS were compared. A summary of the results is shown in 
Table 4.2, with patients grouped into three categories according to whether 
they were psychiatric cases, doubtful cases or non-cases of anxiety and 
depression.

For diagnosing psychiatric cases, the depression scale gave 1% false posi-
tives and 1% false negatives, and the anxiety scale 5% false positives and 1% 
false negatives.

Table 4.2  HADS questionnaire completed by 100 patients from a general medical outpatient 
clinic

Depression Anxiety

HADS score Non-cases
Doubtful 

cases Cases Non-cases
Doubtful 

cases Cases

0–7 57 11 1– 41 4 1–

8–10 8 7 3 10 9 1
11–21 1+ 4 8 5+ 15 14

+ False positives. − False negatives.
Source: Zigmond and Snaith, 1983, Table 1. Reproduced with permission of John Wiley & Sons, Ltd.
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4.4  Construct validity

Construct validity is one of the most important characteristics of a measurement instru-
ment. It is an assessment of the degree to which an instrument is valid in that it appears 
to measure the construct that it was designed to measure. The subject of construct 
validity is a difficult and controversial one. It involves first forming a hypothetical 
model, describing the constructs being assessed and postulating their relationships. 
Data are then collected, and an assessment is made as to the degree to which these rela-
tionships are confirmed. If the results confirm prior expectations about the constructs, 
the implication is that the instrument may be valid and that we may therefore use it to 
make inferences about patients.

The ‘may be valid’ emphasises the controversial aspect of construct validation. The 
difficulty is that neither the criterion nor the construct is directly measurable. Hence 
a formal statistical test cannot be developed. Since assessment of construct validity 
relies upon expressing opinions about expected relationships amongst the constructs, 
and confirming that the observed measurements behave as expected, we cannot prove 
that questionnaire items are valid measures for the constructs, or that the constructs 
are valid representations of behaviour. All we can do is collect increasing amounts of 
evidence that the measurements appear to be sensible, that the postulated constructs 
behave as anticipated, and that there are no grounds for rejecting them. The greater the 
supporting evidence, the more confident we are that our model is an adequate repre-
sentation of the constructs that we label QoL.

More formally, construct validity embraces a variety of techniques, all aimed at 
assessing two things: first, whether the theoretical postulated construct appears to be 
an adequate model; and, second, whether the measurement scale appears to correspond 
to that postulated construct. In this chapter we describe several approaches that are 
applicable to single-item scales or summary scores from multi-item scales, but in the 
next chapter we show more powerful methods that are available for multi-item scales, 
to explore dimensionality, homogeneity and overlap of the constructs.

Mainly, assessment of construct validity makes use of correlations, changes over 
time, and differences between groups of patients. It involves building and testing 
conceptual models that express the postulated relationships between the hypothetical 
domains of QoL and the scales that are being developed to measure these domains. 
Construct validation is a lengthy and on-going process of learning more about the 
construct, making new predictions and then testing them. Each study that supports the 
theoretical construct serves to strengthen the theory, but a single negative finding may 
call into question the entire construct.

Known-groups validation

One of the simpler forms of construct validation is known-groups validation. This 
is based on the principle that certain specified groups of patients may be anticipated 
to score differently from others, and the instrument should be sensitive to these 



	 4.4 C onstruct validity	 97

Example from the literature

O’Connell and Skevington (2012) described the validation of a short form of 
the WHOQOL-HIV instrument, the 31-item WHOQOL-HIV-BREF. Survey data from 
1,923 HIV-positive adults (selected for age, gender and disease stage) were 
collected in eight culturally diverse centres. Known-groups validity, based on 
1,884 adults, was explored by contrasting three subgroups with disease of 
varying severity: HIV-asymptomatic, HIV-symptomatic and AIDS. The authors 
reported the ANOVA F-statistics for each of the 31 items and the six multi-item 
domains; in Table 4.3 we show just the two general items and the six domains.

For both of the general items and all of the summary scales there is a clear 
trend according to severity of illness. Given the large sample size, it is not sur-
prising that all ANOVA F-ratios are highly significant (p < 0.001). The authors 
comment that their results confirm that the new instrument shows very good 
discriminant validity. They also note that the two domains with the largest 
effects (largest F-ratios) were physical and level of independence.

Known-groups validity is not the same as sensitivity, which we discuss later in 
this chapter. For sensitivity, we are interested in whether the instrument can detect 
small group-differences, in sample sizes as used in clinical trials. Here, for known-
groups validity, the authors confirm that the anticipated effects were observed.

differences. For example, patients with advanced cancer might be expected to have 
poorer overall QoL than those with early disease. A valid scale should show differ-
ences, in the predicted direction, between these groups. Known-groups comparisons 
are therefore a combination of tests for validity and a form of sensitivity or responsive-
ness assessment. A scale that cannot successfully distinguish between groups with 
known differences, either because it lacks sensitivity or because it yields results that 
are contrary to expectations, is hardly likely to be of value for many purposes.

Investigators frequently select patients in whom one may anticipate that there will 
be substantial differences between the groups. This implies that even a very small 
study will provide sufficient evidence to confirm that the observed differences are 
unlikely to be due to chance; what matters most is the magnitude of the differences, not 
the p-values. Although statistical significance tests are uninformative and not worthy 
of reporting in these circumstances, it is common to see publications that describe all 
differences as statistically highly significant with p-values less than 0.0001.

Closely similar to known-groups validation is validation by application (Feinstein 
1987, p. 205). When a scale is used in a clinical trial and detects the anticipated effects, 
one can infer that the scale is sensitive and that it is presumably measuring the outcome 
of interest. However, cynics may claim that this approach (and, indeed, known-groups 
validation in general) cannot tell whether the scale being validated is addressing the 
intended construct, or merely evaluating another outcome that is highly correlated with 
it. Thus, as with known-groups validation, face validity is an important aspect of draw-
ing conclusions from the observations.
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Convergent validity

Convergent validity is another important aspect of construct validity, and consists 
of showing that a postulated dimension of QoL correlates appreciably with all other 
dimensions that should in theory be related to it. That is, we may believe that some 
dimensions of QoL are related, and we therefore expect the observed measurements 
to be correlated. For example, one might anticipate that patients with severe pain are 
likely to be depressed, and that there should be a correlation between the pain scores 
and depression ratings.

Many of the dimensions of QoL are interrelated. Very ill patients tend to suffer from 
a variety of symptoms and have high scores on a wide range of psychological dimen-
sions. Many, and sometimes nearly all, dimensions of QoL are correlated with each 
other. Therefore an assessment of convergent validity consists of predicting the strong-
est and weakest correlations, and confirming that subsequent observed values conform 
to the predictions. Analysis consists of calculating all pairwise correlation coefficients 
between scores for different QoL scales.

A very high correlation between two scales invites the question of whether both 
of the scales are measuring the same factor, and of whether they could be combined 
into a single scale without any loss of information. The decision regarding the amal-
gamation of scales should take into account the composition of the separate scales, 
and whether there are clinical, psychological or other grounds for deciding that face 

Table 4.3  Known-groups validity of the Short Form WHOQOL-HIV instrument, in 1,884 adults 
who are HIV-positive

HIV asymptomatic HIV symptomatic AIDS
N = 776 N = 643 N = 465 F-ratio*

Overall QoL and Health

General QoL 3.47 3.15 2.98 45.43
General health 3.27 2.77 2.56 84.97

Domain scores

1. Physical 14.49 12.39 11.12 186.37
2. Psychological 13.77 12.59 11.81 79.95
3. Independence 15.25 13.14 11.75 197.63
4. Social Relationships 13.30 12.56 12.00 25.41
5. Environment 12.87 12.10 11.83 27.59
6. �Spirituality, Religion and 

Personal Beliefs (SRPB)
13.35 12.53 11.85 26.78

* ANOVA F-statistics; all are significant p < 0.001.
Source: Extract from O’Connell and Skevington, 2012, Table 3, which displays discriminant validity for all 
items. Reproduced with permission of Springer Science+Business Media.
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validity could be compromised and that it is better to retain separate scales. Alterna-
tively, a very high correlation might imply that one of the scales is redundant and can 
be deleted from the instrument. Convergent validity is usually considered together 
with discriminant validity.

Discriminant validity

Discriminant validity, or divergent validity, recognises that some dimensions of 
QoL are anticipated to be relatively unrelated and that therefore their correlations 
should be low. Convergent and discriminant validity represent the two extremes in 
a continuum of associations between the dimensions of QoL. One problem when 
assessing discriminant validity (and, to a lesser extent, convergent validity) is that 
two dimensions may correlate because of some third, possibly unrecognised, con-
struct that links the two together; statisticians term this spurious correlation. For 
example, if two dimensions are both affected by age, an apparent correlation can be 
introduced solely through the differing ages of the respondents. Another extraneous 
source of correlations could be ‘yea-saying’, in which patients may report improv-
ing QoL on many dimensions simply to please staff or relatives. When specific 
independent variables are suspected of introducing spurious correlations, the statis-
tical technique of partial correlation should be used; this is a method of estimating 
the correlation between two variables, or dimensions of QoL, while holding con-
stant other variables that statisticians describe as nuisance variables. In practice, 
there are usually many extraneous variables each contributing a little to the spurious 
correlations.

Convergent validity and discriminant validity are commonly assessed across instru-
ments rather than within an instrument, in which case those scales from each instru-
ment that are intended to measure similar constructs should have higher correlations 
with each other than with scales that measure unrelated constructs.

Example from the literature

Schag et al. (1992) evaluated the HIV Overview of Problems – Evaluation Sys-
tem (HOPES), and predicted the pattern of associations that they expected 
to observe between scales from the HOPES questionnaire and the MOS-HIV.  
Table 4.4 shows some of the corresponding observed correlations.

The authors comment that, as predicted, the three MOS-HIV scales of cogni-
tive function, mental health and health distress correlate most highly with the 
psychosocial summary scale of the HOPES. Similarly, other MOS-HIV subscales 
correlate most highly with the HOPES physical summary scale.

The high correlations support the predictions of convergent validity, while 
the lower correlations between other subscales support discriminant validity.
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Multitrait–multimethod analysis

The multitrait–multimethod (MTMM) correlation matrix is a method for examining 
convergent and discriminant validity, and was described by Campbell and Fiske in 
1959. The general principle of this technique is that two or more ‘methods’, such 
as different instruments, are each used to assess the same ‘traits’, for example QoL  
aspects, items or subscales. Then we can inspect and compare the correlations arising 
from the same subscale as estimated by the different methods. Various layouts are used 
for MTMM matrices, the most common being shown in Table 4.5.

In this template the two instruments are methods, while the functioning scales are 
traits. Cells marked C show the correlations of the scores when different instruments 

Table 4.5  Template for the multitrait–multimethod (MTMM) correlation matrix

Emotional function Social function Role function

Instrument 1 2 1 2 1 2

Emotional 
function

1 R

2 C R

Social 
function

1 D R

2 D C R

Role 
function

1 D D R

2 D D C R

Table 4.4  Correlations between HOPES physical and psychosocial 
scales and the MOS-HIV scales, in patients with HIV infection

Hopes

MOS-HIV Physical Psychosocial

General health 0.74 0.41
Physical function 0.74 0.42
Role function 0.70 0.36
Social function 0.75 0.43
Cognitive function 0.55 0.55
Pain score 0.67 0.39
Mental health 0.55 0.70
Energy/fatigue 0.72 0.47
Health distress 0.65 0.67
QoL 0.52 0.44
Health transition 0.25 0.17

Source: Schag et al., 1992, Table 6. Reproduced with permission of Springer 
Science+Business Media.
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Example from the literature

The FACT-G and the EORTC QLQ-C30 are two instruments that ostensibly measure 
many of the same aspects of QoL. Silveira et al. (2010) used an MTMM matrix, 
summarised in Table 4.6, to compare these two instruments in 102 patients 
with head and neck cancer.

Silveira et al. used the layout of Table 4.5, subdividing the instruments into 
traits (QoL dimensions). The correlation between the QLQ-C30 physical func-
tion scale and the FACT-G physical well-being scale is 0.80, while the correlation 
between the QLQ-C30 social function and the FACT-G social well-being is only 0.21.

Convergent validity is determined by the shaded cells, which represent the 
correlation of two instruments when assessing the traits that are hypothesised as 
similar. In this example, the correlation for social function and social well-being 
is very low, indicating that despite the similar names these two scales are meas-
uring very different constructs. The correlation between the two emotional scales 
is at best only modest, again suggesting that these scales may differ in concept.

These results are not surprising; as we commented when introducing the instru-
ments in Chapter 1, they are conceptually very different from each other, with the 
QLQ-C30 emphasising clinical symptoms and the FACT-G addressing feelings and 
concerns. Other authors have reported similar differences (Luckett et al., 2011).

are used to assess the same trait. Convergent validity is determined by the C cells. If 
the correlations in these cells are high, say above 0.7, this suggests that both instru-
ments may be measuring the same thing. If the two instruments were developed inde-
pendently of each other, this would support the inference that the traits are defined in a 
consistent and presumably meaningful manner.

Similarly, the D cells show the scale-to-scale correlations for each instrument, and 
these assess discriminant validity. Lower correlations are usually expected in these 
cells, since otherwise scales purporting to measure different aspects of QoL are in fact 
more strongly related than supposedly similar scales from different instruments.

The main diagonal cells, marked R, can be used to show reliability coefficients, as 
described later and in Chapter 5. These can be either Cronbach’s α for internal reliabil-
ity or, if repeated QoL assessments are available on patients whose condition is stable, 
test–retest correlations. Since repeated values of the same trait measured twice by the 
same method will usually be more similar than values of the same trait measured by 
different instruments, the R cells containing test–retest repeatability scores should usu-
ally contain the highest correlations.

One common variation on the theme of MTMM matrices is to carry out the patient 
assessments on two different occasions. The unshaded triangular area to the upper-right 
of Table 4.5 can be used to display the correlations at time 1, and the time 2 data can 
be shown in the shaded cells as described above. The diagonal cells dividing the two 
triangular regions, marked R, can then show the test–retest repeatability correlations.
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Example from the literature

Khanna et al. (2012) explored the validity of computerised adaptive tests from 
Patient-Reported Outcomes Measurement Information System (PROMIS) item 
banks, using data from 143 patients with systemic sclerosis. Construct validity 
of the PROMIS items was evaluated by examining correlations with correspond-
ing legacy measures using MTMM analysis. The six PROMIS domains selected 
for analysis were depression, fatigue, pain behaviour, physical function, sleep 
disturbance and satisfaction with participation in discretionary social activi-
ties. The corresponding legacy scales were the depression from CESD-10, FACIT-
Fatigue, SF-36 bodily pain, SF-36 physical functioning, MOS 9-item sleep prob-
lem index and SF-36 social functioning, respectively.

Table 4.6  Multitrait–multimethod correlation matrix for FACT-G scores and EORTC QLQ-C30 
scores, in 102 patients with head-and-neck cancer

Physical Social Emotional Role

PF  
(QLQ)

Pwb 
(FACT)

SF  
(QLQ)

Swb 
(FACT)

EF  
(QLQ)

Ewb 
(FACT)

RF  
(QLQ)

Fwb 
(FACT)

Physical
PF

Pwb 0.80

Social
SF 0.62 0.70

Swb 0.19 0.19 0.21

Emotional
EF 0.42 0.49 0.48 0.18

Ewb 0.51 0.67 0.54 0.35 0.63

Role
RF 0.79 0.75 0.72 0.18 0.44 0.56

Fwb 0.71 0.70 0.65 0.39 0.43 0.60 0.70

EORTC QLQ-C30: PF physical function; SF social function; EF emotional function; RF role function.
FACT-G: Pwb physical well-being; Swb social well-being; Ewb emotional well-being; Fwb functional well-being.
Source: Silveira et al., 2010, Table 8. CC BY 2.0 (http://creativecommons.org/licenses/by/2.0).

Silveira et al. comment on the marked departures of Swb and SF from a 
normal distribution, but despite this used Pearson correlation and not that of 
Spearman which is more applicable in such cases.

http://creativecommons.org/licenses/by/2.0
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It is often useful to consider confidence intervals (CIs) of the correlation coeffi-
cients, as shown in Section 5.3. The CIs reflect the sample size of the study, and a small 
study will be associated with wide intervals. The intervals enable a critical inspection 
of whether differences between correlations may be due to chance, or whether there is 
reasonable confirmation of the expected correlation structure

The correlations are shown in Table 4.7.
Khanna et al. used a summary table for the MTMM analysis, presenting only 

the correlations between the PROMIS scales and the legacy instruments. It was 
hypothesised that the correlation coefficients between scales for corresponding 
dimensions (shown as shaded values on the main diagonal in Table 4.7) would 
be ‘≥0.50 (a large effect size) and that these would be significantly larger than 
off-diagonal correlations’.

Khanna et al. reported that ‘Validity diagonals (correlations among different 
methods of measuring the same domain) were the largest correlations across 
the row and column in every case with one exception: the PROMIS scale (satis-
faction with participation in discretionary social activities) had about the same 
size correlation with the legacy scale FACIT-Fatigue (r = 0.62) than with the 
SF-36 social functioning counterpart. Eighty-three percent of the paired cor-
relation t-tests were statistically significantly larger than relevant off-diagonal 
correlations in the MTMM matrix, providing substantial support of construct 
validity of the measures.’

Table 4.7  Multitrait–multimethod correlation matrix for PROMIS scores compared against 
legacy instruments, in 143 patients with systemic sclerosis

PROMIS CAT
CESD-10 

Depression
FACIT 

Fatigue

SF-36 
Bodily 
pain

SF-36 
Physical 

func.
MOS 

Sleep index

SF-36 
Social 
func.

Depression 1.0 0.67 0.44 0.31 0.20 0.33 0.46
Fatigue 1.0 0.59 0.76 0.59 0.51 0.49 0.59
Pain Behavior 1.0 0.44 0.53 0.66 0.38 0.37 0.47
Phys. Function 1.0 0.46 0.72 0.56 0.82 0.43 0.55
Sleep Disturb 1.0 0.50 0.37 0.23 0.24 0.75 0.28
Social Sat Discretionary 0.56 0.62 0.48 0.54 0.46 0.61

Source: Khanna et al., 2012, Table 4. Reproduced with permission of Elsevier.
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4.5  Repeated assessments and change over time

The methods described so far have involved a single cross-sectional assessment of 
the patients. We turn now to validation in which repeated assessments per patient 
are used:

●● repeatability in stable patients, or consistency over time: test–retest reliability;

●● responsiveness or sensitivity to changes in patients whose condition has altered over 
time.

4.6  Reliability

Assessment of reliability consists of determining that a scale or measurement yields 
reproducible and consistent results. Confusingly, this same word is used for two 
very different levels of scale validation. First, for scales containing multiple items, 
all the items should be consistent in the sense that they should all measure the same 
thing. This form of reliability, which is called internal reliability, uses item correla-
tions to assess the homogeneity of multi-item scales and is in many senses a form of 
validity. Second, reliability is also used as a term to describe aspects of repeatabil-
ity and stability of measurements. Any measurement or summary score, whether 
based upon a single item or multiple items, should yield reproducible or consistent 
values if it is used repeatedly on the same patient while the patient’s condition has 
not changed materially. Thus reliability, in this sense of repeatability, describes the 
differences between multiple measurements. From a statistical perspective, reli-
ability is similar to variance, in the sense that an unreliable measure varies between 
measurement occasions. This second form of reliability is a desirable property of 
any quantitative measurement, and is a necessary condition for a PRO to be valid. 
However, reliability does not in itself imply validity: a measure that is measuring 
something reliably and consistently may not necessarily be measuring the intended 
construct.

From a statistical point of view, both forms of reliability are assessed using 
related techniques. Thus repeatability reliability is based upon analysis of correla-
tions between repeated measurements, where the measurements are either repeated 
over time (test–retest reliability), by different observers (inter-rater reliability) or 
by different variants of the instrument (equivalent-forms reliability). Internal reli-
ability, which is also often called internal consistency, is based on item-to-item 
correlations in multi-item scales, and is discussed in Section 5.5. Since these two 
concepts are mathematically related, estimates of the internal reliability of multi-
item scales can often be used to predict the approximate value of their repeatability 
reliability.

A number of different measures have been proposed. Since reliability is the extent 
to which repeated measurements will give the same results when the true scale score 
remains constant, measurement concerns the level of agreement between two or more 
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scores. We describe those measures that are commonly used when there are two 
assessments per patient. However, we also note that, from a statistical perspective, 
the reliability of continuous measurements may be more effectively explored using 
ANOVA models to evaluate the SE of the measurements, and to explore the relation-
ship of this SE to the other sources of variance; see also Section 5.5.

Binary data: proportion of agreement

Binary assessments include ratings such as yes/no, present/absent, positive/negative, 
or patients grouped into those greater/less than some threshold value. The simplest 
method of assessing repeatability is the proportion of agreement when the same instru-
ment is applied on two occasions. When patients are assessed twice, the resulting 
data can be tabulated, as in Table 4.8. Here x11 is the number of patients whose QoL 
response is positive both times, and x22 when it is negative.

The number of agreements, that is the number of patients who respond in the same 
way in both assessments, is x11 + x22, and so the proportion of agreements is

	 p x x NAgree = +( )11 22 / , 	 (4.1)

where N is the total number of patients.

Binary data: κ

However, we would expect some agreement purely by chance, even if patients entered 
random responses on the questionnaire, and pAgree does not only reflect whether the 
agreement arises mainly from being positive twice, or negative twice. The kappa coef-
ficient, κ, provides a better method by extending the above concept of proportion agree-
ment to allow for some expected chance agreements. It can be shown that the expected 
number of chance agreements corresponding to cell x11 is c1r1/N and similarly for x22, 
c2r2/N. Thus the expected proportion of chance agreements is

	 p
c r

N

c r

N
N c r c r NChance = +





= +( )1 1 2 2
1 1 2 2

2 . 	 (4.2)

Table 4.8  Notation for repeated binary data, with two assessments  
of the same N subjects

First assessment

Second assessment Positive Negative Total

Positive x11 x12 r1

Negative x21 x22 r2

Total c1 c2 N
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Example from the literature

The EQ-5D-Y was developed from the EQ-5D for measuring HRQOL in children 
and adolescents from 8 years onwards. In addition to the VAS scale of the 
EQ-5D, it comprises five items referring to mobility, self-care, usual activities, 
pain and discomfort, and anxiety and depression. Each item has three levels 
(no problems, some problems and a lot of problems). From a large international 

Table 4.9  Guideline values of κ to indicate the strength of agreement

Agreement: Agreement:

κ Landis & Koch κ Hahn et al.

< 0.20 Poor/slight (< 0.40) Low (high error)
0.21–0.40 Fair
0.41–0.60 Moderate (0.40–0.74) Moderate or good (acceptable error)
0.61–0.80 Substantial
0.81–1.00 Almost perfect (> 0.74) High or excellent (minimal/no error)

Sources: Landis and Koch, 1977. Reproduced with permission of John Wiley & Sons, Inc; Hahn et al., 2007, 
Table 1. Reproduced with permission of Elsevier.

The excess proportion of agreement above that expected is then p p( )Agree Chance−  Fur-
thermore, since the maximum proportion of agreements is 1 when x11+ x22 = N, the maxi-
mum value of p p( )Agree Chance−  is ( )1− pChance . Hence we can scale the excess proportion 
of agreement so that it has a maximum value of 1. This leads to the κ index of agreement:

	 p p p1 .Agree Chance Chanceκ ( ) ( )= − − 	 (4.3)

The value of κ is equal to 1 if there is perfect agreement, and equals 0 if the agree-
ment is no better than chance. Negative values indicate an agreement that is even less 
than what would be expected by chance. Interpretation of κ is subjective, but Table 4.9 
shows the frequently cited guideline values of Landis and Koch (1977), although later 
authors such as Hahn et al. (2007) agree higher values are desirable.

Although κ may seem intuitively appealing, it has been criticised. Misleading val-
ues are often obtained, mainly because κ is affected by the degree of asymmetry or 
imbalance in the table. The value of κ is also influenced by the total percentage of 
positives, and it is possible to obtain very different values of κ even when the propor-
tion of agreement remains constant. Further, high agreement can occur even when κ is 
very low. Thus κ is no substitute for inspecting the table of frequencies, and examining 
whether the table appears to be symmetrical or whether there is a tendency for patients 
to respond differently on the two occasions.
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Ordered categorical data: weighted κ

QoL assessments frequently consist of ordered categorical response items that are 
scored according to the level of response. For example, items from some instruments 
are scored with g = 4 categories from 1 for ‘not at all’ through to 4 for ‘very much’.

validation study, Ravens-Sieberer et al. (2010) report the test–retest reliability 
for Italy and Spain, where a third of the study sample received the question-
naire again 7–10 days after the first examination.

Percentage of agreement is shown in Table 4.10, with κ coefficients calcu-
lated after dichotomising the responses into ‘no problem’ versus ‘any problems’ 
for each profile domain.

The percentage agreement was 69.8–93.8% for Italian youths, and in 86.2–
99.7% for Spanish. This reasonably high level of agreement was generally con-
firmed by the κ coefficients. However, the authors noted that the high ceil-
ing effects caused some apparent non-confirmation of the results. In Italy, 
no κ coefficient could be computed for the self-care domain since all children 
reported no problems in the retest. Similarly, the κ coefficients in the mobility 
dimension are of limited value since nearly all retest responses were in the ‘no 
problems’ category.

These results illustrate some of the problems in the interpretation of κ.

Table 4.10  Test–retest κ coefficients and percent agreement for the youth-version EQ-5D-Y

Italy (N = 415) Spain (N = 973)

κ coefficient Agreement (%) κ coefficient Agreement (%)

Mobility  
(walking about)

0.222 91.5 −0.003* 99.4

Looking  
after myself

0.000a 93.8 0.665* 99.7

Doing usual 
activities

0.352* 82.9 0.557* 97.5

Having pain  
or discomfort

0.350* 69.8 0.435* 86.2

Feeling worried, 
sad or unhappy

0.549* 78.3 0.468* 87.4

*Significant at p ≤0.01.
aThe responses in the retest are identical to the test.
Source: Ravens-Siberer et al., 2010, Table 3. CC-BY-NC (http://creativecommons.org/licenses/by-nc/2.0/ 
uk/). Reproduced commercially with kind permission from Springer Science+Business Media and the 
authors.

http://creativecommons.org/licenses/by-nc/2.0/uk/
http://creativecommons.org/licenses/by-nc/2.0/uk/
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If we construct the g × g two-way table of frequencies analogous to Table 4.8, we 
obtain

	 p x N p rc NAgree ii Chance i i= ( ) = ( )∑ ∑and 2 , 	 (4.4)

where the summation is from i = 1 to g. Equation (4.3) is then applied to give κ.
However, these equations give equal importance to any disagreement. Although it is 

possible to use this directly, it is generally more realistic to use a weighted form, κWeight. 
This takes into account the degree of disagreement, such that a difference between 
scores of 1 and 3 on the two occasions would be considered of greater importance 
than the difference between 1 and 2. In terms of the table of frequencies, values along 
the diagonal, corresponding to x11, x22, x33 to xgg, represent perfect agreement. Values 
that are off the diagonal in row i and column j are given scores or weights according 
to their distance from the diagonal, which corresponds to their degree of discrepancy. 
Two frequently used choices of weights are

	 w
i j

g
w

i j

gij ij= − −
−

= − −
−





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1
1

1
1

2

, ,or 	 (4.5)

where i j−  is the absolute difference of i and j, which ignores the sign of the 
difference. In equation (4.5), the first represents linear weighting, and the second is 
quadratic weighting.

Example

Suppose an item has g = 4 possible response categories, with 1 for ‘not at all’, 
2 for ‘a little’, 3 for ‘quite a bit’ and 4 for ‘very much’. If the result of the first 
assessment on a patient is 1, then for second assessment values of 1, 2, 3 or 
4 respectively, the corresponding linear weights would be 1, 0.67, 0.33 and 0, 
while the quadratic weights would be 1, 0.89, 0.56 and 0. For both weight-
ing schemes 1 indicates perfect agreement and 0 the maximum disagreement. 
The quadratic weights place greater emphasis upon measurements that agree 
closely.

Quadratic weights are generally considered preferable, and lead to:
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and hence
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Wκ ( ) ( )= − − 	 (4.6)
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Example from the literature

Lemmens et al. (2013) adapted the Swal-Qol, a questionnaire for evaluating 
the impact of dysphagia on quality of life, to an interview format suitable for 
dysphagic patients with communicative and/or cognitive problems. Test–retest 
reliability was assessed by administrating two identical Swal-Qol interviews 
with the same interviewer. A two-week time interval was considered enough 
time for patients not to remember their previous answers. The test–retest reli-
ability for each subscale and overall score was reported, with values of κWeight 
between 0.40 and 0.75 interpreted as good and those above 0.75 as excellent. 
To compare the data with previous published studies, Spearman’s correlation 
coefficients and the intraclass correlation coefficients (ICC) were also calcu-
lated (Table 4.11).

Lemmens et al. reported that weighted kappa was excellent (κWeight > 0.75) 
for the overall score and seven subscales, and good for subscales ‘fear’ 
(κWeight = 0.675) and ‘fatigue’ (κWeight = 0.713).

It was not specified whether quadratic weighting was used. The interpreta-
tion criteria correspond to those of Hahn et al. in Table 4.9, and are frequently 
used for κWeight although as we have noted this is questionable. Lemmens et al. 
additionally presented κWeight coefficients for two subgroups, one with only 16 
patients; some statistical packages provide confidence intervals, and these can 
aid the interpretation for small sample sizes.

Similar reservations apply to weighted κWeight as to simple κ. The value is highly 
affected by the symmetry of the table, and by the proportion of patients in each 
category. Also, the number of categories g affects κWeight. Thus, for example, κWeight 
will usually be greater (and sometimes substantially so) if patients are evenly dis-
tributed over the range of values for QoL, and will be smaller if most patients have 
extreme values, for example if most patients have very poor QoL. Thus it can be 
difficult to know how to interpret or decide what are acceptable values of κWeight, 
as it is greatly affected by the weights, making the guideline values of Table 4.9 
inapplicable. One use of κWeight that does not depend upon guideline values is infer-
ence about the relative stability of different items: those items with largest κ are 
the most repeatable.

Despite these reservations, when analysing proportions or items, which have only a 
few ordered categories, κWeight is a measure for assessing the agreement between two 
items or between two repeats of an assessment. However, Fleiss and Cohen (1973) 
showed that quadratic-weighted κWeight is also equivalent to the intraclass correlation 
coefficient described next, and we recommend the latter as being simpler to calculate 
and interpret.
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Pearson’s correlation coefficient

The ordinary correlation coefficient, also called Pearson’s correlation, is described in 
Section 5.3. Although it is often advocated as a measure of repeatability, this is to be 
deprecated because correlation is a measure of association. Repeated measurements 
may be highly correlated yet systematically different. For example, if patients consist-
ently score higher by exactly 10 points when a test is reapplied, there would be zero 
agreement between the first and second assessments. Despite this, the correlation coef-
ficient would be 1, indicating perfect association. When one has continuous variables, 
a more appropriate approach to the assessment of reliability is the intraclass correla-
tion coefficient (ICC).

Intraclass correlation coefficient (ICC)

For continuous data, the ICC measures the strength of agreement between repeated 
measurements, by assessing the proportion of the total variance, σ2 (the square of 
the SD), of an observation that is associated with the between-patient variability. 
Thus,

	 ICC Patient

Patient Error

=
+

σ
σ σ

2

2 2 . 	 (4.7)

Table 4.11  Test–retest κWeight coefficients for the Swal-Qol dysphagia questionnaire, 
adapted for interviewing patients with communicative and/or cognitive problems; results of 
testing 56 patients

Subscale
Number 
of items

Number of 
patients κWeight

Spearman’s 
correlation ICC

1. Burden 2 56 0.849 0.854 0.850

2. Eating duration and desire 5 54 0.822 0.828 0.817

3. Dysphagia symptoms 14 54 0.940 0.934 0.941

4. Food selection 2 53 0.823 0.834 0.818

5. Communication 2 56 0.786 0.777 0.789

6. Fear 4 53 0.675 0.715 0.678

7. Mental health 5 55 0.898 0.877 0.891

8. Social functioning 5 48 0.908 0.909 0.909

9. Fatigue and sleep 5 55 0.713 0.710 0.714

Overall score 44 48 0.953 0.951 0.952

Source: Lemmens et al., 2013, Table 2. CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/).

https://creativecommons.org/licenses/by/3.0/


	 4.6 R eliability	 111

If the ICC is large (close to 1), then the random error variability is low and 
a high proportion of the variance in the observations is attributable to variation 
between patients. The measurements are then described as having high reliability. 
Conversely, if the ICC is low (close to 0), the random error variability dominates 
and the measurements have low reliability. If the error variability is regarded as 
‘noise’ and the true value of patients’ scores as the ‘signal’, the ICC measures the 
signal/noise ratio.

The ICC can be estimated from an ANOVA. In brief, ANOVA partitions the total 
variance into separate components, according to the source of the variability. A table 
for ANOVA in which p patients repeat the same QoL assessment on r occasions can 
be represented as in Table 4.12. Here, we have shown a two-way (repeats and patients) 
random effects model, without interaction term; because several alternatives are possi-
ble, this has been described as a ‘case 2A’ model by McGraw and Wong (1996). Equa-
tion (4.7) describes the average consistency of the assessments when there is a single 
repeat, and has been termed ICC(C,1) (McGraw and Wong, 1996) or ICCConsistency (de 
Vet et al., 2006).

The error variability corresponding to equation (4.7) has been separated into two 
components, and is now Repeats Error

2 2σ σ+ . This leads to:

	 ICC ,Patient

Patient Repeats Error

2

2 2 2

σ
σ σ σ

=
+ +

� (4.8)

which includes a term for a random Repeats effect. Equation (4.8) is generally pre-
ferred over equation (4.7), and has been described as ICCAgreement (de Vet et al., 2006), 
and for a single repeat corresponds to ICC(A,1) of McGraw and Wong (1996). Solving  

Table 4.12  ANOVA table to estimate the intraclass correlation

Source
Sum of 
squares

Degrees of 
freedom Mean squares Variances

Between-patients SPatient p–1 V
S

pPatient
Patient=

−1
= rσ2

Patient + σ2
Error

Repeats (Within 
patients)

SRepeats r–1 V
S

r 1Repeats
Repeats=
− = pσ2

Repeats + σ2
Error

Error SError rp–r–p+1 V
S

rp r pError
Error=

− − +1
= σ2

Error

Total STotal rp–1
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the equations indicated in Table 4.12 for σPatient
2

, σRepeats
2

 and σError
2  gives the more 

general form of the ICC for p patients and r repeated assessments:

	
( )

( )
=

−
+ + −

ICC
p V V

pV rV p r V
.Patient Error

Patient Repeats Error
� (4.9)

ICC is a form of correlation, and in Section 5.3 we describe how confidence limits 
may be calculated. It is the most commonly used method for assessing reliability 
with continuous data, and is also sometimes used for ordered categorical data. A reli-
ability coefficient of at least 0.90 is often recommended if measurements are to be 
used for evaluating individual patients (e.g. Nunnally and Bernstein, 1994; Kottner et 
al., 2011), although most QoL instruments fail to attain such a demanding level. For 
discriminating between groups of patients, as in a clinical trial, it is usually recom-
mended that the reliability should exceed 0.70. Thus Hahn et al. (2007) suggest that 
values from 0.70 to 0.90 represent ‘moderate or good reliability (acceptable error)’ and 
above 0.90 are ‘high or excellent (minimal or no error)’. The principal effect of using 
measurements with a low reliability in a clinical trial is that there will be a dilution of 
the between-treatments effect, and so the sample size will have to be increased accord-
ingly to compensate.

Example from the literature

Table 4.11 shows both the ICC values and κWeight coefficients that Lemmens  
et al. (2013) reported. The ICC values are, as is to be expected, very similar to 
those of κWeight (Fleiss and Cohen, 1973). Although presented by Lemmens et al. 
purely for comparison with other studies, it should be noted that Spearman’s 
correlation coefficient, like Pearson’s, is less appropriate than ICC for measuring 
agreement.

Study size for reliability studies depends upon both the minimum acceptable reli-
ability and the true reliability. For example, if it is desired to show that the reliability 
is above 0.70 when the anticipated (true) reliability is 0.90, two measurements on 18 
patients could suffice; but 118 patients are needed if the anticipated reliability is only 
0.80 (Walter et al., 1998). Zou (2012) reviews the approaches to sample size estima-
tion, and presents equations for estimating the required sample size such that the CI is 
likely to be within a specified width. We illustrate the results for an ICC based on two 
assessments per patients, with a 95% CI, in Figure 4.1. From this figure, if the esti-
mated ICC is 0.8, then the anticipated width of the CI would be about 2 × 0.15 = 0.30 
if N = 40 and this width would reduce to about 0.16 if N = 120.Unless you are certain 
that the ICC is high or excellent (> 0.9), we suggest a sample size of at least 80 patients 
is usually desirable.
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Test–retest reliability

If a patient is in a stable condition, an instrument should yield repeatable and repro-
ducible results if it is used repeatedly on that patient. This is usually assessed using 
a test–retest study, with patients who are thought to have stable disease and who are 
not expected to experience changes due to treatment effects or toxicity. The patients 
are asked to complete the same QoL questionnaire on several occasions. The level of 
agreement between the occasions can be measured by the ICC, providing a measure 
of the reliability of the instrument. It is important to select patients whose condition is 
stable, and to choose carefully a between-assessment time gap that is neither too short 
nor too long. Too short a period might allow subjects to recall their earlier responses, 
and too long a period might allow a true change in the status of the subject. In diseases 
such as cancer, where one might anticipate that most treatments would cause QoL 
to vary over time in various ways, the requirement of stability often leads to patients 
being studied either pre- or post-treatment.

Test–retest reliability is a critical aspect of measurement theory. Examples from 
biology highlight the issues. Blood pressure has inherently poor test–retest reliabil-
ity and as a consequence multiple measurements are required, taken over a period of 
time. Patients’ height has potentially good reliability provided staff are trained to fol-
low precise procedures to make the patients stand stretched and fully erect. Patients’ 
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Figure 4.1  Sample size for two-observation ICCs, such as test-retest studies. The plot shows the 
effect of sample size on the average distance to the lower limit of an (asymmetric) two-sided 95% 
confidence interval. For example, with 80 patients on average the 95% CI for an ICC of 0.8 will have 
a lower limit of slightly above 0.7 (distance slightly less than 0.1).
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weight has, for most applications, adequate reliability provided suitably sensitive, cali-
brated weighing scales are used so as to avoid measurement error.

Relative comparisons are straightforward. If two instruments address the same con-
struct then, provided all else is equal, the one exhibiting the better test–retest reliability 
is the one to be preferred. More difficult is the interpretation of absolute values. The 
range of acceptable values for test–retest reliability will depend upon the use to which 
the QoL instrument will be put.

Although test–retest reliability is arguably the most important form of reliability 
for QoL instruments, usually the ICC values will follow obvious patterns. Symptoms 
and physical outcomes are likely to be highly consistent, and it is usually predictable 
that reliability will be found to be highly satisfactory; rarely do developers of instru-
ments report surprising results. The more subjective items will generally show lower 
reliability. Another factor is the target population. Instruments being developed for 
assessing the very young or the very elderly may present particular problems in attain-
ing adequate reliability. The evaluation of patients with cognitive limitations, such as 
Alzheimer’s disease, is especially challenging. Lack of test–retest reliability can be a 
simple indication of measurement difficulties arising either from the items or scales 
under investigation, or from the nature of the target population.

In particular situations, poor test–retest reliability may indicate a problem with the 
construct definition. For example, consider the assessment of current pain. If the pain 
scores exhibit poor reliability it could be indicative of intermittent pain, in which case 
more appropriate alternatives are ‘pain on average’, or ‘worst pain over a period of time’.

Inter-rater reliability

Inter-rater reliability concerns the agreement between two raters. However, for QoL 
purposes we are principally interested in the patient’s self-assessment. Many studies 
have shown that observers such as healthcare staff and patients’ relatives make very 
different assessments from the patients themselves. Therefore, for validation of a self-
administered QoL instrument, inter-rater reliability is usually of lesser concern than 
test–retest reliability.

When instruments are to be interviewer-administered, inter-rater reliability becomes 
critical. Although studies can assess inter-rater reliability using ICCs, frequently anal-
ysis of variance is used to explore the components of rater-to-rater variability and, for 
example, the impact of the rater’s training and experience.

Since the patients are usually regarded as the best assessor of themselves, there may 
be interest in determining whether observers are able to predict the patients’ scores. 
This is particularly important when deciding whether to use proxies to assess QoL in 
patients who are unwilling, too ill, too young or unable to complete questionnaires. In 
this situation, absolute agreement between patient and proxy is not the issue of interest. 
Instead, one is usually more interested in prediction or estimation, using techniques 
such as regression analysis and regarding the patient’s self-assessment as the criterion 
(Section 4.3 discusses other aspects of criterion validity). For these studies it may be 
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necessary to restrict recruitment to patients who have good cognitive functioning, and 
the implication is that it is hoped that the results so obtained are equally applicable to 
lower-functioning subjects. If the proxy is a spouse or partner, there is by definition 
only a single possible assessor. However, when there are multiple potential observers 
(such as clinical staff), inter-rater reliability is again crucial.

More complex designs are possible. For example, a study of the inter-rater reliabil-
ity of proxies for patients with Alzheimer’s disease might enrol one or more experts to 
provide a criterion rating, and use analysis of variance to compare the expert ratings 
against the scores from inexperienced nursing staff.

Example from the literature

Huntington’s disease (HD) is a fatal, neurodegenerative disease for which there 
is no known cure. Proxy evaluation is sometimes necessary as HD can limit 
the ability of persons to report their HRQoL. Hocaoglu et al. (2012) explored 
patient–proxy ratings of persons at various stages of HD, and examined factors 
that may affect proxy ratings. A total of 105 patient–proxy pairs completed the 
Huntington’s disease health-related quality of life questionnaire (HDQoL). Table 
4.13 shows the patient-proxy ICC values and 95% CIs for the total sample and 
divided by HD severity grades.

The authors specified the type of ICC that they used: “Intraclass correla-
tion coefficients with a one-way random effects model and their respective 
confidence intervals were calculated to quantify correlation between self and 
proxy scores”.

Table 4.13  Agreement between proxy assessment and patient self-rating using the 
HDQoL disease-specific Huntington’s disease health-related quality of life questionnaire on  
105 patients

Whole sample  
(N = 105)

Early HD  
(N = 36)

Moderate HD  
(N = 18)

Advanced HD 
(N = 50)

HDQoL ICC (95% CI) ICC (95% CI) ICC (95% CI) ICC (95% CI)

Specific scales

Cognitive 0.79 (0.71–0.85) 0.78 (0.61–0.88) −0.03 (−0.47–0.42) 0.61 (0.40–0.76)

Hopes and worries 0.74 (0.63–0.81) 0.83 (0.69–0.91)   0.49   (0.05–0.77) 0.77 (0.63–0.86)

Services 0.71 (0.60–0.79) 0.76 (0.58–0.87)   0.48   (0.04–0.76) 0.74 (0.59–0.85)

Physical and 
functional

0.88 (0.84–0.92) 0.87 (0.77–0.93)   0.24 (−0.23–0.63) 0.81 (0.69–0.89)

Mood state 0.73 (0.63–0.81) 0.56 (0.29–0.75)   0.46   (0.02–0.76) 0.76 (0.61–0.85)

Self and vitality 0.75 (0.65–0.82) 0.63 (0.39–0.79)   0.65 (−0.28–0.85) 0.59 (0.37–0.74)

Summary scale 0.85 (0.79–0.90) 0.81 (0.65–0.90)   0.37 (−0.09–0.70) 0.81 (0.69–0.89)

HD, Huntington’s disease; ICC, intraclass correlation coefficient; CI, confidence interval; 
HDQoL, Huntington’s disease health-related quality of life questionnaire.
Source: Hocaoglu et al., 2012, Table 3. CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
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Example from the literature
Gorecki et al. (2013) developed the PU-QOL instrument for assessing PROs for 
patients with pressure ulcers, and as part of the validation carried out an inter-
national field test on 229 patients with pressure ulcers. The sample size cal-
culations were based on having sufficient participants to estimate test-retest 
reliability correlations at levels expected in test-retest situations (e.g. r ≥ 0.80) 
with reasonable precision (95% CI width of 0.2). Table 4.14 shows the test–
retest ICCs and the internal consistency.

The authors followed current practice (Kottner et al., 2011) in specifying the 
types of ICC used – both ICCAgreement and ICCConsistency. They also provided Pearson’s 
correlations. As is frequently the case, these three measures were closely similar 
to each other.

Equivalent-forms reliability

Equivalent-forms reliability concerns the agreement between scores when using two 
or more instruments that are designed to measure the same attribute. For example, in 
principle a new QoL instrument could be compared against a well-established one 
or against a lengthier one. However, as with inter-rater reliability, agreement is often 
of lesser concern than is prediction; one of the instruments is usually regarded as the 
standard against which the other is being assessed, and linear regression analysis is 
more informative than a simple measure of agreement. It is less common to have two 

It can be seen in Table 4.13 that for the whole sample the 95% CI is reason-
ably narrow, especially when the ICC is high – for example, when ICC = 0.88 the 
CI is (0.84–0.92), a width of 0.08; the CI is much wider when the ICC is 0.71. 
However, there are only 18 patients classified as having moderate levels of HD, 
and the CIs are then so wide that the results are uninterpretable.

Hocaoglu et al. noted that in both the early and advanced groups the objec-
tive, observable scale Physical and Functional produced the highest ICC values, 
as previously observed by other investigators. Even the more subjective scales 
such as Hopes and Worries or Mood State yielded ‘substantial’ ICCs. It was sug-
gested that this may reflect the fact that proxies were long-term companions 
or close family members who typically show better agreement than unrelated 
healthcare providers. It was concluded that the HDQoL showed good patient–
proxy agreement, not only with early HD patients who could validly assess their 
own HRQoL, but also with Advanced HD patients who usually have physical or 
cognitive barriers to self-reporting.
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instruments that are believed to be equivalent to each other in QoL research than in 
areas such as education, where examination questionnaires often aim to use differ-
ent, but equivalent, test items. When appropriate, the same methods as for test–retest 
reliability may be used. Ways of analysing method comparison studies are discussed 
by Bland and Altman (1986).

4.7  Sensitivity and responsiveness

Two closely related properties to repeatability are sensitivity and responsiveness. 
Sensitivity is the ability to detect differences between groups, for example between 
two treatment groups in a randomised clinical trial or between groups of patients 
with mild disease and those with more severe disease. Responsiveness is the abil-
ity of a scale to detect changes. An instrument should not only be reliable, yield-
ing reproducible results when a patient’s condition is stable and unchanged, but 
in addition it should respond to relevant changes in a patient’s condition. If dis-
ease progression causes deterioration in a patient’s overall QoL, we would expect 
the measurements from a QoL instrument to respond accordingly. In addition, 
the measurement instrument should be sufficiently responsive to detect relevant 

Table 4.14  Test–retest intraclass correlations and internal consistency of the PU-QOL 
instrument for patients with pressure ulcers, tested on 229 patients

Internal consistency Test–retest reproducibility

Scale (no. of items) Cronbach’s alpha ICC consistency ICC absolute Correlationa

Pain (8) 0.89 0.80 0.81 0.80

Exudate (8) 0.91 0.62 0.63 0.62

Odour (6) 0.97 0.68 0.68 0.70

Sleep (6) 0.92 0.82 0.82 0.82

Vitality (6) 0.90 0.74 0.74 0.74

Movement/Mobility (9) 0.93 0.87 0.86 0.88

ADL (8) 0.95 0.87 0.87 0.87

Emotional  
well-being (15)

0.94 0.83 0.82 0.83

Appearance &  
self-consciousness (7)

0.89 0.81 0.81 0.81

Participation (9) 0.93 0.63 0.64 0.63

aPearson correlation.
Source: Gorecki et al., 2013, Table 5. CC BY 2.0 (http://creativecommons.org/licenses/by/2.0).

http://creativecommons.org/licenses/by/2.0


118	 Scores and measurements: validity, reliability, sensitivity

changes when the condition of the patient is known to have altered. Similarly, if two 
groups of patients differ in their QoL, an instrument should be sufficiently sensitive 
to detect that change.

Both sensitivity and responsiveness are crucially important for any measurement, 
and a QoL instrument that lacks these properties will be less able to detect important 
changes in patients. Depending upon the intended application, sometimes one property 
is more important than the other. An evaluative QoL instrument intended for monitor-
ing patients should be responsive to changes. A discriminative instrument aimed at 
diagnosing individual patients will have to be more sensitive than one that is intended 
for detecting differences between groups of patients in clinical trials. However, if a 
QoL measurement can be shown to be sensitive to specific changes, it is presumably 
also responsive to the condition causing those changes.

Sensitivity can be assessed by cross-sectional studies, but responsiveness is evalu-
ated by longitudinal assessment of patients in whom a change is expected to occur. 
Disease-specific scales, being more focused and tailored towards problems of par-
ticular importance to the target group of patients, are generally more responsive than 
generic health status measures.

The most widely used measures of sensitivity and responsiveness are the standard-
ised response mean (SRM) and the effect size (ES), which are also used for indicating 
clinical significance. Briefly, the SRM is the ratio of the mean change to the SD of that 
change, and the ES is the ratio of the mean change to the SD of the initial measurement 
(Table 4.15). Thus ES ignores the variation in the change, while SRM is more similar to 
the paired t-test (except that the t-test uses the standard error, SE, rather than the SD). 
The SRM is more frequently used than ES.

Table 4.15  Summary of measures of sensitivity and responsiveness, for two measurements x1 and 
x2 with corresponding means x x1 2, 

Measure Equation Denominator

Effect size (ES) x x SD x2 1 1−( ) ( ) SD of baseline (x1)

Standardised response mean 
(SRM)

( )− −x x SD x x( )2 1 2 1 SD of change

Paired t-statistic (tPaired) x x SE x x2 1 2 1−( ) −( )   SE of change

Responsiveness statistic x x SD x x( )
Changed Stable2 1 2 1( )− − SD of change, in stable 

patients

Relative change x x x2 1 1−( )   Mean at baseline

Relative efficiency, RE of two 
scales (Relative validity, RV )

Ratio of the squares of the tPaired statistics 
for the two scales = ratio of the two SRM 
statistics
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Another approach is to argue that the most sensitive scale is the one most likely to 
result in statistically significant differences between groups of patients, and thus the 
scale with the largest t-statistic is the most sensitive. Therefore, when comparing two 
scales or items, the ratio of the two t-statistics could be a suitable measure. However, 
in practice, squared t-statistics are more often used when calculating the ratios, giving 
the widely used measure that is called relative efficiency (RE) or relative validity (RV). 
When comparing more than two scales, it is recommended to use the largest of the 
squared t-statistics as the denominator when calculating the ratios, resulting in all coef-
ficients being between 0 (weakest) and 1 (strongest), as illustrated in Table 4.16 (where 
RE is based on the ratio of two F-statistics, as described below). This amounts to defin-
ing the most sensitive scale as the baseline. Some papers use the smallest value for the 
denominator, but it should be noted that this value will be unstable if it is small (or 
if the t-statistic used in the denominator is not significant); this uncertainty is readily 
shown by wide confidence intervals, which will be asymmetric and are most easily 
calculated using the ‘bootstrap’ methods that are available in many statistical packages 
(Deng et al., 2013).

All of the above methods are based upon means and SDs, with an implicit assump-
tion that the data follow a Normal distribution. Many QoL scales have a non-Normal 
distribution, in which case medians and interquartile ranges may replace means and 
SDs. Unfortunately, little work has been carried out into this subject. It should also 
be noted that some scales are not only non-Normal but may also suffer from ceiling 
effects, in which a large number of patients place responses in the maximum category. 
This can compromise sensitivity and responsiveness.

Although Table 4.15 summarises the principal measures that may be encountered 
in the literature, there is controversy as to which is the best measure to use and a 
number of other alternatives have been proposed. As Wright and Young (1997) con-
clude when comparing five indices for their ability to rank responsiveness of differ-
ent instruments: ‘Given that the indices provide different rank ordering, the preferred 
index is unclear.’

When there are more than two groups or more than two measurements only the RE 
can be readily generalised. Just as the t-test is replaced by an F-test in ANOVA when 
comparing more than two means, so we can base the RE upon the ratio of two F-sta-
tistics when there are more than two groups. In the case of two groups, the F-statistic 
is identical to the squared t-statistic, and so these approaches are consistent with one 
another.

Sensitivity

Sensitivity is one of the most important attributes of an instrument. The usefulness 
of a measure is dependent upon its ability to detect clinically relevant differences. In 
clinical trials, therefore, sensitivity should be sufficient to detect differences of the 
order of magnitude that might occur between the treatment groups. The level of sen-
sitivity that is adequate depends upon the intended application of the instrument. An  
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instrument should be capable of distinguishing the differences of interest, using real-
istically sized study groups. The more sensitive an instrument, the smaller the sample 
size that is necessary to detect relevant differences.

Usually, but by no means always, sensitive measurements will be reliable. This 
follows because reliability is usually a prerequisite for sensitivity. An unreliable meas-
urement is one that has large background noise, and this will obscure the detection 
of any group differences that may be present. The converse need not apply: reliable 
measurements may lack sensitivity. For example, responses to the four-point single 
item ‘Do you have pain? (None, a little, quite a bit, very much)’ may be highly reliable 
in the sense that repeated responses by stable patients are very consistent. However, 
such a question may be unable to detect small yet clinically important differences 
in pain levels unless there are large numbers of patients in each treatment group. To 
take an extreme situation, all patients in both groups could respond ‘quite a bit’, with 
100% reliability, and yet the patients in one group might have more pain than the other 
group. The pain scale would have zero sensitivity but perfect reliability. This example 
also serves to illustrate that floor and ceiling effects may be crucial. If most patients 
have very poor QoL and respond with the maximum, or ‘ceiling’ value, or with the 
minimum, or ‘floor’ value, the scale will not be sensitive and will not be capable of 
discriminating between different treatment groups.

Sensitivity is usually assessed by cross-sectional comparison of groups of patients 
in which there are expected to be QoL differences. Thus it is in practice closely related 
to known-groups validity. The main distinction is that with known-groups validity we 
are concerned with confirming that anticipated differences are present between groups 
of patients. Sensitivity analyses, on the other hand, aim to show that a reasonable-
sized sample will suffice for the detection of differences of the magnitude that may 
exist between treatments (or other subdivisions of interest), and which are clinically 
relevant.

If the anticipated effects can be detected by a statistical significance test on the 
resulting data, this is often taken to be an indication of adequate sensitivity. However, 
it should be noted that statistical significance of group differences is also influenced 
by the selection of the patient sample. For example, a validation study might select a 
group of very ill patients to compare against patients who are disease-free. Then we 
know that there are undoubtedly group differences in QoL, and a significance test is of 
little practical interest. If the differences are large enough, a p-value of less than 0.0001 
merely indicates that the sample size is also large enough to reject the possibility that 
the difference is zero. A sensitive instrument should be able to detect small differences, 
in modest-sized studies.

On the one hand, we want to be confident that the groups in the sensitivity study 
really do differ but, on the other hand, we do not want to select groups that are known 
to have unusually large differences. For this reason, sensitivity studies that evaluate a 
new instrument should report a variety of comparisons, covering a range of situations 
that are typical of the areas of intended future application of the instrument.

It is perhaps easier to interpret the measures of sensitivity (and responsiveness) 
in terms of relative rather than absolute values. Different scales or instruments can 
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Example from the literature

Deng et al. (2013) compare the SF-12, a generic instrument, against two  
disease-specific instruments for chronic kidney disease (CKD), the QDIS-CKD 
quality-of-life disease impact scale for chronic kidney disease and the KDQOL 
kidney disease quality-of-life questionnaire. Table 4.16 shows the mean scores 
for 453 patients with chronic kidney disease, divided according to dialysis, pre-
dialysis stage 3–5 and transplant. ANOVA was used, obtaining the F-ratios and 
RE values that are shown. The QDIS-CKD CAT-5 scale is chosen as the reference 
measure because it has the largest F-statistic, and the RE values are calculated 
using this as the denominator. As might be anticipated, PROs from the disease-
specific instruments had the highest RE values.

Table 4.16  Sensitivity of PRO measures from two disease-specific instruments and  
the SF-12, for 453 patients with chronic kidney disease (CKD): mean scores, ANOVA 
F-statistics and RE

PRO measure
Dialysis

Pre-dialysis, 
stage 3–5 Transplant

F-statistic RE 95% CIa(N = 206) (N = 113) (N = 134)

CKD-specific

QDIS-CKD
CAT-5
(Reference group)

39.83 16.19 19.25 57.43** 1 —

Static-6 39.18 16.86 19.60 50.15** 0.87 (0.72–1.03)
Static-34 35.93 14.90 18.71 48.01** 0.84 (0.71–0.97)

KDQOL
Burden 48.83 76.62 68.21 44.46** 0.77 (0.53–1.09)
Symptoms 71.95 80.58 80.03 15.11** 0.26 (0.13–0.44)
Effects 63.41 84.38 77.86 43.95** 0.77 (0.52–1.10)

Generic
SF-12

PF 37.06 45.38 44.88 31.12** 0.54 (0.32–0.85)
RP 38.00 45.12 45.83 34.12** 0.59 (0.38–0.89)
BP 43.19 46.71 47.10   5.84** 0.10 (0.02–0.22)
GH 39.08 41.99 43.71   7.79** 0.14 (0.04–0.28)
VT 45.72 46.40 48.35   3.04* 0.05 (0.00–0.15)
SF 42.75 47.81 47.83 11.02** 0.19 (0.07–0.34)
RE 44.59 48.39 48.39   7.01** 0.12 (0.03–0.25)
PCS 36.60 43.49 44.08 26.61** 0.46 (0.27–0.74)
MCSb 49.74 50.42 50.55   0.32 — —
MHb 49.85 50.71 50.31   0.26 — —

*Significant at the 0.05 level; **Significant at the 0.01 level.
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then be compared to determine which is the most sensitive. The RE provides a suit-
able comparative measure. Another advantage of the comparative approach is that it 
largely overcomes the criticism that measures of sensitivity are affected by the choice 
of patient sample and the actual group differences that are present. Thus the magnitude 
of the specific difference no longer matters; the most sensitive of the concurrently 
applied instruments is the one with the largest RE.

Thus we can compare the different instruments or scales, and identify the ones with 
the highest sensitivity. The most sensitive ones will usually be the preferred scales for 
detecting differences between treatments, provided they are also thought to be clini-
cally sensible and providing comprehensive coverage.

Responsiveness

Responsiveness is another important feature that is a requirement for any useful scale. 
It is closely related to sensitivity, but relates to changes within patients. In particular, if 
a patient’s health status changes over time can the instrument detect the changes? An 
instrument may be of limited applicability if it is not responsive to individual-patient 
changes over time. Responsiveness can also be regarded as providing additional evi-
dence of validity of an instrument, since it confirms that the anticipated responses occur 
when the patient’s status changes. A highly sensitive scale will usually also be highly 
responsive. An unreliable measurement (low test–retest ICC) will not be very responsive.

If the repeated measurements are highly correlated, as is frequently the case when 
assessing responsiveness, ES will be smaller than SRM. The SRM, on the other hand, is 
efficient for detecting change, which is why it is more closely related to the t-statistic 
and ANOVA. In line with most authors, we recommend using SRM in preference to ES 
when assessing responsiveness.

ANOVA, analysis of variance; RE, relative efficiency; CKD, chronic kidney disease; QDIS-CKD, quality-of-
life disease impact scale for chronic kidney disease; KDQOL, kidney disease quality-of-life; SF-12, Short 
Form 12; PF, physical functioning; RP, role physical; BP, bodily pain; GH, general health; VT, vitality; 
SF, social functioning; RE, role emotional; PCS, physical component summary; MCS, mental component 
summary; MH, mental health.
aThe 95% confidence interval of the RE was derived from the original data using the bootstrap BCa 
method.
bThe F-statistics for SF-12 MCS and MH are small and non-significant (p-values of 0.73 and 0.77  
separately), therefore their REs were not computed and are excluded from significance test.
Source: Deng et al., 2013, Table 1. CC BY 2.0 (http://creativecommons.org/licenses/by/2.0).

The authors describe the calculation of confidence intervals from com-
puter-intensive ‘bootstrap’ simulations, and comment that they “suspect that 
most studies, without constructing a confidence interval for the RE estimate, 
over-interpreted the observed differences in the REs with small-denominator  
F-statistics”.

http://creativecommons.org/licenses/by/2.0
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Sample size will in part depend on the degree of change that occurs. If a patient 
goes from a very severe state of poor health and high symptomatology to a complete 
cure, a small sample will suffice to detect this; if the changes are more subtle, a 
larger sample will be necessary. Many PRO instruments are developed for applica-
tion in clinical trials, and it is common for responsiveness studies to evaluate change 
scores comparing on-treatment to off-treatment assessments. Stable estimates of 
responsiveness over two time points requires a sample size of at least 50 (King and 
Dobson, 2000).

Example from the literature

Homma et al. (2011) compared the responsiveness of the Overactive Bladder 
Symptom Score (OABSS) and a bladder diary when assessing symptoms of over-
active bladder (OAB) in 79 Japanese patients. Patients were assessed before 
treatment (baseline) and at 12 weeks, after treatment with an antimuscarinic 
agent (Table 4.17). All changes from baseline were statistically significant with 
p-values uniformly < 0.001, and so the p-values do not aid identification of 
the most responsive items. Instead, the authors appropriately provide the ES 
and SRM values, and the most responsive OABSS items are ‘urgency’ and ‘total 
score’. All of the ESs for the OABSS, except daytime frequency, were larger than 
those of the corresponding diary variables. Daytime frequency had almost the 
same values between the assessment tools (0.64 for the bladder diary and 0.60 
for the OABSS). The authors’ concluded that “OABSS can be an alternative to 
a bladder diary for symptom and efficacy assessment in daily clinical practice”.

Table 4.17  Responsiveness of the Overactive Bladder Symptom Score (OABSS) instrument 
and a bladder diary, in 79 patients with overactive bladders

Assessment Item Baseline 12 Weeks Change p-value ES SRM

OABSS (score)
Daytime frequency     1.0 (0.5)     0.7 (0.5)   0.3 (0.6) <0.001 0.60 0.50
Night-time frequency     2.2 (0.8)     1.8 (0.9)   0.4 (0.7) <0.001 0.50 0.57
Urgency     3.4 (1.0)     1.4 (1.3)   2.0 (1.3) <0.001 2.00 1.54
Urgency incontinence     1.9 (1.6)     0.6 (1.0)   1.3 (1.4) <0.001 0.81 0.92
Total score     8.5 (2.6)     4.5 (2.6)   4.0 (2.6) <0.001 1.54 1.57

Bladder diary (episode per day)
Daytime frequency     9.0 (2.8)     7.2 (1.9)   1.8 (2.3) <0.001 0.64 0.78
Night-time frequency     2.2 (1.4)     1.7 (1.1)   0.5 (1.0) <0.001 0.36 0.50
Urgency     2.7 (2.4)     0.6 (0.9)   2.2 (2.2) <0.001 0.92 1.00
Urgency incontinence     1.1 (1.8)     0.2 (0.7)   0.9 (1.6) <0.001 0.50 0.56
Mean voided volume (mL) 155.1 (62.8) 184.4 (84.9) 29.1 (52.0) <0.001 0.46 0.56

Values are mean (standard deviation). p-values were derived by Wilcoxon’s signed-rank sum test.
Source: Homma et al., 2011. Reproduced with permission of Elsevier.
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4.8  Conclusions

This chapter has shown a variety of methods for examining the validity of measure-
ment scores, to confirm that the scores appear to be consistent with their intended 
purpose. We also examined the assessment of the repeatability reliability, to ensure 
that the measurements appear to give consistent and repeatable results when applied to 
patients who are believed to be in a stable state. Finally, we showed ways of establish-
ing that the scores are sufficiently sensitive or responsive to be able to detect differ-
ences between treatments or patients.

Sensitivity and responsiveness are amongst the most important attributes of a scale, 
because a non-sensitive scale is of little use for most practical applications. Further-
more, if a scale possesses face validity and is sensitive to the anticipated changes, it 
is likely to be measuring either the intended construct or something closely similar. 
However, a counter argument is that since many aspects of QoL are inter-correlated, 
sensitivity alone is not sufficient as confirmation of construct validity. If one dimension 
of QoL shows high sensitivity, it is likely that other scales correlated with this dimen-
sion will also show at least some degree of apparent sensitivity. Therefore, it is also 
important to consider other aspects of construct validity.

4.9  Further reading

There are many variations of the ICC, often – but not always – resulting in broadly 
similar values for the estimated coefficients. A distinction can be made between ICC 
for agreement or for consistency. It can also be shown that there are links between 
ICC and standard error of measurement, both being derived from analysis of vari-
ance. A taxonomy of six variants is provided by Shrout and Fleiss (1979), extended 
to 10 by McGraw and Wong (1996), and further reviewed by Weir (2005). Kottner et 
al. (2011) offer guidelines for reporting of ICC, reliability and agreement. Similarly, 
many interpretations of responsiveness (and sensitivity) exist, as described by Terwee 
et al. (2003) and Husted et al. (2000).

Kraemer et al. (2002) provide a useful review of the use and abuse of κ-coefficients, 
and discuss applications of the various versions.
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5
Multi‐item scales

Summary

In this chapter, we consider methods that are specific to multi‐item scales. We examine 
ways of exploring relationships amongst the constituent items of a multi‐item scale, 
and between the individual items and the scale to which they are hypothesised as 
belonging to. Most of these methods rely upon the examination of correlations. Do 
the items in a multi‐item scale correlate strongly with each other? Do they correlate 
weakly with items from other scales? Do items correlate with the score of their own 
scale? Cronbach’s α, multitrait‐scaling analysis and factor analysis are three of the 
most frequently used methods for exploring these correlations.

5.1  Introduction

Many instruments contain one or more multi‐item scales. For example, the HADS was 
designed with the intention that there would be anxiety and depression scales. Sum-
mary scores can be calculated for both scales. One of the reasons for using multiple 
items in a scale is that the reliability of the scale score should be higher than for a sin-
gle item. For example, each of the seven items for anxiety in the HADS is assumed to 
reflect the same overall ‘true’ anxiety score. Thus although individual measurements 
are imprecise and subject to random fluctuations, an average of several measurements 
should provide a more reliable estimate with smaller random variability. Therefore, 
each item in a multi‐item scale should contribute to an increase in reliability – but does 
it? We describe methods of assessing internal consistency, or reliability for multi‐item 
scales. There is also the related assumption that the items in a scale reflect a single 
latent variable. We discuss how this unidimensionality can be examined.

Other aspects of validation can be explored when there are several multi‐item scales 
in an instrument. The investigator should have a hypothetical model in mind when 
developing such instruments, and should be aware of the plausible relationships between 
the constructs and the items comprising them. Usually, items within any one scale should 
be highly correlated with each other (convergent validity), but only weakly correlated 
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with items from other scales (discriminant validity). These principles, which are part of 
construct validity as discussed in Section 4.4, apply also to items within a scale.

One important reason for constructing multi‐item scales, as opposed to single‐item 
measurements, is that the nature of the multiple items permits us to validate the con-
sistency of the scales. For example, if all the items that belong to one multi‐item scale 
are expected to be correlated and behave in a similar manner to each other, rogue items 
that do not reflect the investigator’s intended construct can be detected. With single 
items, validation possibilities are far more restricted.

The methods of this chapter rely heavily upon the analysis of item‐to‐item correla-
tions, and thus apply to Likert and other scales for which the theory of parallel tests 
applies. Clinimetric and formative scales containing causal variables follow different 
rules. These scales are discussed at the end of this chapter.

5.2  Significance tests

In statistical analyses we are frequently estimating values such as the mean value for 
a group of patients, the mean difference between two groups, or the degree of correla-
tion (association) between two measurements. These estimates are invariably based upon 
patients in a study – that is, patients in a sample – and so the measurements observed and 
the estimated values calculated from them will vary from study to study. We might, for 
example, have carried out a randomised clinical trial (RCT) to compare two treatments, 
and wish to determine whether the observed difference in response rates is large enough 
for us to conclude that there is definitely a treatment effect. The problem is, of course, that 
if another investigator replicates the study they are bound to obtain somewhat different 
values for the treatment response rates since they will be dealing with a different sample 
of patients. Consequently, they may well obtain a very different value for the mean differ-
ence. Thus, if we have observed a fairly small difference in our study, there would not be 
very strong weight of evidence for claiming that we have definitely demonstrated that the 
treatments differ; it is quite possible that future trials could show that our findings were 
due to chance and not a treatment effect at all. The role of a statistical significance test is 
to quantify the weight of evidence, and we do so by calculating the probability that we 
could have observed at least as large a difference as that in our study purely by chance.

One problem is that even if the two treatments have identical clinical effect, we may 
well observe an apparent difference in our particular sample of patients. Furthermore, 
it is impossible to prove statistically that two treatments do have an identical effect; 
there is always a possibility that if measurements are taken more precisely, or if a 
larger number of patients are recruited, a difference (possibly very small) will eventu-
ally be detected. Hence it is convenient to start by assuming a null hypothesis of ‘no 
difference’ between the treatments, and we assess the observed data to decide whether 
there is sufficient evidence to reject the null hypothesis. If there is not, we continue to 
accept the null hypothesis as still remaining plausible. This procedure is in fact very 
similar to international law: we assume innocence (null hypothesis) unless there is suf-
ficient weight of evidence to ascribe guilt (rejection of the null hypothesis).
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The formal method that we use to weigh the evidence is a statistical significance 
test. This calculates the probability, or p‐value, that we could have observed such 
extreme results even if the null hypothesis were true. If the p‐value is very small, we 
conclude that there is very little chance of having obtained such extreme results simply 
because of patient‐to‐patient variability, and thus we would reject the null hypothesis 
as being fairly implausible. In practice, most investigators take a p‐value of 0.05 or less 
(that is, a chance of 5 in 100, or 5%) as implying that the results are unlikely to be due 
to chance, and therefore reject the null hypothesis. A p‐value less than 0.01 (that is, 1 in 
100 or 1%) indicates far more convincing evidence, and many would regard p < 0.001 
as fairly conclusive evidence. However, it is important to recognise that out of all the 
many studies published each year where investigators claim ‘significant difference, 
p < 0.05’, about 5% of publications will have reached this conclusion despite there 
being no treatment effect. This is because a p‐value < 0.05 simply means that roughly 
5% of studies might have observed such extreme data purely by chance.

Standard statistical books such as Campbell et al. (2007) or Altman (1991) provide 
extensive details of significance testing, and show how to calculate p‐values for a vari-
ety of situations. Briefly, many tests take the form of

	 z
SE

= Estimate

Estimate( )
, 	 (5.1)

where ‘Estimate’ is, for example, the mean difference between treatments. SE is the 
standard error, or variability of the ‘Estimate’, that arises from the patient‐to‐patient 
variations. For many situations the calculated statistic, z, can be shown to be of one of 
the forms tabulated in the Appendix Tables T1 to T5. The most common of these is the 
Normal distribution (Tables T1 and T2), and from Table T1 we see that a value of 1.96 
corresponds to p = 0.05. Thus, if the value of z is greater than 1.96, we could ‘reject the 
null hypothesis with p < 0.05’.

5.3  Correlations

The methods described in this chapter make extensive use of correlations, both item‐
to‐item and item‐to‐scale. For more extensive details about the use and misuse of cor-
relations, readers are referred to Campbell et al. (2007).

Correlation coefficients are a measure of the degree of association between two con-
tinuous variables. The most common form of correlation is called Pearson’s r, or the 
product‐moment correlation coefficient. If there are n observations with two variables 
xi and yi (where i ranges from 1 to n),
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where x yand  are the mean values of x and y. The equation is symmetric, and so it 
does not matter which variable is x and which y. Pearson’s r measures the scatter of 
the observations around a straight line representing trend; the greater the scatter, the 
lower the correlation.

The values of r lie between –1 and +1. For uncorrelated points r = 0, indicating no 
association between x and y. A value of r = +1 indicates perfect correlation with all 
points lying on a straight line from bottom left to top right, that is, positive slope. Simi-
larly, r = –1 for points on a straight line with negative slope.

Range of variables

Many validation studies aim to include a heterogeneous group of patients with a variety 
of disease states and stages. However, correlations are greatly affected by the range of the 
variables. A homogeneous group of patients will have similar symptomatology to each 
other, and the ranges of their scores for PRO items and scales may be less than those from 
a more heterogeneous group. Consequently, item correlations for a homogeneous group 
of patients will usually be much less than for a more heterogeneous group. Thus increas-
ing sample heterogeneity is an easy way to ‘buy’ higher correlations, but does not imply 
that the questions on the instrument are in any way more highly valid. Because of this, 
claims of high validity based upon correlations can be misleading, and may reflect merely 
sample heterogeneity; it is difficult to know what interpretation to place on the magnitude 
of the correlations. For instrument validation purposes, it is often easier to compare and 
contrast the relative magnitude of various correlations from within a single study than to 
interpret the absolute magnitude of correlations. Thus we emphasise such comparisons 
as whether an item correlates more highly with its own scale than with other scales. It 
remains appropriate to seek heterogeneous samples of patients for these comparisons.

Significance tests

The null hypothesis of no association between x and y implies that there is truly zero 
correlation (r = 0) between them. The significance test compares the quantity

	 z
r

r n
=

− −( ) ( )1 22 /
	 (5.3)

against a t‐distribution with n – 2 degrees of freedom (df).
In many contexts we know, a priori, that two variables are correlated. In such a 

situation it is of little practical interest to test a null hypothesis of r = 0, since that 
hypothesis is already known to be implausible. If a significance test is carried out and 
the result obtained happens to be ‘not significant’, all we can say is that the sample size 
was too small. Conversely, if the sample size is adequate, the correlation coefficient 
will always differ significantly from zero. Thus a significance test for r = 0 should be 
carried out only when it is sensible to test whether r does indeed differ from zero.
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Confidence intervals

Instead of significance tests, it is usually far more informative to estimate the confi-
dence interval (CI). Although r itself does not have a Normal distribution, there is a 
simple transformation that can convert r to a variable Z that does. Writing loge for the 
logarithmic function, this transformation is

	 Z
r

re= +
−





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1

2

1

1
log . 	 (5.4)

Furthermore, it can be shown that, for a sample size of n, the standard error of Z is 
given by

	 SE Z
n
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−
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3
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These equations assume that n is reasonably large – in practice, more than 50 
observations.

Example

One correlation given by Silveira et al. (2010) and illustrated in Table 4.6 is 
r = 0.63 for the association between emotional functioning (QLQ‐C30) and emo-
tional well‐being (FACT‐G). Their sample size was n = 102 and so
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The CI for Z is

Z 0.7414 (1.96 0.1005) 0.5444,tolower = − × =

Zupper = + × =0 7414 1 96 0 1005 0 9384. ( . . ) . .

Therefore the 95% CI for r itself is

r (exp(2 0.5444) 1) / (exp(2 0.5444) 1) 0.50, tolower = × − × + =

r (exp(2 0.9384) 1) / (exp(2 0.9384) 1) 0.73.upper = × − × + =

Hence we would expect that the true value of r is likely to lie between 0.50  
and 0.73.
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A CI for Z can then be calculated as for any data that follow a Normal distribution. 
For example, a 95% CI is

	 Z Z
n

Z
n

1.96
1

3
, to Z 1.96

1
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Finally, Zlower and Zupper can be converted back to obtain the CI for r itself, using

	 r Z Zlower lower lower= × − × +(exp( ) ) /(exp( ) ),2 1 2 1 	 (5.7)

where exp is the exponential function, and with a similar expression for rupper.

Significance test to compare two correlations

We can also use the Z‐transformation and equations (5.4) and (5.5) for an approximate 
comparison of two correlation coefficients (r1 and r2) from two samples each of size n. 
The correlations r1 and r2 are converted to Z1 and Z2, and we calculate the difference of 
Z1 – Z2 (ignore the negative sign if Z2 > Z1). The standard error of this difference Z1 – Z2 is

	 SE Z Z
n
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The difference Z1 – Z2 would be statistically significant (p < 0.05) if

	 z
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Example

In the PROMIS CAT example of Table 4.7, the PROMIS pain behaviour correlates 
reasonably well with SF‐36 bodily pain (r = 0.66), and slightly less well with 
FACIT fatigue (r = 0.53). With n = 143, the Z‐scores are
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therefore 0.2027 / 0.1195 1.70.
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This is less than 1.96, and so is not statistically significant at the 5% level. 
Therefore we conclude that the observed difference between the correlations 
(0.66 and 0.53) could be due to chance.
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However, equation (5.9) assumes that r1 and r2 come from independent samples. This 
is clearly not true for the above example, where r1 and r2 are correlations between 
items measured on one sample of patients. This will also usually be the case in exam-
ples from multitrait‐scaling analysis. In this situation, any test based on equation (5.9) 
only provides a very rough guide as to statistical significance. For multitrait‐scaling 
analysis, precise comparisons are unimportant and this approach provides an adequate, 
simple approximation.

Intraclass correlation

Intraclass correlation was discussed in Chapter 4. When, instead of just one, there are 
k assessments for each of the n patients, Fisher (1925) showed that equations (5.4) and 
(5.5) can be extended to give

	 Z
k r

re= + −
−







1

2

1 1

1
log

( )
, 	 (5.10)

with standard error

	 SE Z
k
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In the particular case of two observations (k = 2) per subject, as commonly collected 
in a test–retest study, Fisher recommended modifying the standard error:
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The CIs can then be calculated using the methods of equations (5.6) and (5.7). Don-
ner and Zou (2002) describe more powerful (and more complex) methods.

Rank correlation

The significance tests and CIs associated with Pearson’s r require that at least one of 
the variables for the observations in the sample follow a Normal distribution. However, 
QoL and PRO items are frequently measured as categorical variables, often with a 
four‐ or five‐point scale, and these will not have a Normal distribution form. Depend-
ing upon the nature of the sample, there may also be many individuals with extreme 
scores. For example, patients with advanced disease may have uniformly high symp-
tomatology, implying asymmetrically distributed ordered categories. In these circum-
stances Spearman’s rank correlation, rSpearman, is preferable.
To calculate rSpearman the values of the two variables are each ranked in order, and then 
the calculation of equation (5.2) is performed using the values of the ranks in place of 
the original data. The distribution of rSpearman is similar to that of rPearson, and so the 
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same methods can be utilised for confidence intervals and a test of whether two cor-
relations differ significantly from one another. Svensson (2012) provides an example 
rSpearman and other ranking methods for exploring agreement and disagreement. For 
CIs and significance testing, Fieller et al. (1957) showed that Fisher’s Z‐transformation 

applies but with = ( )−SE Z( ) n
1.060

3  replacing equation (5.5).

Example from the literature

The validity and reliability of the Pediatric Cardiac Quality of Life Inventory 
(PCQLI) was evaluated in a multicentre study that recruited paediatric patients 
(8–18 years of age) with heart disease (HD) and their parents to complete the 
PCQLI and other PRO instruments (Marino et al., 2010). The PCQLI generates 
three scores: disease impact, psychosocial impact and total score. In total, the 
study enrolled 1605 patient‐parent pairs, of which 803 of the patients were 
children (ages 8–12). Spearman correlations were reported for various compari-
sons. For example, child and parent‐of‐child PCQLI scores revealed moderate 
correlations for the three scales: disease impact, 0.55; psychosocial impact, 
0.41; total scores, 0.50 (p <  0.001). In addition, test‐retest correlations of 
these three scales were reported for 291 of the children: 0.82, 0.78 and 0.82; 
equivalent correlations for their parents were slightly higher: 0.87, 0.82 and 
0.86. “Values of ≥0.70 were considered excellent.”

As is customary, the authors reported p‐values, testing the somewhat implausi-
ble null hypotheses that the true correlation is zero. Predictably, given the sample 
size, they rejected these hypotheses: “All Spearman correlation coefficients were 
statistically significant (p < 0.001)”. Confidence intervals would have been more 
informative, as these indicate the uncertainty in the estimated values.

For example, applying the Z‐transformation, the 95% CIs for parent‐child disease 
impact (N = 759) is 0.49–0.60, and for child test–retest (N = 291) it is 0.78–0.86.

Polychoric correlation

The polychoric correlation was also introduced by Pearson as an alternative to rPearson. 
For rPearson, it is assumed that the variables being correlated are from a bivariate normal 
distribution, and are therefore continuous variables. For rPolychoric, the assumption is that 
the observations are ordinal variables with an underlying joint bivariate distribution. For 
example, if two PROs are scored 1–4 for not at all, a little, quite a bit and very much, it 
is reasonable to assume that their discrete categories represent an underlying continuous 
bivariate distribution, even though we only observe a ‘contingency table’ with four‐by‐
four categories. In this situation, rPearson underestimates the true correlation. If there are 
five or more categories, and the variables are roughly symmetric, rPearson is usually fine, 
but when there are only two or three categories or the data show marked asymmetry, 
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rPolychoric may be preferable for use with techniques such as factor analysis or structural 
equation modelling. The calculation of polychoric correlation is complex but is increas-
ingly available as an option in statistical software packages, although it should be noted 
that most implementations assume an underlying bivariate normal distribution.

Correction for overlap

When exploring the correlation structure of the scales, we shall be interested in exam-
ining the relative magnitude of the correlations between the total scale score and each 
of the component items that form the scale. That will, for example, enable us to iden-
tify which items appear to be most consistent with the scale as a whole. However, when 
calculating the correlation between any one item, say x1, and the total score of the scale 
in which the item is contained, a correction for overlap should be made. This is neces-
sary because if the m items in a scale are x1, x2, …, xm, the correlation between, say, 
x1 and the total S = x1 + x2 + … +xm would be inflated since S also includes x1 itself. 
Instead, x1 should be correlated with the sum‐score formed by omitting x1 from the 
scale; that is, x1 correlated with S – x1.

Correcting for overlap is important. It can be shown that if two completely inde-
pendent (i.e. uncorrelated, r  =  0.0), randomly distributed variables from a Normal 
distribution are combined into a single scale, the correlation between either variable 
and the sum‐score is approximately 0.71. However, this apparently high correlation 
is misleading. When the correction for overlap is applied, the ‘corrected’ correlations 
will be approximately zero, confirming that neither of the two variables contributes to 
the scale as defined by the remaining (other) item.

Example

The cognitive functioning scale (CF) of the EORTC QLQ‐C30 comprises the sum 
of two questions, difficulty in concentrating (q20) and difficulty remembering 
things (q25). Although it may make clinical sense to group these into a single 
scale, it is arguable that they represent two different dimensions. In a sample 
of 900 patients, the correlation between q20 and the CF scale score was 0.87, 
while that between q25 and CF was 0.85. Both these correlations appear sat-
isfactorily high. However, correcting for overlap, which amounts to correlating 
q20 with q25 because there are only two variables, the correlation is only 0.46.

5.4  Construct validity

Multi‐item scales open up a whole new range of techniques for construct validity 
beyond those described in Chapter 4. For the main part, we shall be making use of cor-
relations: correlations between items in the same scale, correlations between an item 
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and items in other scales, correlations between a scale score and its constituent items, 
and correlations between items and external scales or other external variables. These 
enable us to check:

	 1.	 Dimensionality: do all items in a subscale relate to a single latent variable, or is 
there evidence that more latent variables are necessary to explain the observed 
variability?

	 2.	 Homogeneity: do all the items in a subscale appear to be tapping equally strongly 
into the same latent variable?

	 3.	 Overlap between latent variables: do some items from one subscale correlate with 
other latent variables?

Convergent and discriminant validity

Convergent and discriminant validity have been discussed in Chapter 4 in terms of 
relationships between different scales, or dimensions, of QoL or PROs. For multi‐item 
scales, these concepts are extended to explore item‐level relationships. In this setting, 
convergent validity states that items comprising any one scale should correlate with 
each other. This is closely related to internal consistency, and in effect declares that 
all items in a scale should be measuring the same thing. If theory leads us to expect 
two items to be similar, they should be strongly correlated; if they are not strongly 
correlated, that may imply that one or the other is not contributing to the scale score it 
was intended to measure. Convergence is often assessed by comparing the correlations 
between each item and the overall sum‐score for the scale.

Equally important is discriminant validity, which states that if an instrument con-
tains more than one scale, the items within any one scale should not correlate too highly 
with external items and other scales. Thus items that theory suggests are unrelated 
should not correlate strongly with each other. If an item correlates more strongly with 
those in a scale other than its own, perhaps the item is more appropriately assigned to 
that other scale. If several items, or all the items, correlate highly with items in another 
scale, this may suggest there are insufficient grounds for declaring that two separate 
scales exist.

Multitrait–multimethod analysis

Multitrait–multimethod (MTMM) analysis, described in Chapter 4, can also be used 
to explore the relationships between items and scales. For this, the traits represent the 
items and the postulated scales become the methods. However, the number of item‐to‐
item correlations can become quite large and unwieldy to present. Thus for the SF‐36 
there are 36 items, and each of these could be correlated with the other 35 items. An 
alternative approach is to restrict the focus upon item‐to‐scale correlations, which is 
termed multitrait‐scaling analysis.
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Multitrait‐scaling analyses

If an item does not correlate highly with the items from another scale, it may be 
expected to have a low correlation with the total score for that other scale. Similarly, if 
an item does correlate highly with other items in its own scale, it will also be correlated 
with the total sum‐score for the scale. The principal objective of multitrait‐scaling 
analysis is to examine these correlations, and thereby to confirm whether items are 
included in the scale with which they correlate most strongly, and whether the postu-
lated scale structure therefore appears to be consistent with the data patterns. When 
calculating these correlations, the correction for overlap should be applied.

Widely used levels for acceptable correlation coefficients are the following. During 
initial scale development, convergent validity is supported if an item correlates moderately 
(r = 0.3 or greater) with the scale it is hypothesised to belong to, but when the instrument is 
undergoing final testing a more stringent criterion of at least 0.4 should be used; items with 
lower correlations are insufficiently related to other items within their domain, and should 
therefore be excluded. Discriminant validity is supported whenever a correlation between 
an item and its hypothesised scale is higher than its correlation with the other scales.

Unless there are clinical, other practical or theoretical grounds that outweigh the rules 
for convergent and discriminant validity, it is usually sensible to regard items that have poor 
convergent or discriminant properties as scaling errors. To allow for random variability and 
the sample size, the correlation coefficients may be compared using a statistical signifi-
cance test. A scaling success is counted if the item to own‐scale correlation is significantly 
higher than the correlations of the item to other scales. Similarly, if the item to own‐scale 
correlation is significantly less than that of the item to another scale, a definite scaling 
error is assumed. If the correlations do not differ significantly, a probable scaling error is 
counted. Usually, a p‐value less than 0.05 is regarded as ‘significant’ for this purpose.

Example from the literature

Blazeby et al. (2009) examined the convergent and discriminant validity of the 
QLQ‐LMC21, a questionnaire that targets disease‐specific issues in patients with 
colorectal liver metastases and supplements the more general cancer‐specific 
QLQ‐C30. The study recruited 356 patients who were about to commence treat-
ment for their metastases.

Table 5.1 shows the correlations between the four hypothesised multi‐item 
scales and their component items, with correction for overlap as appropriate. 
The three items comprising the fatigue scale (items numbered 7, 13 and 14) 
had corrected correlations of 0.76, 0.87 and 0.85 respectively with the fatigue 
scale (convergent validity). Each of these items had a significantly (p < 0.05) 
higher correlation with their own scale than with other scales (discriminant 
validity).
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Table  5.1  Item‐scale correlations for the EORTC QLQ‐LMC21 questionnaire (a module  
to supplement the QLQ‐C30), using data from 356 patients with colorectal liver metastases

––– Hypothesised scales –––

Item Description Nutrition Fatigue Pain
Emotional 
problems

Nutrition
lmc1 Trouble eating 0.70* 0.46 0.32 0.32
lmc2 Felt full up too quickly 0.70* 0.51 0.42 0.34

Fatigue
lmc7 Less active than liked 0.49 0.76* 0.47 0.46
lmc13 Felt ‘slowed down’ 0.45 0.87* 0.52 0.47
lmc14 Felt lacking in energy 0.53 0.85* 0.51 0.47

Pain
lmc9 Pain in stomach area 0.36 0.42 0.72* 0.29
lmc10 Discomfort in stomach area 0.35 0.44 0.66* 0.32
lmc12 Pain in back 0.32 0.46 0.43* 0.27

Emotional problems
lmc17 Felt stressed 0.24 0.27 0.24 0.52*
lmc18 Less able to enjoy 0.47 0.67 0.44 0.53*
lmc19 Worried about future health 0.22 0.34 0.24 0.71*
lmc20 Worried about family’s future 0.26 0.32 0.23 0.67*

*Correlations corrected for overlap.
Source: Data from Blazeby et al., 2009.

Items that show definite scaling errors are usually candidates for excluding from 
a scale. It is less clear what to do about probable scaling errors. If the sample size 
is less than 100, estimates of the correlation coefficients will be imprecise and 
probable scaling errors may occur simply by chance – in which case the probable 
errors should be regarded as inconclusive. What sample size is necessary for mul-
titrait‐scaling analysis? Since a small sample size means that the correlations will 
be estimated imprecisely, resulting in non‐significant p‐values even when there are 
scaling errors, it is recommended that sample sizes be greater than 100 for scaling 
analyses. In the above example, the large sample size (N =  356) means that even 
small and unimportant differences in the level of correlations will be statistically sig-
nificant, as shown in the column for scaling success. The magnitudes of the observed 
differences, their statistical significance and the size of the sample all have to be 
considered when interpreting the multitrait analysis results.

The selection of an appropriate sample of patients is also important. A heterogene-
ous sample, with patients from a variety of disease states and with a range of disease 
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Example from the literature

Blazeby et al. (2009) examined correlations between all 12 items and the four 
hypothesised scales of the QLQ‐LMC21. Table 5.2 summarises the convergent and 
discriminant scaling errors, and the scale homogeneity and internal consistency 
values. For example, in Table 5.1 the three fatigue items had correlations with 
their own scale of between 0.76 and 0.87, and the nine correlations with other 
scales ranged from 0.45 (lmc13 with nutrition scale) to 0.53 (lmc14, also with 
nutrition). Also, for each fatigue item, its own‐scale correlation was compared 
against the correlations with the three other scales, giving three tests per item 
and a total of nine tests for the fatigue scale; the results of these tests are sum-
marised as ‘scaling successes’ in Table 5.2.

Tests confirmed that QLQ‐LMC21 items are more highly correlated with their 
own scales than with other scales. Thus in this sample the QLQ‐LMC21 items 
satisfy scaling success criteria.

Table 5.2  Item scaling tests: convergent and discriminant validity, scaling success and 
reliability (Cronbach’s alpha) for the EORTC QLQ‐LMC21 multi‐item scales

Scales
No. of 
items

Convergent 
validity (range 

of correlationsa)

Discriminant 
validity (range 
of correlations)

Scaling 
successc

Scaling 
success rated

Reliability 
(Cronbach’s α)

Nutritional 
problems

2 0.70b 0.32 to 0.51 6/6 100 0.80

Fatigue 3 0.76 to 0.87 0.45 to 0.53 9/9 100 0.91

Pain 3 0.43 to 0.72 0.27 to 0.46 7/9   78 0.76

Emotional 
problems

4 0.52 to 0.71 0.22 to 0.67 9/12   75 0.79

aCorrelations of item with own scale are corrected for overlap.
bFor a two‐item scale, this becomes the correlation between the two items.
cNumber of convergent correlations significantly higher than discriminant correlations/Total number of 
correlations.
dScaling success rate is the previous column as a percentage.
Source: Blazeby et al., 2009, Table 2. Reproduced with permission of John Wiley & Sons, Ltd.

severities, will result in a wide range of responses. This will tend to result in high 
correlations, especially for convergent validity. Thus most investigators aim to recruit 
a heterogeneous sample for their validation studies. To ensure that the instrument 
remains valid and sensitive for use with all types of patient, it is equally important to 
investigate performance in various subgroups and this will also affect the sample size 
requirements.
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Example

The results presented in Table 5.2 are for all patients before commencing 
treatment. Blazeby et al. (2009) also checked convergent and discriminant 
validity of the QLQ‐LMC21 during treatment and follow‐up, and separately 
in the two subgroups hepatectomy and palliation. They report that con-
vergent validity was excellent, and that scaling successes were high in all 
subgroups.

These results, together with other data they present, lead to the conclu-
sion that scaling assumptions are well met in the patients targeted by the 
QLQ‐LMC21.

Multitrait‐scaling analysis is a simple yet effective method for checking that the 
pattern of the correlations corresponds to expectations, and that items have been 
assigned to the scale that they are most strongly correlated with. It also identifies 
items that are only weakly associated with the rest of their scale. However, statisti-
cal correlation can point only to areas in which there may be problems and, as we 
note in Section 5.7, also assumes that the parallel tests model of Section 2.7 applies. 
Clinical sensibility should also be considered when interpreting seemingly incon-
sistent correlations.

Although the necessary calculations for multitrait‐scaling analyses can be per-
formed using standard statistical packages, care must be taken to ensure that correc-
tion for overlap is applied where appropriate. The MAP‐R program (Ware et al., 1998) 
is a computer package that has been designed specifically for multitrait‐scaling and 
provides detailed item‐scaling analyses.

Factor analysis, dimensionality and multitrait scaling

Factor analysis is a form of structural equation modelling or SEM (not to be con-
fused with SEM, the standard error of measurement). It is one of the most impor-
tant and powerful methods for establishing construct validity of psychometric tests. 
Whereas the methods of the previous Sections rely to a large extent upon the scru-
tiny of inter‐item and item‐scale correlation matrices, factor analysis attempts to 
provide a formal method of exploring correlation structure. Although it provides 
a method for investigating the internal structure of an instrument, the results are 
difficult to interpret without a theoretical framework for the relationship between 
the items and scales. The simplicity of multitrait‐scaling analysis, on the other 
hand, means that the results are easier to understand and more readily interpreted 
clinically.
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5.5  Cronbach’s α and internal consistency

A scale is unidimensional if the items describe a single latent variable. Thus, appli-
cation of factor analysis (Chapter 6) should confirm that a single factor suffices to 
account for the item‐variability in the scale, and factor analysis provides a means of 
examining and testing the dimensionality of scales. The term homogeneity is also often 
used as a synonym for unidimensionality. A related concept is internal consistency 
and, confusingly, many authors regard this as the same as homogeneity.

Internal consistency refers to the extent to which the items are inter‐related. Cronbach’s 
alpha coefficient, αCronbach, is one method of assessing internal consistency, and is the 
method used most widely for this purpose. It is also a form of reliability assessment, in that 
for parallel and certain related tests it is an estimate of reliability, and even for other tests it 
provides a lower bound for the true reliability. It is a function of both the average inter‐item 
correlation and the number of items in a scale, and increases as either of these increases. 
Although internal consistency is often regarded as a distinct concept, it is closely related 
to convergent validity. Both methods make use of within‐scale between‐item correlations.

If a scale contains m items that describe a single latent variable θ, and the observed 

total score is S, then the reliability is defined as 
σ
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Here, Var(xi) is the variance of the ith item in the scale, calculated from the sample of 
patients completing the QoL assessment, and  xi∑ .

The basis of Cronbach’s α is that if the items were uncorrelated, Var(S) would equal 
the sum of their individual variances, implying αCronbach = 0. At the other extreme, if 
all the items are identical they would have perfect correlation; it can be shown that this 
results in αCronbach = 1. Thus α is a measure of the consistency of the scale, and indicates 
the degree of inter‐correlation of the items. However, it can also be shown that Cron-
bach’s α underestimates the true reliability of θ, and is therefore a conservative measure.

Coefficients above 0.7 are generally regarded as acceptable for psychometric scales, 
although it is often recommended that values should be above 0.8 (good) or even 0.9 
(excellent). For individual patient assessment, it is recommended that values should 
be above 0.9.

Perhaps one of the most useful applications of Cronbach’s α is in the development 
of scales and the selection of items. If Cronbach’s α changes little when an item is 
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omitted, that item is a candidate for removal from the scale. Conversely, a new item 
may be worth including if it causes a substantial increase. However, as noted above, α 
increases as the number of items in the scale increases. Therefore, in order to assess the 
true benefit of adding one or more extra items, we first estimate the expected change 
in α that is attributable to lengthening the scale. This is expressed by the Spearman–
Browne prophecy formula, which predicts the gain in α that is expected by increasing 
the number of items. If the original scale has n items, and the revised scale has m items,
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where k = m/n and is the ratio of the number of items in the new scale over the number in 
the original scale. Thus merely having a longer scale automatically inflates Cronbach’s α.

Example

If initially a scale has a Cronbach’s α of αn = 0.6, then (assuming all items have 
approximately similar inter‐item correlations) doubling the length of the scale 
by including additional items would give a value of k = 2. This results in an 
increase of Cronbach’s α to αm = 2 × 0.6/[(2 × 0.6) + (1 – 0.6)] = 0.75.

In contrast, halving the number would result in αm = 0.5 × 0.6/[(0.5 × 0.6) +  
(1 – 0.6)] = 0.43.

Cronbach himself, in 1951, recognised the need to adjust for the number of items. He 
commented that a quart (approximately a litre) of homogenised milk is no more homoge-
nised than a pint (approximately ½ litre) of milk, even though a quart is twice the volume 
of a pint. However, αCronbach, the measure of homogeneity, does increase according to the 
size (number of items) of a scale. Since Cronbach’s α increases as the number of items 
in the scale is increased, high values can be obtained by lengthening the scale. Even the 
simple expedient of adding duplicate items with closely similar wording will suffice to 
increase it. This has led many to question whether it is sensible to specify criteria for 
acceptable levels of Cronbach’s α without specifying the number of items in the scale.

Another consequence of the Spearman–Browne formula, equation (5.14), is that if 
the individual items in the scale are good estimators of the latent variable in the sense 
that they estimate it with little error, they will have high correlations and few items are 
needed in the scale. On the other hand, if the items have much error, many items will 
be needed.

The theory behind Cronbach’s α assumes that the scale relates to a single latent variable, 
and is therefore unidimensional. Although it is often assumed that αCronbach is itself a check 
for dimensionality, and that a high result implies a unidimensional scale, this is incorrect. 
Results can be misleadingly high when calculated for multidimensional scales. Therefore 
dimensionality should always be checked by, for example, using factor analysis.
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The consequences of multidimensionality can be readily seen: consider a scale con-
sisting of the sum of body weight and height. Although this would have very high test–
retest repeatability, since neither measurement varies very much in stable subjects, 
Cronbach’s α – supposedly an indicator of reliability – would not be correspondingly 
high because these items are only moderately correlated.

It can be shown that Cronbach’s α is a form of intraclass correlation (ICC, Section 
4.6), and thus it can also be estimated using ANOVA. Therefore the issues regarding 
correlations will also apply. Thus a wide and heterogeneous range of patients will tend 
to result in higher values, while the values will be low if the patients are similar to 
each other. Since it is almost always obvious that Cronbach’s α must be greater than 
zero, significance tests of the null hypothesis that αCronbach = 0 are usually irrelevant 
although often reported; provided the sample size is large enough, the p‐value will 
invariably indicate statistical significance; a non‐significant result indicates merely 
that the sample size is inadequate. More sensible, and far more informative, are con-
fidence intervals. These are most conveniently estimated using the so‐called bootstrap 
methods that are available in statistical packages such as STATA (StataCorp, 2013).

Example from the literature

Table 5.2 showed Cronbach’s α for the QLQ‐LMC21 obtained by Blazeby et al. 
(2009). The smallest value is 0.76 for the pain scale, and other values are 0.79, 
0.80 and 0.91, indicating that the scales show good internal reliability.

Example from the literature

The EORTC QLQ‐C30 (version 1.0) contained two items that assessed role function-
ing. These were ‘Are you limited in any way in doing either your work or doing 
household jobs?’ and ‘Are you completely unable to work at a job or to do household 
jobs?’ and took response options ‘No’ and ‘Yes’. Low values of Cronbach’s α had been 
reported, ranging from 0.52 to 0.66. There were also concerns about the content 
validity because it was felt that role functioning ought to encompass hobbies and 
leisure‐time activities. Two new questions were introduced, replacing the original 
questions. These were ‘Were you limited in doing either your work or other daily 
activities?’ and ‘Were you limited in pursuing your hobbies or other leisure‐time 
activities?’ The binary response options were changed into four‐category scales.

Osoba et al. (1997) evaluated these modifications in patients who were 
assessed before, during and after chemotherapy or radiotherapy. With questions 
in the original format, Cronbach’s α varied between 0.26 and 0.67. The revised 
items showed considerably higher internal reliability (0.78 to 0.88) and were 
accepted for the QLQ‐C30 (version 2.0). While the rewording may have contrib-
uted to these changes in reliability, a more likely explanation is that increasing 
the number of categories from two to four accounted for the differences.
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Alpha revisited

Cronbach’s 1951 article was “a great success … with approximately 325 social sci-
ence citations per year … [However,] I doubt whether coefficient α is the best way of 
judging reliability of the instrument to which it is applied.” Those words were written 
by Cronbach himself some 50 years later, shortly before his death (Cronbach, 2004), 
when he cautioned against the excessive and uncritical use of the α coefficient. We 
also agree with Cronbach’s comments that the standard error of measurement (SEM) 
is the most important single piece of information. Interpretation of the estimated 
SEM can be made by assuming the scale scores follow approximately a Normal 
distribution, in which case roughly 95% of individuals are expected to score within 
two SEM of their ‘true’ value. The SEM is obtained from a ‘crossed‐design’ analysis 
of variance (ANOVA), which decomposes the overall variance into components due 
to patient‐patient variability and the residual variability. When ANOVA is used to 
estimate α, it is assumed that the items are truly parallel with item‐to‐item variance 
of zero; then the SEM is estimated by the square‐root of the residual variance. How-
ever, the generality of the ANOVA approach allows for items with differing means.

Cronbach also noted the importance of heterogeneity of content. “There is no rea-
son to worry about scattered diversity of items … It needs only to be recognised that 
an analysis that does not differentiate between the classes of items will report a larger 
SEM than a more subtle analysis.” The example he uses is a mathematics test that 
contains both geometric‐reasoning and numeric‐reasoning items; there are obvious 
parallels with those QoL instruments that deliberately seek comprehensive content 
validity, and thereby report a lower α. Section 5.7 also shows that formative items 
affect heterogeneity, making α inappropriate.

In summary, α is overused, and better measures are available. An appropriate ‘sub-
tle’ analysis using ANOVA and estimating the SEM is preferable. In Chapter 7 we shall 
also see that item response theory methods focus on the SEM as an indicator of test 
precision.

Modern trends

One consequence of the emphasis on Cronbach’s α is that scales developed under 
the traditional psychometric paradigm have tended to be lengthy. If one feels that the 
α reliability is inadequate, the simplest expedient is to add more items to the scale. 
More recently, many investigators have found that for many purposes short scales 
are adequate, and in many cases one or two items suffice to provide the precision 
and reliability that is required. The developers of many instruments are introducing 
short‐form versions, either as an alternative or as a replacement for their original ques-
tionnaire. As we shall see in Chapters 7 and 8, item response theory is effective for 
identifying the most efficient items, and another modern trend is to develop dynamic 
computer‐based questionnaires that only ask as many items as are required for obtain-
ing a pre‐specified precision.
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5.6  Validation or alteration?

Multitrait scaling and related analyses such as Cronbach’s α are usually carried out in 
the later stages of instrument development, when field‐testing. As described in Chapter 
3, one of the aims of the field study is to determine and confirm the validity of the ques-
tionnaire, and the analyses we have presented are a key aspect of this. Thus the field 
study is usually intended as the final stage of developing and validating a new ques-
tionnaire. In theory, we hope to confirm that the hypothesised scale structure – which 
will have been specified before launching the field study – appears consistent with 
the observed data, supporting our claims of validity. In practice, all too frequently the 
analyses will reveal a few items (or even a few scales) that do not perform as well as 
expected. This can lead to revision of the scaling and scoring, and perhaps changes to 
the items in the questionnaire, after which reapplication of the multitrait scaling should 
produce improved results. Provided the alterations are minor, it may be reasonable to 
argue that the instrument appears to have acceptable validity. The problem is that when 
there are substantial changes it will become necessary to collect additional data from 
an independent sample in order to claim evidence of validity; often this is unrealistic 
in terms of funding and time. At the very least, reports of field studies must declare 
the hypothesised scale structure that was pre‐specified in writing before the study was 
launched. All subsequent alteration to the scale structure, scale scoring or the items 
must also be clearly delineated. Then the readers are able to judge whether they feel 
claims of ‘validity’ are acceptable.

Example from the literature

Blazeby et al. (2009) described the QLQ‐LMC21 module, which contains 21 
items in a layout and response format similar to the QLQ‐C30. They declared 
that preliminary qualitative investigations and interviews with patients had 
indicated that the relevant issues should be grouped into five multi‐item scales 
(fatigue, nutrition, pain, social and emotional problems) and six single items 
(problems with taste, tingling hands, sore mouth, dry mouth, problems with 
jaundice and weight loss).

Following the multitrait analyses, it was found that item within‐scale corre-
lations in the nutrition and fatigue scales were at least 0.53 in all groups. These 
scales were not correlated with other scales in the module and were retained in 
their original form. Correlations in the hypothesised three‐item pain scale dem-
onstrated a small overlap with the fatigue scale, except in patients selected 
for palliative treatment. It was decided to retain this scale in its original form. 
The original hypothesised social problems scale demonstrated very poor scal-
ing properties (within‐scale correlations were less than 0.40 in all subgroups). 
This scale was therefore split into three single items. There was some over-
lap between the four‐item emotional problems scale in patients undergoing 
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If an item has poor correlation with the scale to which it is hypothesised to belong, 
there are several possible actions; the choice should depend on the quantitative analy-
ses, the previous qualitative work from earlier stages of instrument development and 
discussion or debate among the researchers:

	 1.	 delete and discard the item;

	 2.	 remove the item from the scale but, if on qualitative grounds it is believed to be 
important, retain it as a stand‐alone single item;

	 3.	 if it correlates more highly with another scale, perhaps it is appropriate to transfer 
it to that scale;

	 4.	 if upon review the item is considered important, perhaps the wording was inap-
propriate and it should be reworded;

	 5.	 perhaps the item should be retained in the original scale despite the poor cor-
relations; this is most likely to arise with symptoms for a formative construct, as 
exemplified in Section 5.7.

If more than one item in a scale has poor correlation, more substantial changes to the 
constructs might be necessary, such as splitting one scale into two or more constructs, 
or changing the conceptual basis of a construct and renaming it accordingly.

If two items are highly correlated, or if Cronbach’s α coefficient has very high value, 
another reason to discard an item is redundancy. At this stage of development it is less 
common to introduce new items, although this might be deemed necessary if one or 
more items are ineffective and are deleted, or if Cronbach’s α is low.

5.7  Implications for formative or causal items

Most methods generally assume that the items in a scale are parallel tests – that is, 
that all the items in any one scale are selected so as to reflect the postulated latent 
variable, and each item is presumed to be measuring much the same thing. On that 
basis, the items should be correlated with each other. Sometimes this assumption is 
either untrue or inappropriate. In particular, many QoL scales contain PROs that are 
symptoms or other causal variables. As we have seen in Chapter 2, the correlations 
between such items can be misleading. These correlations do not indicate QoL 

palliative treatment, but in the surgical group this scale functioned well and 
it was retained in its original form. The final module (QLQ‐LMC21), therefore, 
has four scales and nine single items. The internal consistency reliability of the 
scales (Cronbach’s α coefficient) was high in most scales (at least 0.69).
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constructs, but are often merely consequences of symptom clusters arising from the 
disease or its treatment. For example, in cancer patients, hair loss and nausea may 
both be associated with chemotherapy and therefore highly correlated, even though 
in terms of QoL concepts they may be unrelated to one another. The methods of this 
chapter are usually inappropriate for clinimetric or other scales containing items 
that are causal indicators, and are irrelevant for composite indicators.

Thus convergent and discriminant validity seem sensible criteria for instrument 
validity when one is considering scales made from items that are reflective indicators. 
When causal indicators are present, neither criterion need apply. It may be clinically 
sensible to retain certain formative items in a single QoL subscale even though they 
are only weakly correlated with each other and therefore have low convergent valid-
ity. Equally, it might make sound clinical sense to disregard some high correlations 
and treat some causal items as comprising two or more distinct scales, irrespective of 
discriminant validity. However, sometimes, even with causal indicators, very high cor-
relations may be a sign that two items are measuring much the same concept and that 
one of the items is therefore redundant.

High internal consistency, as measured by Cronbach’s α, is a fundamental require-
ment for instruments that are based upon reflective indicators and designed upon the 
principles of parallel tests. When scales contain formative items, there may be low 
convergent correlations and therefore low internal consistency. These scales exemplify 
Cronbach’s comment: “There is no reason to worry about scattered diversity of items.” 
Similarly, definitions of reliability do not work well for items that have a causal rela-
tionship with the latent variable of interest.

The implications for causal items and clinimetric scales are summarised in Figure 5.1.

Figure 5.1  Clinimetric scales and scales with causal items.

Consequences for clinimetric and other scales containing formative items: 

•

• Assessment of construct validity, including convergent and discriminant
validity, is mainly based upon analysis of item-correlation structures, and is
less relevant when formative items are involved.

• Cronbach’s    is based upon item-to-item correlations, and is largely irrelevant
for scales containing formative items.

Alternative criteria for clinimetric scales or scales with causal items: 

• Clinical sensibility. This is equivalent to face validity. 

• Comprehensive coverage of items. 

• Emphasis upon items that patients rate as important. 

• Emphasis upon items that patients experience frequently. 

Basic properties of measurement scales, such as content validity, sensitivity,
responsiveness and test–retest reliability, are invariably important when
devising any QoL instrument (both formative and reflective).
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In clinimetric scales the items are chosen primarily from the perspective of high con-
tent validity, and the internal reliability can be low. Properties such as sensitivity and 
responsiveness are also of paramount importance.

Example

Whistance et al. (2009) developed a 29‐item colorectal cancer module, the QLQ‐
CR29. They reported that the three items in the hypothesised pain scale consist-
ently demonstrated weak correlations with the overall scale (r < 0.40) in many 
of the subgroups studied. The pain scale was, therefore, removed leaving three 
single items assessing anal/rectal pain, abdominal pain and pain when urinating.

An alternative approach would be to argue that disease‐related pain is a 
meaningful construct, and that pain impacts on HRQoL. We could in principle 
have asked a single compound question: do you have pain in your abdomen, 
anus, rectum, or when urinating? It is cognitively less demanding to break this 
down into three separate items, and if pain is reported the individual items can 
be analysed or used to guide clinical management. Pain is a causal item, with 
severe pain, at any site, causing distress to the patient. The three‐item construct 
is a formative scale, identifying the disease‐related forms of pain that arise from 
colorectal cancer. The correlations merely indicate that many patients had one 
or another form of pain, according to the precise localisation of their tumour, 
but relatively few patients had multiple sources of pain. Since this is a formative 
construct, it is important that all potential sites of pain are covered.

Many studies have reported similar problems when constructing pain scales. 
For example, Baxter et al. (2010) developed an instrument for use on patients 
who are receiving home parenteral nutrition (HPN). The two pain items were 
‘aches or pains in your muscles or joints’ and ‘other pain’, which only weakly 
correlated with each other (r  =  0.29; Cronbach’s α  =  0.45). The authors 
observed that “However, they were considered to be clinically important ques-
tions because it is well documented that HPN patients suffer from joint pain or 
cramps, and many have pain related to their underlying disease.”

Example

Apgar (1953) scores, mentioned in Chapter 2, are a well‐known and useful index 
for the health of newborn babies. The items included (heart rate, respiratory rate, 
reflex responses, skin colour and muscle tone) were selected on the basis of being 
important yet distinct prognostic indicators. After many years of use, the Apgar 
score has been found to be an effective indicator of neonatal health. Despite this, 
the constituent items may have weak correlations and Cronbach’s α is low.
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It is also often inappropriate to use traditional psychometric methods when scales are 
designed on the basis of an item response model. In this case, items are deliberately 
chosen so as to be of varying difficulty, and the value of Cronbach’s α, for example, 
may be misleading.

5.8  Conclusions

The methods described constitute a set of powerful tools for checking the validity 
of multi‐item scales, to confirm that they appear to be consistent with the postulated 
structure of an instrument. However, confirming validity is never proof that the instru-
ment, or the scales it contains, are really tapping into the intended constructs. Poor 
validity or reliability can suffice to indicate that an instrument is not performing as 
intended. Demonstration of good validity, on the other hand, is a never‐ending process 
of collecting more and more information showing that there are no grounds to believe 
the instrument inadequate.

However, the techniques of this chapter rely upon analysis of inter‐item correla-
tions, and are suitable only for scales or subscales containing solely reflective indi-
cators. When QoL scales contain causal indicators, the inter‐correlations between 
these items arise mainly because of disease or treatment effects and not because of 
association with the latent variable for QoL. This renders correlation‐based methods  
inappropriate.

However, sometimes it is possible to use clinical judgement to select a group of 
symptoms that are expected to be interrelated, and correlation methods may be suit-
able within this restricted subset of items. For example, several symptoms related to 
digestive problems could be selected. Even though these are causal items for QoL 
changes, they might also represent a coherent set of items reflecting, say, a disease‐
related symptom cluster. They can then be regarded as reflective indicators for disease 
state, and the methods of this chapter could be applied so as to produce a disease‐based 
digestive function score. The validation methods for multi‐item scales can therefore be 
used as a form of subscale validation, provided it is not claimed that this is evidence of 
a digestive construct indicating a QoL state.

For all instruments, clinical sensibility is crucial; this encompasses face and content 
validity, and comprehensive coverage of all important items. To be of practical value 
for clinical purposes or in randomised trials, sensitivity, responsiveness and test–retest 
repeatability are also extremely important. But the role of other aspects of validation 
is primarily to accrue evidence that the items behave in a sensible manner, and that the 
scales are consistent with the postulated constructs.
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6
Factor analysis and structural 
equation modelling  

Summary

Factor analysis and structural equation modelling are powerful techniques for exploring 
the item correlations during scale validation. We illustrate factor analysis techniques with 
a detailed example of its application to the HADS, showing interpretation of the typical 
output that is obtained from most computer packages. Factor analysis in scale develop-
ment and scale validation are discussed, together with the limitations of this approach. 
Finally, we describe the more general approach of structural equation modelling.

6.1  Introduction

The methods of Chapter 5 were concerned primarily with examining item-to-item cor-
relations in order to evaluate whether their patterns are consistent with the hypothesised 
scale structure. Factor analysis, on the other hand, can be used either as an automatic 
procedure to explore the patterns amongst the correlations (exploratory factor analysis, 
or EFA), or as a confirmatory method (CFA) for testing whether the correlations corre-
spond to the anticipated scale structure. Thus factor analysis plays a major role in con-
struct validation. Although CFA is the more flexible and powerful of the two, EFA is the 
form most commonly seen in outcomes research; EFA is simpler to implement, and does 
not require specification in advance of the details of the scale structures and the inter-
item relationships. Structural equation modelling (SEM) is a more general technique 
that encompasses both CFA and EFA, and can be used to fit other complex models. All 
three approaches – EFA, CFA and SEM – are concerned with detecting and analysing 
patterns in the inter-item correlation (or covariance) matrix, and can be used to assess the 
dimensionality (number of factors) needed to represent the variability in the data. CFA 
and SEM can additionally test these patterns to confirm the validity of the postulated 
constructs. SEM can fit complex models involving both causal and indicator variables.

Item response theory (Chapter 7) provides powerful methods for scale calibration, 
but assumes that the items being scaled are from a single dimension. This assumption 
of unidimensionality is often tested using EFA or SEM (Figure 6.1).
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Figure 6.1  Comparison of approaches to analysis.

Multitrait analysis 

●● Display of item–item correlations and item-scale correlations, using hypothesized scale struc-
ture. 

●● Uses arbitrary thresholds for convergent and divergent validity. 
●● Calculation of p-values for probable and definite scaling errors. 

Exploratory factor analysis (EFA) 

●● Explores item-item correlations to identify clusters of highly correlated items (factors). 
●● Arbitrary rules to determine number of factors (for example scree plots, eigenvalues > 1.0). 
●● Factors may or may not coincide with meaningful constructs, as they only depend on the item-

correlation matrix. 

Confirmatory factor analysis (CFA) 

●● A construct model is pre-specified (e.g. from previous multitrait analysis or EFA), and is tested 
for adequacy of fit in a new dataset. 

●● CFA is usually implemented as a reduced form of SEM. 

Structural equation model (SEM) 

●● A construct model is pre-specified and tested for goodness of fit. 
●● Complex models can be specified, including models with formative or causal items  

and scales. 
●● Controversy as to how to measure and test goodness of fit (all models are simplification of the 

complex constructs and if samples are large enough all models show statistically significant mis-
fit; it is often unclear as to what constitutes adequate fit). 

●● Can compare two or more models to test whether there is evidence (p-value) that one provides 
better fit than another. 

●● Unfortunately, in many cases the parameterization of the models may be so similar in statisti-
cal terms that there is little power to discriminate between them.

6.2  Correlation patterns

Since correlations provide the basic information for factor analysis, it is appropri-
ate to start by considering a correlation matrix in which the correlations between all 
pairs of items are displayed. Since the correlation of x against y is the same as the 
correlation of y against x, we only need to show the ‘lower triangle’ of correlations, 
as in Table 6.1.

The postulated structure of the HADS is relatively simple, with only two 7-item 
scales for anxiety and depression, and so it provides a convenient example for examin-
ing the techniques associated with factor analysis.
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Example

The HADS questionnaire was completed by patients in many of the UK Medical 
Research Council (MRC) randomised clinical trials of cancer therapy. The results 
from six MRC trials have been pooled, yielding a dataset of 1,952 patients 
with bladder, bronchus, colorectal, head and neck, and lung cancers of varying 
stages from early to advanced. Table 6.1 shows the (Pearson) correlation matrix 
for all pairs of items. Since half of the HADS items are deliberately worded posi-
tively and half negatively, the ‘negative’ items have been recoded so that in all 
cases a response of 0 is the most favourable and 3 is the least favourable. By 
making the scoring consistent, it becomes easier to interpret the correlations: 
the highly related items should have high (positive) correlation.

There are clearly many fairly highly correlated items, with correlations 
between 0.4 and 0.6. Although from prior information we know that the 
odd-numbered questions (Q1, Q3, Q5, …) are the ones intended to reflect 
anxiety, it is difficult to see the pattern in this correlation matrix. However, 
rearranging the correlation matrix as in Table 6.2 makes the pattern very 
much clearer.

Items belonging to the two postulated scales are shown in cells in the grey-
shaded triangles, anxiety being the upper area and depression the lower. It is 
now clear that there are fairly high (greater than 0.4, say) correlations amongst 
most items within the anxiety scale. The exception is Q11, which is noticeably 
weaker. A similar pattern is seen amongst the depression scale items. It is also 
reassuring to note that the unshaded rectangular area has lower correlations, 
which is consistent with the hypothesis that the anxiety items are less strongly 
correlated with the depression items.

Table 6.1  Pearson correlations for the HADS questionnaire, from 1,952 patients in MRC 
trials BA09, CR04, CH01, CH02, LU12 and LU16

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

Q1 1
Q2 0.31 1
Q3 0.54 0.26 1
Q4 0.34 0.47 0.36 1
Q5 0.56 0.27 0.60 0.36 1
Q6 0.41 0.50 0.37 0.58 0.41 1
Q7 0.50 0.41 0.41 0.43 0.43 0.47 1
Q8 0.28 0.52 0.23 0.33 0.27 0.37 0.33 1
Q9 0.49 0.20 0.58 0.28 0.52 0.32 0.38 0.17 1
Q10 0.30 0.40 0.27 0.38 0.27 0.41 0.34 0.36 0.23 1
Q11 0.34 0.15 0.32 0.18 0.32 0.19 0.34 0.16 0.30 0.17 1
Q12 0.33 0.59 0.32 0.54 0.31 0.52 0.44 0.44 0.26 0.45 0.17 1
Q13 0.54 0.26 0.60 0.33 0.56 0.37 0.43 0.23 0.57 0.33 0.38 0.30 1
Q14 0.30 0.42 0.27 0.44 0.30 0.47 0.40 0.31 0.30 0.36 0.19 0.42 0.31 1
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Table 6.1 and Table 6.2 show the usual Pearson correlation coefficient, r. Since the 
HADS items take four-point responses, they are not strictly from a Normal distribution 
and other measures of correlation may be more suitable, as discussed in Section 6.8. 
Usually Pearson’s r is adequate except in extreme situations, and similar results are in 
fact obtained when using the alternative methods with this HADS dataset.

A measure closely related to correlation is covariance. In equation (5.2), the numera-
tor is the covariance of x and y, and the correlation is the covariance divided by the stand-
ard deviations of x and y. Most people find correlations easier to interpret since, unlike 
covariances, they are scaled from −1 to +1. However, factor analysis programs often use 
the corresponding covariances instead, and the underlying theory of factor analysis is 
more closely based upon covariances. One may draw an analogy with standard deviation 
(SD) versus variance; there is a direct relationship (square root) between SD and vari-
ance, but most people find SD to be the easier measure to interpret, even though variances 
are more convenient for generalisation and therefore used for ANOVA (analysis of vari-
ance). Hence we shall describe and illustrate the correlation structure of QoL data even 
though many factor analysis programs are in fact based upon analysis of covariances.

6.3  Path diagrams

One way to represent the many inter-relationships between the items is by means of a path 
diagram. Adopting standard conventions, we use circles to represent the latent variables or 
constructs, and boxes for the manifest variables or observable items. Lines link the items to 

Table 6.2  Correlations from Table 6.1 rearranged corresponding to the HADS postulated 
subscales of anxiety (odd-numbered items) and depression (even-numbered)

Anxiety Depression

Q1 Q3 Q5 Q7 Q9 Q11 Q13 Q2 Q4 Q6 Q8 Q10 Q12 Q14

Q1 1
Q3 0.54 1
Q5 0.56 0.60 1
Q7 0.50 0.41 0.43 1
Q8 0.49 0.58 0.52 0.38 1
Q11 0.34 0.32 0.32 0.34 0.30 1
Q13 0.54 0.60 0.56 0.43 0.57 0.38 1

Q2 0.31 0.26 0.27 0.41 0.20 0.15 0.26 1
Q4 0.34 0.36 0.36 0.43 0.28 0.18 0.33 0.47 1
Q6 0.41 0.37 0.41 0.47 0.32 0.19 0.37 0.50 0.58 1
Q8 0.28 0.23 0.27 0.33 0.17 0.16 0.23 0.52 0.33 0.37 1
Q10 0.30 0.27 0.27 0.34 0.23 0.17 0.33 0.40 0.38 0.41 0.36 1
Q12 0.33 0.32 0.31 0.44 0.26 0.17 0.30 0.59 0.54 0.52 0.44 0.45 1
Q14 0.30 0.27 0.30 0.40 0.30 0.19 0.31 0.42 0.44 0.47 0.31 0.36 0.42 1
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their corresponding latent variable. Furthermore, if a construct is associated with particular 
items in the sense that a high value of the construct implies a high level for the item, we 
add directional arrows to the lines. Thus we regard the construct as implying a certain value 
of the item, or we might say the construct is manifested by the responses to the items. In 
extreme cases, the latent variable may be said to cause an outcome value for the item.

Example

The path diagram corresponding to the postulated structure of the HADS is 
shown in Figure 6.2. Thus if the anxiety has a high value, we would expect Q1, 
Q3, Q5, Q7, Q9, Q11 and Q13 all to reflect this by manifesting high values. That 
is, we would expect reasonably strong correlations between these items and 
anxiety – although, since anxiety is a latent variable, we do not know its value 
and cannot calculate this correlation directly. Furthermore, in any dataset con-
sisting of patients with a range of levels of anxiety, we would expect all of the 
corresponding items Q1, Q3, …, Q13 to reflect those levels so that these items 
should show reasonably high correlations with each other. However, the lack 
of a direct link between, say, Q1 and Q3 indicates that if anxiety is constant 
(that is, if all patients have the same level of anxiety) then Q1 and Q3 would 
be uncorrelated; this is called local independence. As we shall see in Chapter 7, 
local independence is crucial for item response theory, although factor analysis 
appears somewhat more robust against violation of this assumption.

Anxiety

Q3
frightened feeling

of something awful

Q5
worrying thoughts

Q1
feel tense

DepressionQ7
can feel relaxed

Q9
frightend feeling
like ‘butterflies’

Q11
feel restless

Q13
feelings of panic

Q4
can laugh at things

Q2
enjoy things

Q6
feel cheerful

Q8
feel slowed down

Q10
lost interest

in appearance

Q12
look forward

with enjoyment

Q14
enjoy book,
radio or TV

Figure 6.2  Postulated structure of the HADS questionnaire.
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When two latent variables are correlated with one another, a curved line with arrows 
at both ends is used to link them. This is illustrated in Figure 6.2, where anxiety and 
depression are linked in this manner. Thus these variables are assumed to be correlated, 
since persons with higher levels of anxiety are more likely also to have higher levels 
of depression, and vice versa. Without this correlation between anxiety and depres-
sion, there would have been no link between, say, Q1 and Q2, and then we would have 
expected those items to have zero correlation with one another. Instead, given the rela-
tionship between anxiety and depression, we would expect some degree of correlation 
between Q1 and Q2.

This example is a relatively simple one, with only seven items for each of two pos-
tulated constructs. If we were analysing a more general QoL questionnaire there might 
be far more items and also more constructs.

6.4  Factor analysis

Factor analysis is a statistical technique that examines a correlation matrix, such as 
that in Table 6.2, and attempts to identify groups of variables such that there are strong 
correlations amongst all the variables within a group, but weak correlations between 
variables within the group and those outside the group. Thus, since the model assumed 
in Figure 6.2 implies that each of the seven anxiety items is correlated with each other, 
factor analysis should identify these as constituting one factor. If these items were 
indeed highly correlated, as we hope, the scale would be described as having ‘strong 
internal structure’. Similarly, the seven depression items should form another factor. In 
principle one might be able to inspect a correlation matrix by eye, and verify whether 
this structure pertains. In practice this is usually difficult to do for all but the simplest 
of models, and so we often rely upon automatic techniques like factor analysis to 
explore the data for us.

Factor analysis as described here uses the correlation (or covariance) matrix as its 
staring point, and does not make use of any prior knowledge about the structure, or 
postulated structure, of the questionnaire. Therefore this is exploratory factor analysis.

6.5  Factor analysis of the HADS questionnaire

We explain how factor analysis works by using an illustrative example. The correla-
tion matrix presented in Table 6.1 showed the inter-relationships of the HADS items. 
Although pre-treatment data were used for this example, we would expect to find very 
similar results if during- or post-treatment assessments were considered. A standard 
statistical program, STATA (StataCorp, 2013), was used to see how well the hypoth-
esised factor structure is recovered. Very similar output would be obtained from most 
other packages. Most of the STATA default options are accepted. In general that might 
not be too wise; as will be discussed later, there are many choices to be made when 
carrying out factor analysis, and many of them can quite severely affect the analyses.
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Eigenvalues and explained variance

Most computer programs start by assuming there might be as many factors as there 
are variables (items). If each item proved to be completely independent of all other 
items, we would have to regard each item as a separate construct or latent variable. 
In that case it would be inappropriate to construct any summary scale score, and the 
data would be summarised by factors that are the same as the original variables. This 
represents the ‘full model’ with the maximal number of factors. Thus factor analysis 
programs commence by calculating the importance of each of the possible factors.

The eigenvalues, or latent roots, are obtained by matrix algebra; their precise math-
ematical meaning need not concern us, but a rough interpretation is that the eigenvalues 
are a measure of how much of the variation in the data is accounted for by each factor. 

Example

Table 6.3 shows the eigenvalues relating to the HADS data of Table 6.1, with 
one row for each of the n = 14 potential factors. The eigenvalues sum to n. The 
proportion of variance explained is then obtained by dividing the eigenvalue 
by n. Thus, for the first factor, 5.84/14 = 0.41 or 41%. The first two factors 
account for 54% of the total variation. Using the eigenvalues-greater-than-one 
rule, there are assumed to be two factors. This conveniently confirms our prior 
expectation of two latent constructs.

Table 6.3  Factor analysis of Table 6.1: eigenvalues and proportion of the HADS variance 
explained

Variance explained:

Factor Eigenvalue Difference Proportion Cumulative

  1 5.84 4.08 0.41 0.41
  2 1.76 0.94 0.13 0.54
  3 0.82 0.07 0.06 0.60
  4 0.75 0.07 0.05 0.65
  5 0.68 0.07 0.05 0.70
  6 0.61 0.04 0.05 0.75
  7 0.57 0.06 0.04 0.79
  8 0.51 0.07 0.04 0.83
  9 0.44 0.00 0.03 0.86
10 0.43 0.03 0.03 0.89
11 0.40 0.00 0.03 0.92
12 0.40 0.03 0.03 0.95
13 0.37 0.00 0.03 0.98
14 0.37 — 0.02 1.00
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Therefore the eigenvalues indicate the importance of each factor in explaining the vari-
ability and correlations in the observed sample of data. Usually these eigenvalues are 
scaled such that the total variability of the data is equal to the number of variables, and 
the sum of the eigenvalues will equal the number of items. The proportion of total vari-
ance explained by each factor is obtained by expressing the eigenvalues as percentages.

Most factor analysis programs will optionally use the eigenvalues to determine 
how many factors are present. A commonly used criterion is the so-called eigenvalues 
greater than one rule. Applying this rule, the number of distinct factors is assumed to 
be equal to the number of eigenvalues that exceed 1.0.

Factor loadings

Having decided upon the number of factors in the model, the next stage is to obtain the 
factor pattern matrix, or factor loadings, corresponding to the factor solution. These 
numbers indicate the importance of the variables to each factor, and are broadly equiv-
alent to regression coefficients. The loadings are also equal to the correlations between 
the factors and the items.

Example

The output continues with Table 6.4, which gives the factor pattern matrix cor-
responding to a two-factor solution for the HADS data. At first sight Table 6.4 
does not look too promising: the first factor has broadly similar loadings for 
all variables and is thus little more than an average of all 14 items. Factor 2 is 
difficult to interpret, although in this case it is noticeable that alternate items 
have positive and negative loadings.

Table 6.4  Factor loadings (unrotated) of two-factor solution 
for the HADS data in Table 6.1

Variable Factor 1 Factor 2

Q1 0.70 −0.31
Q2 0.63 0.48
Q3 0.69 −0.42
Q4 0.67 0.29
Q5 0.69 −0.36
Q6 0.71 0.25
Q7 0.70 −0.01
Q8 0.54 0.38
Q9 0.62 −0.46
Q10 0.57 0.28
Q11 0.44 −0.33
Q12 0.67 0.42
Q13 0.69 −0.41
Q14 0.60 0.25
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Rotation

It can be shown mathematically that the initial solution is not the only one possible. 
Other two-factor solutions are equally good at explaining the same percentage of the 
variability, and in fact there are an infinite variety of alternative solutions. In general 
the initial factor solution will rarely show any interpretable patterns. Therefore it is 
usual to rotate, or transform, the factors until a solution with a simpler structure is 
found. One of the most commonly used methods is varimax, although many alterna-
tives have been proposed. Briefly, varimax attempts to minimise the number of vari-
ables that have high loadings on each factor, thereby simplifying the overall structure. 
Thus we hope to obtain a new set of loadings for the factors, with fewer items hav-
ing high values for each factor, but with the same amount of the total variance still 
explained by the factors.

When there are only two factors, the pairs of factor loadings can be displayed 
in a scatter plot. This aids interpretation by displaying graphically the factor space 
and the inter-relationship of the items. Items that do not fit well into any factor can 
be easily identified, as can items that appear to relate to more than one factor. Mul-
tiple plots can be drawn when there are more than two factors, one for each pair of 
factors.

Example

If we proceed to use varimax rotation for the two-factor solution, we obtain 
Table 6.5 for the HADS data. To simplify the reading of Table 6.5, factor load-
ings above 0.4 have been shaded.

The anticipated relationships are apparent: the first factor relates to ques-
tions 2, 4, 6, (7), 8, 10, 12 and 14, while the second factor has questions 1, 
3, 5, (7), 9, 11 and 13. Item 11 in Factor 2 is weaker than most other items 
(loading of 0.55), which corresponds to the low correlations that were noted in 
Table 6.2. However, most noticeable is item 7, which is included weakly in both 
factors. Inspecting Table 6.2 again, we see that Q7 (fourth column in Table 6.2) 
has correlations above 0.4 with several depression items (Q2, Q4, Q6, Q12 and 
Q14), which explains its appearance in the depression factor. Apart from item 
Q7, the fit may be regarded as extremely good and provides adequate confirma-
tion of the postulated structure of the HADS. Others have found that Q7, ‘I can 
sit at ease and feel relaxed’, is anomalous and does not appear to perform very 
well; it must be a candidate for revision in any future version of HADS.

Items 3 and 13 are almost overlapping, which is perhaps unsurprising 
given their similarity: ‘I get a sort of frightened feeling as if something awful 
is about to happen’ (item 3) and ‘I get sudden feelings of panic’ (13). Thus 
the results from factor analysis imply that one of these two items might be 
redundant.
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Table 6.5  Rotated matrix of factor loadings from Table 6.4: varimax rotation

Variable Factor 1 Factor 2

Q1 0.27 0.71
Q2 0.79 0.11
Q3 0.19 0.78
Q4 0.68 0.26
Q5 0.23 0.75
Q6 0.68 0.32
Q7 0.49 0.50
Q8 0.65 0.11
Q9 0.11 0.76
Q10 0.60 0.20
Q11 0.07 0.54
Q12 0.77 0.18
Q13 0.19 0.78
Q14 0.60 0.24

Example

Figure 6.3 shows the two varimax-rotated factors diagrammatically. The pairs of 
factor loadings of the 14 HADS items in Factor 1 and Factor 2 have been plotted 
against each other. The even-numbered items cluster together, demonstrating that 
the depression scale is coherent and contains consistent items. Most items of the 
anxiety scale are also clustered together, with the exception of Q7 being closer to 
depression and Q11 being an outlier from the otherwise closely knit anxiety items.

Figure 6.3  Plot of Factor 2 against Factor 1, using the rotated factors from Table 6.5.
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6.6  Uses of factor analysis

Historical perspective

A useful insight into the role of factor analysis may be obtained by considering its 
origins; this also provides a useful background when discussing its limitations for vali-
dating QoL scales and complex PRO constructs.

Factor analysis was developed initially by Spearman around 1904 (Spearman, 
1904), building upon earlier work by Karl Pearson. Spearman was interested in 
modelling intelligence, with a view to testing whether intelligence could be sepa-
rated into two components. The first component would represent general ability, 
which was thought to be innate. The second component was specific ability which 
could vary according to subject (such as verbal skills or mathematics), and which 
could be influenced by education. Thus Spearman wished to show that the results 
from a battery of intelligence tests covering different school subjects would reveal 
one general factor, and that the remaining variability in the data could be explained 
by specific factors associated with each test. Although Spearman is commonly 
regarded as the father of factor analysis, over the years there has been much criti-
cism of the way in which he used it. In particular, there has been recognition that 
unrotated factors almost invariably result in a model similar to that which Spear-
man was seeking, with the first factor being a general factor; this is an artefact 
of factor analysis as a statistical method, and does not serve to verify the model. 
Furthermore, there is now awareness that although rotation of factors is necessary 
it is also ill-defined, in that multiple solutions are possible. Therefore the current 
view of conventional factor analysis is that it is an exploratory technique, suit-
able for generating hypotheses about the structure of the data, and this is recog-
nised by calling it exploratory factor analysis or EFA. The newer technique of 
confirmatory factor analysis (CFA) is better for testing whether a postulated model 
fits the data.

Another characteristic of the conceptual model underlying EFA is that intelli-
gence tests, like most psychological tests, should follow the basic pattern shown in  
Figure 6.2. Hence, if the person being assessed has a high intelligence (anxiety or 
depression in our example), we would expect this to be reflected in corresponding 
high scores for each of the individual items comprising the test. Any item in the test 
that does not satisfy this requirement would, under the psychometric theory of tests, be 
regarded as a poor test-item and would be a candidate for removal from the question-
naire. Psychological, psychometric and educational tests are all typically constructed 
with the intention of measuring a few, possibly as few as one or two, subscales and 
contain a number of items that are expected to be homogeneous within each subscale. 
The HADS instrument is thus fully representative of such a test. This is rather differ-
ent from many QoL instruments, which may contain a few items for each of many 
subscales. For example, the EORTC QLQ-C30 contains five functional scales, three 
symptom scales and a number of single items; furthermore, only three of the scales 
comprise more than two items.
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Scale validation

The main objective of applying factor analysis to PRO measures is for construct vali-
dation, and two situations can be recognised. First, if there are strong preconceptions 
concerning the structure of the scale, factor analysis may

●● confirm that the postulated number of factors are present (two in the example of the 
HADS)

●● confirm the grouping of the items.

Secondly, when there is less certainty about the underlying model, an investigator may 
want to know:

●● how many factors (or scales or constructs) are present

●● how the individual items relate to the factors

●● having identified the items that load on to each of the factors, whether this leads to 
definition of the substantive content or a meaning for the factors.

Scale development

Another role for factor analysis lies in the checking of new scales. An illustration of 
this can be seen in the example of the HADS. The intention was that seven questions 
related to anxiety, and seven to depression. However, as we have seen, Q7 is associ-
ated with both scales and so perhaps the wording should be modified or a different 
and better-targeted item substituted. The factor analysis implies that Q7 is as strongly 
associated with depression as with anxiety, and that either factor could influence the 
value of Q7.

Factor analysis can also draw attention to items that appear to contribute little to 
their intended scale. That, too, can be seen in the HADS example. Item 11 loads rela-
tively weakly upon the anxiety scale. This suggests that Q11, ‘I feel restless as if I have 
to be on the move’, does not reflect anxiety as strongly as the other anxiety items and 
that a better question should be devised.

Thus factor analysis can draw attention to items that load on to more than one scale, 
and also to items that do not load convincingly on to any scale. It also facilitates the 
checking for excessively strong correlations between two or more items: if very high 
correlations are observed between two of the items included in one factor, it would be 
sensible to drop one item since all information is already contained in the other.

Scale scoring

When a scale or subscale is composed of several items, a scale score or summary 
statistic will be required; for example, individual patient scale scores for anxiety and 
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depression are the natural summary from the HADS questionnaire. As we have seen, 
quite often a simple summated score is used, with the assumption of equal weighting 
being given to each item, which is perhaps a naïve way to combine items. Accordingly, 
various methods have been proposed for determining differential weights, and factor 
analysis is commonly advocated. Indeed, since factor analysis and related methods are 
commonly used to assess construct validity, a natural extension is to consider using the 
same techniques to ascribe weights to the items, based upon factor loadings. Apply-
ing the resultant weights to the observed item values results in factor scores for each 
patient, with scale scores corresponding to each factor.

Psychometricians, however, rarely use factor scores as a method of deriving out-
come scores; more commonly, factor analysis is used only to identify those items that 
should be included in a particular factor or construct, and then either equal weights or 
weights derived from other investigations are used for scoring. The reason for exercis-
ing caution against using factor scores is that the scores are often neither very precise 
nor uniquely defined, and are affected by decisions made regarding the extraction and 
rotation methods. This instability is frequently described as factor score indetermi-
nancy, and makes the use of factor scores from EFA controversial (for example, Grice, 
2001; DiStefano et al., 2009). Similar concerns affect CFA (Bollen, 1989; DiStefano 
et al., 2009), and in addition the model specification – in particular the direction of 
the causality arrows (Section 6.11) – is also critical; for example, it is questionable 
whether pain affects the overall QoL or whether the state of a person’s QoL affects 
their rating of pain. As found by Gundy et al. (2012), a variety of alternative models 
can provide approximately similar goodness of fit (Section 6.12), even though this 
implies substantial variation in their factor scores. Finally, any data-derived loadings 
based on one study may be inappropriate in the context of a different study drawn from 
another patient population. Thus, in general, we would advise against using factor 
analysis as anything other than a numerical process for exploring and reducing dimen-
sionality for subsequent analyses, and we strongly caution against the use of factor 
loadings to compute scores.

6.7  Applying factor analysis: Choices and decisions

Factor analyses are rarely as simple and straightforward as the HADS example, in 
which

●● there were few variables (14) and, more importantly, few factors (2)

●● the postulated model was well defined and the HADS scale had been developed with 
each item carefully chosen to load on to one of the two factors

●● the sample size was fairly large (1952 patients)

●● the patients were likely to have a wide range of levels of anxiety and depression, 
making it easier to discern the relationships.
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Thus it was a relatively easy task to obtain a convincing confirmation of the HADS 
scale using these data. However, the rest of this chapter explores the use of factor 
analysis in more detail, and discusses the range of decisions that must be made when 
carrying out analyses. Some of the choices can be quite crucial for obtaining a satisfac-
tory solution.

Sample size

Sample size is important for all studies, and it has particular impact upon factor analy-
sis. In factor analysis, where the factor structure is being explored, a small sample 
size will lead to large standard errors for the estimated parameters. Even more impor-
tantly, it may result in an incorrect estimation of both the number of factors and their 
structure. With a small sample size there will often be insufficient information to 
enable determination and extraction of more than one or two factors. On the other 
hand, with a very large sample size even trivial factors would become statistically 
highly significant, and so then there can be a tendency to extract too many factors. 
Therefore caution must be exercised in interpreting the results from large studies as 
well as small studies.

There is no general agreement about methods of estimating the suitable sample 
size. Sample size requirements will depend crucially upon the values in the between-
item covariance matrix, and this is generally unknown before the study is carried 
out. Similarly, it will depend upon the distribution of responses to the questions, 
and this is likely to vary according to the population being studied and is rarely 
known in advance. Furthermore, many QoL items and PRO measures may be non-
Normally distributed and strongly asymmetric, with high frequencies of subjects 
either reporting ‘no difficulty’ or ‘very great difficulty’ for individual items, thereby 
making simple approximations based upon Normal distributions of little practical 
relevance.

When the distribution of the variables and their correlation matrix is known or can 
be hypothesised, it is possible to carry out computer-based simulation studies to evalu-
ate the effect of different sample sizes (Muthén and Muthén, 2002). Although some 
such studies have been reported, many have been for models with few factors, Nor-
mally distributed variables and simple correlation structures.

Many authors have provided conflicting recommendations and rules-of-thumb. Rec-
ommendations for the minimum number of subjects have ranged from 100 to 400 
or more. Others have suggested five or 10 times the number of observed variables. 
Various functions of the number of factors and observed variables have also been 
proposed – for example, Kline (2010) suggests that, in the context of confirmatory 
factor analysis, 10 or even 20 observations per estimated parameter seem appropriate, 
where the number of identifiable parameters is, for the simplest of models encompass-
ing k items, Np = k × (k + 1)/2. There is little theoretical basis for most of these rules. In 
addition, if the variables have low reliabilities or the inter-relationships are weak, then 
many more individuals will be needed.
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Although these problems may make sample size estimation appear impractical, 
inadequate sample size has clearly been a problem in many studies, even though this 
is often appreciated only with hindsight either upon completion of the study or when 
other investigators report conflicting factor analysis results. Thus sample size calcu-
lations cannot be simply dismissed. The best advice is to be conservative and aim 
for large-sized studies. QoL scales frequently have five or more factors, and perhaps 
contain 30 or more items with few items per factor. The items are often discrete and 
form highly skewed scales with floor or ceiling effects. Then it seems likely that a 
minimum of a few hundred patients is required, and ideally there should be many 
hundreds.

Number of factors

The first step in factor analysis is to determine the number of factors that are to be 
extracted. This is one of the more important decisions to be made since a totally differ-
ent and erroneous factor structure may be estimated if an incorrect number of factors is 
used. If too many, or too few, factors are mistakenly entered into the model, the analy-
ses can yield solutions that are extremely difficult to interpret. On the other hand, it is 
frequently possible to ascribe plausible meanings to many combinations of variables, 
and it can be very difficult to identify whether factors are meaningful and which mod-
els are likely to be correct. Therefore much research has been carried out into methods 
for deciding the number of factors that are present.

One of the oldest and most widely used approaches is the Kaiser (1960) rule 
eigenvalues greater than one, as used in our example. Probably one (not very sound) 
reason for its near-universal application in computer packages is the simplicity of 
the method. Various foundations have been proposed for this rule, such as noting 
that the average eigenvalue is 1.0 and so the rule excludes all eigenvalues below the 
average. On the other hand, if there are 10 variables this rule will include factors 
that explain at least 10% of the variance, but if there were 50 variables then factors 
explaining as little as 2% would be retained. In general, this rule tends to include 
too many factors.

Another widely used method is the scree plot, which is simply a plot of successive 
eigenvalues (Cattell, 1966). The scree plot is fairly good at separating the important 
factors from the later ‘factors’, which are really little more than random noise; the 
scree is the random rubble of stones at the foot of the cliff face. Although interpreta-
tion of scree plots is subjective, frequently, as in Figure 6.4, a change in slope is fairly 
evident.

A third widely used method for estimating the number of factors is based upon 
maximum-likelihood (ML) estimation, although it has also been shown that for this 
purpose ML factor analysis is quite sensitive to the variability in the data (‘residual’ 
variance) and requires large sample sizes to yield reliable estimates. In our example, 
ML estimation produced closely similar results to the STATA default principal-factor 
estimates of Table 6.4, and successfully identified the two-factor solution.
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Example

Figure 6.4 shows the scree plot for the HADS dataset, corresponding to the 
eigenvalues of Table 6.3. There is a clear elbow in the plot, with the first two 
factors lying above the sloping line formed by the eigenvalues for factors 3 to 
14. This implies that a two-factor solution is appropriate. This conclusion is 
also in agreement with the eigenvalues-greater-than-one rule, as indicated by 
the horizontal straight line.

Figure 6.4  Scree plot of the eigenvalues in Table 6.3.
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Despite reservations, in practice both the eigenvalues-greater-than-one rule and 
the scree plot seem to have reasonable characteristics. When the same number of 
factors is suggested by all three methods, as in this example, the solution is quite 
convincing.

Method of estimation

A variety of methods are available for estimating the factors, all leading to differ-
ent solutions. Most statistical packages offer at least five or six methods for factor 
extraction. The only thing in common with all estimation procedures is that they 



	 6.7 A pplying factor analysis: Choices and decisions	 165

define some arbitrary measure of goodness-of-fit, which is then maximised (or, if a 
measure of deviation from fit is used, minimised). Methods commonly used include 
ML, which produces estimates that are most likely to have yielded the observed 
correlation matrix under assumptions of Normal distributions. Unweighted least 
squares minimises the sum of the squared differences between the observed and 
model-predicted correlation matrices. Alpha factoring maximises the Cronbach’s α 
reliability of the factors, so that (for example) the first factor has the maximum reli-
ability or internal consistency. Principal-axes factoring maximises the accounted-
for variance. Minimum-residual factoring minimises the off-diagonal residuals of 
the total variance–covariance matrix. Many further methods also exist, each with 
their proponents.

When the data possess a strongly defined factor structure, theoretical and empirical 
studies suggest that most methods of extraction will yield similar results. However, 
in other situations there may be considerable divergence in the factor solutions, espe-
cially when there are small sample sizes, few explanatory variables and a weak factor 
structure.

Statisticians generally prefer ML because it is based upon sound mathematical 
theory that is widely applicable to many situations. ML estimation also provides 
foundations for hypothesis testing, including tests for the number of factors. Fur-
thermore, unlike other methods, ML yields the same results whether a correlation 
matrix or a covariance matrix is factored. Although it is commonly thought to be 
a disadvantage that ML estimation explicitly assumes that the sample is from a 
multivariate Normal distribution, ML estimation of factor structure is fairly robust 
against departures from Normality. However, under non-Normality the significance 
tests will be invalid; violation of the distributional assumptions can reduce ML to 
being no better than other techniques. Overall, we recommend ML estimation as the 
preferred method.

The role of the factor estimation step is to find an initial solution, which can then 
be rotated to provide a simpler structure. Although the initial factor estimates may 
appear to vary considerably according to the method used, it is often found that simi-
lar results are obtained after rotation, no matter which method of factor estimation 
was used.

Orthogonal rotation

Since there is no unique solution for the factor decomposition of a dataset, it is con-
ventional to adopt an arbitrary procedure for rotation such that as many as possible of 
the items contribute to single factors. In other words, the aim of rotation is to simplify 
the initial factorisation, obtaining a solution that keeps as many variables and factors 
distinct from one another as possible. Thus rotation is an essential part of the fac-
tor analysis method, as the initial factor solution is frequently uninterpretable. The 
simplest rotations are orthogonal, which assumes that the underlying factors are not 
correlated with each other, and of these varimax is the most widely used and generally 
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appears to yield sensible solutions. In mathematical terms, varimax aims to maximise 
the variance of the squared loadings of variables in each factor, and thus minimises 
the number of high loadings associated with each factor. In practical terms, varimax 
results in a ‘simple’ factor decomposition, because each factor will include the small-
est possible number of explanatory variables. If there are preconceived ideas about the 
factor structure, it may be more appropriate to use goodness-of-fit tests to examine spe-
cific hypotheses, but for exploratory analysis the apparent simplicity and the sensible 
results following varimax have led to its near universal implementation in all computer 
packages.

However, many other methods do exist, most notably quartimax, which attempts to 
simplify the factor loadings associated with each variable (instead of the variable load-
ings associated with each factor). Orthomax and equamax are yet two other methods, 
and combine properties of both quartimax and varimax. If you are not satisfied with the 
arbitrary choice of varimax, there are plenty of alternatives.

Oblique axes

One assumption built into the model so far is that the factors are orthogonal and 
uncorrelated with each other. In many cases that is an unrealistic assumption. For 
example, there is a tendency for seriously ill patients to suffer from both anxiety and 
depression, and these two factors will be correlated. In statistical terms, we should 
allow oblique axes instead of insisting upon orthogonality. This leads to a whole set of 
other rotation methods and Gorsuch (1983) lists a total of 19 orthogonal and oblique 
methods out of the many that are available. Most statistics packages offer a variety of 
these methods. Unfortunately, different procedures can result in appreciably different 
solutions unless the underlying structure of the data happens to be particularly clear 
and simple.

Promax, which is derived from varimax, is the most frequently recommended oblique 
rotation method. Starting from the varimax solution, promax attempts to make the low 
variable loadings even lower by relaxing the assumption that factors should be uncor-
related with each other; therefore it results in an even simpler structure in terms of vari-
able loadings on to factors. Promax is therefore simple in concept and results in simple 
factor structures. Not surprisingly, given its nature, promax usually results in similar –  
but simpler – factors to those derived by varimax. The most widely used alternative 
to promax is oblimin, which is a generalisation of earlier procedures called quar-
timin, covarimin and biquartimin; these all attempt to minimise various covariance 
functions.

As with so much of exploratory factor analysis, it is difficult – and controversial – to 
make recommendations regarding the choice of method. One procedure of desperation 
is to apply several rotational procedures to each of two random halves of the total pool 
of individuals; it is reassuring if different rotational procedures result in the same fac-
tors, and if these same factors appear in both random halves. In other words, rotation 
is a necessary part of the exploratory factor analysis procedure, but one should be cau-
tious and circumspect whenever using rotation.
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Example

Table 6.5 showed the effect of a varimax rotation, which revealed the two 
factors postulated to underlie the HADS questionnaire. However, as shown 
in Figure 6.2, it has been suggested that the anxiety and depression factors 
would be correlated. Therefore an oblique rotation is perhaps more appropriate. 
Table 6.6 shows the effect of oblique rotation using promax.

In this example, the strong factor structure of the HADS prevailed, and the 
oblique rotation yielded similar solutions to the varimax rotation. The negative 
signs attached to Factor 1 of the promax solution are immaterial, and reflect 
the arbitrary viewpoint from which the factors may be observed in geometrical 
space; the important features are the magnitudes of the loadings and the rela-
tive signs of the loadings within each factor. Perhaps the most noticeable dif-
ference from the varimax results in Table 6.5 is that the loading of variable 7 in 
Factor 1 has been reduced from 0.70 to 0.49, yet again emphasising that this 
variable does not perform satisfactorily.

Table 6.6  Oblique (promax) rotation of the factor loadings 
from Table 6.4

Variable Factor 1 Factor 2

Q1 −0.10 0.70
Q2 −0.85 −0.11
Q3 0.00 0.81
Q4 −0.68 0.08
Q5 −0.05 0.76
Q6 −0.67 0.15
Q7 −0.41 0.40
Q8 −0.69 −0.07
Q9 0.07 0.81
Q10 −0.61 0.04
Q11 0.06 0.58
Q12 −0.81 −0.03
Q13 −0.00 0.81
Q14 −0.60 0.09

6.8  Assumptions for factor analysis

As with any statistical modelling technique, various assumptions are built into the 
factor analysis model and the associated estimation procedures. In many fields of 
research these assumptions may well be valid, but in the context of PRO measures 
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there can be a number of problems arising from the frequently gross violation of the 
inherent assumptions.

Distributional assumptions

The standard factor analysis model makes no special assumptions about data being 
continuous and from a Normal distribution. Since the commonly used estimation pro-
cedures are based upon either ML or least squares, they assume continuous data from 
a Normal distribution. Furthermore, most methods of estimation of factors are based 
upon the Pearson product-moment correlation matrix (or, equivalently, the covariance 
matrix) with Normally distributed error structure. If these distributional assumptions 
are violated, any test for goodness-of-fit may be compromised. However, goodness-
of-fit measures are central to ML factor analysis in order to determine the number 
of factors to be retained, and as noted above this number is crucial to the subsequent 
extraction of the factor loadings.

In reporting studies, it is important to specify the software that was used as well 
as the model and the methods of the fitting and rotation of factors. Although some 
published reports of QoL studies do indicate the software or model used, few dis-
cuss distributional properties of their data such as whether it is continuous and Nor-
mally distributed. Presumably the authors are unaware of the importance of these 
assumptions.

The two main types of departure from assumptions are that data may be discrete, 
possibly with only a few categories, or may be continuous but non-Normally distrib-
uted (e.g. highly asymmetrical or skewed). Many PRO measures are both categorical 
and highly asymmetrical at the same time.

Categorical data

Although a few QoL instruments use linear analogue scales, by far the majority con-
tain questions taking discrete ordinal responses, commonly with as few as four or 
five categories. Mathematical theory for factor analysis of categorical data has been 
developed by, for example, Lee et al. (1995) and Bartholomew et al. (2011), and 
software is becoming widely available (e.g. Muthén and Muthén, 2010). However, 
this is largely an untested and unexplored area, and it remains unclear as to how 
effectively these techniques will be able to estimate the underlying latent structure 
and what sample sizes will be required in order to obtain stable and consistent esti-
mation of factors.

Since many investigators use standard factor analysis even when they have four- 
or five-point scales, one should at least consider the effect of this violation of the 
assumptions. How robust is factor analysis? A few reports, based upon experience or 
computer simulations, have claimed that scales with as few as five points yield stable 
factors. However, it remains unclear whether factor analysis using Pearson’s correla-
tion coefficient is adequate provided the five-point scale can be regarded as arising 
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from an underlying Normal distribution with cut-points. Furthermore, the situation 
regarding four-point scales remains even more dubious. At one extreme, it has been 
suggested that correlations are fairly robust and that even ordinal scales with at least 
three points can be included, but this has not been supported by others who generally 
recommend a minimum of five response categories. It also seems likely that sample 
size should be increased so as to compensate for the loss of information in shorter 
scales.

Since the numerical solution of factor analysis uses the correlation (or sometimes 
the covariance) matrix, it is natural to consider techniques intended for estimating 
correlations based upon discrete ordinal data. Polychoric correlations are formed 
by assuming that the discrete categorical observed values are a manifestation of 
data with an underlying (Normal) continuous distribution (see Section 5.3). The 
mathematical theory leads to relatively complex estimation procedures, but com-
puter algorithms for their estimation are available. Few studies have made use of 
such methods, and again there are fears about the effect upon sample size. It is 
best to be very cautious about applying them to samples of fewer than 500–1000 
observations.

Normality

We have commented on the effect of non-Normality upon ML estimation, but it can also 
prejudice other aspects of factor analysis. However, there are two reasons for anticipat-
ing highly non-Normal data in QoL research. Firstly, there is no reason to assume that 
categories labelled ‘Not at all’, ‘A little’, ‘Quite a bit’ and ‘Very much’ will yield equal-
interval scales for patients’ responses to any or all of the questions. Secondly, some of 
the items are likely to take extreme values depending upon the disease or the effects 
of its treatment. For example, cancer patients receiving certain forms of chemotherapy 
will almost invariably experience considerable nausea. Hence, for these patients, items 
such as nausea will have a highly asymmetric distribution with a ceiling effect of many 
responses towards ‘Very much’. Thus QoL and PRO items frequently possess highly 
skewed non-Normal distributions. Unfortunately, little work has been done on the impact 
of this.

Example

Figure 6.5 shows the HADS data from cancer trials of the MRC, where many 
items are markedly skewed and no items appear to have Normal distributions. 
Several items also suffer from floor effects and tend to take minimum values for 
most patients, notably items Q4, Q6, Q10 and Q14, and all items except Q8 have 
very few patients with high responses.

Many other QoL scales may be expected similarly to contain items that devi-
ate markedly regarding Normality.
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There have been attempts to develop so-called asymptotically distribution-free 
(ADF) factor analysis that makes no assumptions about the distribution of the data 
(for example Bartholomew et al., 2011). However, results suggest that huge sam-
ple sizes may be necessary for acceptable performance – for example ADF on 15 
variables with three ‘strong’ factors may require samples of between 2500 and 5000 
observations.

Figure 6.5  Histograms of the 14 HADS items, using the dataset from Table 6.1.
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Example from the literature

When Muthén and Kaplan (1992) simulated five-point variables of various 
degrees of skewness for four models (2–4 factors, 6–15 variables), with 500 
and 1000 observations they found “Chi-squared tests and standard errors … 
are not as robust to non-Normality as previously believed. ADF does not appear 
to work well.”
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Does the violation of assumptions matter?

Since most models for factor analysis assume continuous data with Normally dis-
tributed error terms, while many PROs depart substantially from this by being both 
categorical and non-Normal, what is the overall impact? The effect of these viola-
tions of assumptions is largely unknown, although empirical results and simulation 
studies suggest that the techniques may be relatively robust to reasonable degrees 
of departures. However, it seems likely that sample size, which in QoL studies is 
sometimes small by any standards, should be increased so as to compensate for this. 
As already noted for ML estimation, it is commonly found in practice that depar-
tures from Normality may have a marked effect upon testing goodness-of-fit and 
the estimation of the number of factors, but has rather less impact upon the factor 
extraction.

Unfortunately there is no simple rule of thumb to decide when ML estimation 
may be applied. Any sign of appreciable deviation from Normality will be claimed 
by critics as making analysis invalid, yet will be dismissed by the authors as of little 
consequence.

6.9  Factor analysis in QoL research

Given all the attendant problems and difficulties, it is perhaps surprising that factor 
analysis of QoL instruments so often results in apparently sensible factors. However, 
this may be simply a reflection of the strong and obvious correlation structure that 
underlies many ‘constructs’; often the results, not surprisingly, confirm the expected 
QoL dimensions. Thus, provided there is adequate sample size, many studies do report 
finding factors that represent groupings of variables that could have been anticipated 
a priori to be correlated. However, many authors do also report major discrepancies in 
the factor structure when they repeat analyses with different datasets.

Example

Fayers and Hand (1997a) reviewed publications concerning seven studies 
reporting factor analysis of the RSCL. All publications agreed that the first fac-
tor represents general psychological distress and contains a broad average of 
the psychological items, and that other factors were combinations of various 
physical symptoms and side effects. However, there was considerable divergence 
about the details of the physical factors, with studies claiming to find two, 
four, five, seven or even nine factors. Several authors acknowledged that the 
extracted factors were curious and not easy to interpret. For example, one study 
combined dizziness, shivering, sore mouth and abdominal aches as a factor.
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Instability of factors, especially after the first one or two factors have been extracted, 
is evidently a problem. Contributory reasons include the following:

	 1.	 Some variables have weak inter-correlations. This may occur because the under-
lying relationship really is weak, or because in a particular dataset the observed 
correlations are weak.

	 2.	 Some studies may be under-sized. This will tend to result in unreliable estimation 
of the number of factors, and in poor estimation of the factor structure.

	 3.	 Some studies may be so large that, if care is not exercised, too many factors will 
be identified because with very large numbers of measurements even weak inter-
correlations will suffice to pull a few variables together into a less meaningful factor.

	 4.	 Different sets of data may yield different factor structures. For example, in a can-
cer clinical trial the chemotherapy patients may experience both nausea and hair 
loss, with these items appearing strongly correlated. In contrast, in a hormone 
therapy trial, the same items could be relatively uncorrelated. Thus they would 
form a single factor in the first study but would appear unrelated in the second. 
Factors for symptoms and side effects can vary in different subsets of patients and, 
for example in oncology, can depend upon site of cancer, disease stage, treatment 
modality, patients’ gender and age.

	 5.	 Heterogeneous samples may yield strange factors. In a clinical trial comparing dif-
ferent treatment modalities, for example, factor analyses may produce factors that 
are essentially group differences (see the example in Section 6.10). These factors 
are non-obvious, difficult to interpret, and not consistent with the expectations of 
the latent structure. If it is known that there are separate subgroups, one possibility 
is to use the within-group correlation matrix of each subgroup and combine these 
to provide ‘pooled within-group’ estimates for the analyses.

	 6.	 Some symptoms may be uncorrelated and yet contribute to the same scale. For 
example, it might be thought clinically logical to regard eating problems as part 
of a single scale, even though some patients (e.g. with head and neck cancer) may 
be unable to eat because of an oral problem, while others (with oesophageal can-
cer) may be unable to swallow because of throat obstruction. A serious limitation 
with respect to either item can have a major impact upon the patient’s eating, so-
cial functioning and QoL. Thus although the correlation between these two items 
might be low, for many purposes it could be appropriate to combine them into a 
single scale.

6.10  Limitations of correlation-based analysis

The reasons listed in the previous Section 6.9 are mainly a reflection of the fact that 
factor analysis is solely based on an examination of the correlation-structure of the 
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observed data. Thus it is misleading to think of ‘factors’ as necessarily reflecting 
dimensions of QoL. Factors are merely groups of items that correlate more highly 
within themselves than with other items.

A particularly common example of misleading factors can be found whenever 
symptoms or side effects are included – as is commonly the case with disease-specific 
questionnaires. Clinicians recognise these groups of highly correlated symptoms: a 
syndrome is defined as ‘a group of concurrent symptoms of a disease; a characteristic 
combination of emotions, behaviours, etc.’ We should not be surprised if factor analy-
sis identifies these syndromes, as it is an ideal statistical tool for doing so. But although 
the cluster of symptoms comprising a syndrome may be characteristic of the disease 
process, the symptoms may be unrelated in terms of their impact on QoL and need 
not necessarily form a logical dimension or QoL construct. The example in Section 
6.11 illustrates these issues with a cluster of side effects that are typical of a particular 
treatment.

Nor do correlations between symptoms indicate that they are equally important in 
their impact on QoL; correlations merely tell us that patients with one severe symp-
tom are also likely to experience the other symptoms severely, too. Factor analysis of 
symptoms and side effects can frequently be misleading. In Section 6.11 we explain 
how it may be possible to extend the basic factor analysis model to allow for these 
issues.

6.11  Formative or causal models

The models described so far have all been based upon the assumption that QoL 
scales can be represented as in Figure 6.2, with observed variables that reflect 
the value of the latent variable. For example, in the HADS, presence of anxiety 
is expected to be manifested by high levels of Q1, Q3, Q5, Q7, Q9, Q11 and Q13. 
However, many QoL instruments include a large number of PRO measures cover-
ing diverse aspects. For example, the RSCL includes 30 items relating to general 
QoL, symptoms and side effects; it also incorporates an activity scale and a global 
question about overall QoL. For simplicity, we restrict consideration to 17 items. 
Adopting a conventional EFA model, a path diagram such as that of Figure 6.6 
might be considered.

This model assumes that a poor QoL is likely to be manifested by psycho-
logical distress, and that ‘psychological distress’ is a latent variable that tends to 
result in anxiety, depression, despair, irritability and similar signs of distress. This 
much does seem a plausible model. However, a patient with poor QoL need not 
necessarily have high levels of all treatment-related symptoms. For example, a 
patient receiving chemotherapy may well suffer from hair loss, nausea, vomiting 
and other treatment-related side effects that cause deterioration in QoL. However, 
other cancer patients receiving non-chemotherapy treatments could be suffering 
from a completely different set of symptoms and side effects that cause poor QoL 
for other reasons.
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Figure  6.6  Conventional EFA model for the RSCL, showing factors for general psychological 
distress, pain, nausea/vomiting and symptoms/side-effects. Only 17 out of the 30 items on the main 
RSCL are shown.
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Thus a poor QoL does not necessarily imply that, say, a patient is probably 
experiencing nausea; this is in contrast to the psychological distress indicators, all 
of which may well be affected if the patient experiences distress because of their 
condition. On the other hand, if a patient does have severe nausea, that is likely 
to result in – or cause – a diminished QoL. Hence a more realistic model is as in 
Figure 6.7, where symptoms and side effects are shown as causal indicators with 
the directional arrows pointing from the observed variables towards the ‘symp-
toms and side effects’ factor, which in turn causes changes in QoL. The observed 
items reflecting psychological distress are called effect indicators, to distinguish 
them from the causal indicators. Thus effect indicators can provide a measure of 
the QoL experienced by patients, while the causal indicators affect or influence 
patients’ QoL.
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Figure 6.7  Postulated causal structure for 17 items on the RSCL. Treatment- or disease-related 
symptoms and side-effects may be causal rather than effect indicators.
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Example from the literature

Fayers and Hand (1997a) analysed RSCL data from an MRC trial of chemotherapy 
with or without α-interferon for patients with advanced colorectal cancer. There 
appeared to be four factors, representing psychological distress, symptoms, 
nausea and vomiting, and pains and aches. At first sight the second factor, 
labelled ‘symptoms’, contained a strange combination of items: lack of appetite, 
decreased sexual interest, dry mouth, tiredness and lack of energy. However, 
these five symptoms were precisely the items that the study team had reported 
as the main treatment differences in the randomised trial. In other words, the 
second factor is an interferon-related cluster of symptoms, and the item cor-
relations arise from treatment differences and not through any sense of this 
necessarily being a single meaningful QoL construct.
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6.12 � Confirmatory factor analysis and structural equation 
modelling

EFA is ill equipped to deal with causal variables. Instead, a more general approach 
has to be considered, with models that can represent structures such as those of  
Figure 6.7 and can estimate the coefficients and parameters describing the various 
paths. This approach is structural equation modelling (SEM). SEM models can be 
complex to specify. Some programs for SEM modelling are listed at the end of this 
chapter (Section 6.20), but SEM is also becoming widely available in many statisti-
cal packages. Although SEM is problematic for purely causal models, it is possible 
to obtain estimates for some models in which there is a combination of reflective and 
causal indicators, the so-called multiple indicator–multiple cause, or MIMIC, models.

One major difference between EFA and SEM is the emphasis that the latter places 
upon prior specification of the postulated structure. Thus one form of SEM is also 
known as confirmatory factor analysis, since a factor-analytic structure is pre-specified 
and one major purpose of the modelling is to test – or confirm – how well the data 
fit this hypothesised structure. Hence CFA focuses on goodness-of-fit tests, with the 
model being accepted as adequate provided there is no strong counter-evidence against 
it. Although such techniques have been widely used in areas such as educational and 
personality testing, they are as yet little practised in the field of QoL. However, given 
the many disadvantages associated with EFA, it should be apparent that SEM is likely 
to be a far more appropriate approach. Despite this, it must still be emphasised that 
many of the problems remain unresolved for SEM just as much as for EFA. In particu-
lar, criteria for goodness-of-fit are controversial, categorical data are hard to handle, 
non-Normality of data remains a major issue since Normality underpins most of the 
goodness-of-fit measures, and sample size is difficult to estimate in advance of carry-
ing out the study.

Example from the literature

De Vet et al. (2005) carried out a systematic review of the use of factor analysis 
for validation of the SF-36. Twenty-eight studies were identified. In 15 of these 
studies – over half – EFA had been used when the appropriate method should 
have been CFA.

Although SEM is suitable for fitting causal models, it often cannot distinguish 
between causal and non-causal models; both may be found to provide a seemingly 
adequate fit to the dataset. This is because the underlying models that are appropriate 
for representing QoL constructs are rarely of sufficiently clear forms that enable SEM 
to reject the non-causal version while conclusively accepting the causal model as pref-
erable. Thus SEM can rarely be used for inferring causality of individual QoL items.
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Example from the literature

Gundy et al. (2012) explored the fit of seven alternative measurement models 
for the EORTC QLQ-C30. Data were obtained from 4,541 patients with cancers 
of various sites and with stages from early disease to advanced metastatic 
cancer. They suggested that the PhysicalHealth/MentalHealth model of Figure 
6.8 seemed on balance to be the most promising, while acknowledging that the 
superiority of this model is “modest, and it remains to be seen whether its extra 
complexity – as compared to e.g., the simple HRQoL model – provides tangible 
(clinical) benefits”.

In this model Physical and Mental health are two higher-order factors, with 
QLQ-C3 items 1 to 27 reflecting aspects of either or both of these higher-order 
factors. QoL is reflected by items 29 and 30, the two global items. QoL can also 
affect or be affected by Physical or Mental health.

One might speculate that Physical health would be affected by symptoms 
such as pain, nausea and vomiting, fatigue, constipation and dyspnoea, result-
ing in a causal model with arrows from the items to ‘Physical’ in Figure 6.8. 
However, Gundy et al. found no evidence of better fit for such a model.
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Figure 6.8  A PhysicalHealth/MentalHealth structural model for the EORTC QLQ-C30.  
Source: Gundy et al., 2012, Figure 1(b). CC BY-NC 2.0 (http://creativecommons.
org/licenses/by-nc/2.0/uk/). Reproduced commercially with permission of Springer 
Science+Business Media.
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One of the largest hurdles for SEM in QoL research is that many models will inevitably 
be complex. For example, feedback mechanisms may be present, with many variables 
being a mixture of causal and effect indicators: difficulty sleeping may cause reduced 
QoL, which may in turn cause anxiety, which causes further sleeping problems and so 
further affects QoL. Diagrams such as Figure 6.6 and Figure 6.7 are a simplification 
of reality. In addition, it may be impossible with data from ordinary QoL studies to 
distinguish between alternative models: when variables can be both effect and causal 
simultaneously, there are estimation problems and sometimes the solutions cannot be 
determined uniquely. Many alternative models may all fit the observed data more-
or-less equally well. In many cases this might be anticipated from the scale develop-
ment process. Items that are highly correlated, whether causal or indicator items, most 
commonly form conceptually logical clusters – except in rare cases such as toxic side 
effects due to specific treatments, as illustrated in the examples above. More frequent 
problems can arise with formative items, as in the example in Section 5.7, where dis-
ease-related pain was assessed using weakly correlated items representing pain in each 
of the relevant locations; EFA and related techniques will interpret the low item-item 
correlations as indicating multiple factors.

6.13  Chi-square goodness-of-fit test

One of the most important features of SEM is testing goodness of fit. The statistical 
test that is used for this purpose is the chi-square test. However, statisticians have long 
recognised that the chi-square test is fundamentally different from many other statisti-
cal tests (Berkson, 1938). The main issues are:

	 1.	 A statistical significance test aims to estimate the probability that such extreme 
data as has been observed could have arisen purely by chance, if the null hypoth-
esis is true. In the case of the chi-square test, the null hypothesis is that the speci-
fied model will fully explain the patterns in the observed data.

	 2.	 Thus the chi-square test is a test of perfect fit. However, as we have seen, the mod-
els that we wish to explore are only ‘models’ and are inevitably a simplification 
of reality. These models cannot provide a perfect fit. There is little point in testing 
the absurd null hypothesis of perfect and exact fit.

	 3.	 A non-significant result merely indicates that the sample size is too small to be 
able to provide sufficient evidence of misfit. By increasing the sample size we 
can increase the chi-square statistic and make the p-value as highly significant as 
we wish. The magnitudes of chi square and the p-value are thus completely unin-
formative.

	 4.	 As Berkson observed in 1938, what is the point of applying a chi-square test to a 
moderate or small sample if we already know that a large sample would show p 
highly significant?
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	 5.	 A measure or index of model adequacy, or ‘goodness of fit’, is only valid if its 
magnitude is independent of sample size. If a model provides good (or poor) fit, 
the same measured level of fit should be found irrespective of the size of the sam-
ple. Chi-square is not a valid measure of goodness of fit.

	 6.	 As Berkson noted, the name ‘Chi-square goodness-of-fit test’ is misleading. It is a 
test of perfect fit, not adequacy or goodness.

	 7.	 Many of the problems associated with the chi-square test arise because we usu-
ally hope to accept the null hypothesis, as that would imply we have a model with 
adequate fit. However, most significance tests aim to reject the null hypothesis, 
thereby establishing that an effect is present. The chi-square test is arguably analo-
gous to an equivalence test, as for example when comparing two treatments with 
the intention of establishing equivalence. In that setting, we usually start by defin-
ing a threshold below which we are willing to accept non-inferiority of the new 
treatment. Applying similar logic to testing adequacy of structural models, what 
we need is a prespecified goodness-of-fit threshold that indicates adequate fit to 
the model. For that, we require a goodness-of-fit index.

In summary, the chi-square test cannot be recommended as an indicator for or against 
good or adequate fit. A model may show statistically significant evidence of misfit, yet 
still be a useful and practical simplification of reality. Alternatively, if a model does 
not show significant evidence of misfit, we can only conclude that the sample size is 
too small.

Example from the literature

Use of the chi-square test continues to cause controversy. Gundy et al. (2012) 
found that none of the models they examined passed the stringent chi-square 
test of model fit (p < 0.001 for all models), indicating that none of these mod-
els captured all of the systematic variation in the data. They noted, however, 
that with 4,541 observations, a chi-square test is quite sensitive to detecting 
even the smallest of deviations. Using a number of goodness-of-fit indices, they 
decided that all of their models “demonstrated at least an ‘adequate’ approxi-
mation to the data”. This provoked a commentary from McIntosh (2012), who 
cited a comment from Karl Joreskög: “the chi-square is all you really need”. In 
their response, Fayers and Aaronson (2012) used the points listed above, and 
also noted that another (anonymous) reviewer had written “I’m glad you report 
the df and chi-square in Table 2, but please stop talking about it as a measure 
of fit. It is useless as such with the N that you have”.

Thus the controversy about the appropriate goodness-of-fit measures was 
clearly in evidence in the reviews of the manuscript. Gundy et al. decided to 
report both chi-square and a variety of other approximate goodness of fit indi-
ces, but largely ignored the chi-square statistics and the corresponding p-values.
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6.14  Approximate goodness-of-fit indices

Instead of using chi-square, conclusions should be based largely upon the magnitude 
of approximate goodness-of-fit indices, known as AGFIs. These are less sensitive to 
sample size. Unfortunately, many goodness-of-fit indices have been proposed, each 
with varying properties, and it is difficult to make a specific recommendation. We list 
a few of the more commonly used indices and thresholds (Kline, 2010; Browne and 
Cudeck, 1992; Hu and Bentler, 1999).

Comparative Fit Index (CFI) ranges from 0 (poor fit) to 1 (perfect fit), and is derived 
by comparing the chi-squares of a baseline (null) model against the target model. Val-
ues of CFI > 0.95 are commonly taken to indicate good fit, and values > 0.90 indicate 
acceptable fit. Some authors advocate more stringent 0.97 and 0.95 respectively.

The Tucker–Lewis Index (TLI), also known as the Non-normed fit index (NNFI) 
also measures relative fit of the model chi-squares, and similar thresholds to the CFI 
are commonly used. It is little affected by sample size, and has performed well in 
simulation studies.

The Goodness of Fit Index (GFI) uses a ratio of chi-squares to calculate the propor-
tion of variance that is accounted for by the estimated population covariance matrix. It 
usually ranges from zero and one, with GFI > 0.95 indicating good fit, and GFI > 0.90 
for acceptable fit.

Root Mean Square Error of Approximation (RMSEA) measures the discrepancy 
between the observed and model-implied covariance matrices, adjusted for degrees of 
freedom. It is an assessment of approximate fit to the population covariance matrix. A 
commonly used rule of thumb is that a RMSEA < 0.05 indicates close fit, while values 
between 0.05 and 0.10 indicate acceptable fit, and values > 0.10 indicate poor approxi-
mate fit. Confidence intervals can be calculated for RMSEA.

The Standardised Root Mean Square Residual (SRMR) is an overall badness-of-fit 
measure that is based on the fitted residuals, where the residuals are the differences 
between the observed values and those estimated by fitting the model. Thus, zero indi-
cates perfect fit. An SRMR < 0.05 indicates good fit although it is not independent of 
sample size and so must be interpreted with caution.

Hu and Bentler (1999) have suggested a two-index presentation format. This 
always includes the SRMR, with one of the NNFI (TLI), CFI, RMSEA or a couple of 
others (not described here). Hu and Bentler also discuss the use of other thresholds 
for acceptable fit. Both the indices and the thresholds to be used must be prespeci-
fied in a protocol before any analyses are made. In the case of inadequate model 
fit, residuals and modification indices can be examined in order to detect possi-
ble causes. However, Barrett (2007) argues persuasively against the use of AGFIs, 
citing a number of examples that demonstrate the problems that can arise; a number 
of companion articles were published simultaneously, debating the quandary that 
this presents for SEM. Despite the controversial problems, most researchers con-
tinue to apply the recommendations of Hu and Bentler (1999), while regarding the 
thresholds as guidelines, not strict cut-offs, and assessing model fit on the indices 
collectively.
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6.15  Comparative fit of models

So far we have assumed a single hypothetical model is being fitted to the data. In many 
cases, as in the example above, a number of models are proposed and the objective is 
to select the model that provides the best adequate fit. In such a case it makes sense to 
test whether there is sufficient evidence to claim one model superior to another; if there 
is no statistically significant difference, we must accept that there is a lack of evidence 
to support claims of model superiority. On the other hand, as with any statistical sig-
nificance test, a significant p-value indicates that there is evidence supporting a claim 
of model superiority but provides no indication of the magnitude of the difference. For 
that, we must again resort to AGFIs.

The chi-square difference test is most commonly used for testing between two models. 
This is only valid if the models are nested, in the sense that the more complex model is the 
same as the simpler model but with additional constraints. For comparing goodness of fit, 
the AGFIs described above can be compared for the two or more models. In addition, the 
Akaike Information Criterion (AIC) is sometimes used (Burnham and Anderson, 2004). 
The AIC adjusts the chi-square value for the number of estimated parameters, and is a cri-
terion for badness of fit. Publications commonly cite the AIC and GFI or variants of these 
indices. Differences greater than 0.01 between pairs of TLIs, CFIs or RMSEAs are typi-
cally considered to be substantial enough to merit attention (Cheung and Rensvold, 2002).

Example from the literature

Gundy et al. (2012) grouped their seven postulated models into three ‘branches’ 
of nested models, and presented a table of chi-square tests for each branch. In 
addition, they compared CFI, TLI and RMSEA for each model (Table 6.7). The 
PhysicalHealth/MentalHealth model was ‘slightly’ superior to the other models, 
although as noted above it remains unclear whether the differences are large 
enough to provide tangible clinical benefits.
Table 6.7  Tests of fit and approximate goodness-of-fit indices for various structural models 
of the EORTC QLQ-C30

Model Chi-square* df CFI TLI RMSEA

1. ‘Standard’ Model 134 15 0.96 0.98 0.042

2. Physical Health, Mental Health, & QL 234 19 0.92 0.98 0.050

3. Physical Burden, Mental Function, & QL 248 18 0.92 0.97 0.053

4. Symptom Burden, Function, & QL 294 18 0.90 0.97 0.058

5. HRQL & QL 297 18 0.90 0.97 0.058

6. �Formative Symptom Burden (free 
weights), Function, & QL

277 17 0.91 0.97 0.058

7. �Formative Symptom Burden (fixed 
weights), Function, & QL

300 17 0.90 0.96 0.061

*All chi-square tests of model fit were significant at p < 0.001.
Source: Gundy et al., 2012, Table 2. CC BY-NC 2.0 (http://creativecommons.org/licenses/by-nc/2.0/uk/). 
Reproduced commercially with permission of Springer Science+Business Media.

http://creativecommons.org/licenses/by-nc/2.0/uk/
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6.16  Difficulty-factors

Some scales contain items of varying difficulty or severity. For example, we have illus-
trated the physical functioning scale of the EORTC QLQ-C30, which in Section 3.8 
we described as hierarchical or Guttman scale. Such scales, especially when formed 
by categorical items that have a limited range of response options – as is frequently the 
case when assessing PROs – can present problems for EFA and other analyses based 
on correlations (Ferguson, 1941). Consider a characteristic mobility scale: items such 
as run a long distance or carry heavy loads are aimed at discriminating between high 
performance patients, and these patients will presumably nearly all respond to items 
about standing up or getting out of bed using the single category ‘no problem at all’. 
Conversely, the majority of those patients with very low performance are likely to 
choose the category ‘not at all’ for ability to run a long distance or carry heavy loads. 
Thus the most and least difficult items will have weak correlation with each other, 
largely because of attenuation caused by the coarseness of the categories. This is prone 
to result in EFA mistakenly identifying two distinct difficulty-factors: one scale (fac-
tor) for high-mobility items and another for low-mobility items. In some examples, 
more than two difficulty-factors may be reported.

In the next two chapters, on item response theory (IRT) and computer-adaptive test-
ing, scales that are deliberately based on items of varying difficulty will be described. 
These methods usually assume unidimensionality. The difficulty-factors that are some-
times seen in this situation may appear confusing, even though the problems of diffi-
culty-factors have long been recognised. As Gibson (1960) commented: “The dilemma 
of difficulty-factors has beset factor analysts for many years. When a group of tests 
quite homogeneous as to content but varying widely in difficulty is subjected to fac-
tor analysis, the result is that more factors than content would demand are required to 
reduce the residuals to a random pattern.”

Example from the literature

Helbostad et al. (2011) describe the development of a computer adaptive 
assessment tool for evaluating the mobility of patients in palliative care. Since 
item response theory was being used for the item selection and scaling, the 
authors applied EFA to explore the dimensionality of the mobility scale. This 
suggested there were two underlying dimensions for mobility.

However, an alternative explanation is that one factor contained the least 
demanding items and reflected lower levels of functioning, and the other factor 
covered the most physically demanding items relating to higher functioning lev-
els. Thus, the factors might be merely reflected the clustering of similar items in 
these areas rather than two essentially different factors. However, as Helbostad 
et al. observed, ‘difficulty-factors’ have been a long-recognised phenomenon 
in factor analysis. The items selected for the mobility item-bank certainly vary 
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6.17  Bifactor analysis

As noted in Section 6.16, IRT models usually assume unidimensionality, implying that 
a single latent variable suffices to explain the observed item-responses. The validity of 
IRT applications (including linking, adaptive testing, scoring) depends critically on the 

extremely widely in their difficulty, unlike the items most commonly seen in tra-
ditional psychometric tests where factor analysis is likely to be more appropriate.

The strikingly linear pattern of the item-loadings in Figure 6.9 may be com-
pared to the clusters of items that are more commonly seen for EFA, as in 
Figure 6.3; this is consistent with difficulty-factors. The high internal consist-
ency (Cronbach’s alpha = 0.97) and a moderate to high correlation of items to 
the total scale further indicates good internal consistency of the scale. Thus, 
overall, the assumption of unidimensionality seems plausible.
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Figure 6.9  Plot of Factor 2 against Factor 1, using the rotated factors from EFA of the 
mobility items. Source: Helbostad et al., 2011, Figure 1. Reproduced with permission of 
Springer Science+Business Media.
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unidimensionality assumption. However, apart from simple homogeneous measures, 
few multi-item scales are likely to be strictly unidimensional. In many cases, multi-
dimensionality is due to the heterogeneous item content that is required to properly 
represent the complexity of health constructs. Acknowledging this fact, researchers 
have focused on methods of exploring whether data are ‘unidimensional enough’ for 
application of IRT. Such scales may be termed ‘essentially’ or ‘sufficiently’ unidimen-
sional. While various methods have been proposed, Reise et al. (2007) advocate the 
use of bifactor analysis and provide an illustration using PROs.

In essence, bifactor analysis consists of fitting a model in which each item is allowed 
to load on a ‘common factor’ and more specific ‘group factors’. The common factor is 
formed as a general overall factor from all of the items. The group factors are the mul-
tiple dimensions that are hypothesised to exist, for example either derived from prior 
beliefs or as a result of EFA. In the simplest case, the comparison might assess whether 
the items represent two distinct dimensions with each item belonging to one and only 
one of the two group factors, or whether a single-dimension solution is adequate. The 
factors are constrained to be ‘orthogonal’ or mutually uncorrelated, so that all covari-
ance is partitioned either into loadings on the common factor or onto the group factors. 
If the standardised loadings on the common factor are all salient (defined as > 0.30) 
and substantially larger than loadings on the group factors, the item pool is considered 
to be sufficiently homogeneous (McDonald, 1999). We are also interested in examin-
ing whether the loadings for the common factor (from the bifactor model) are only 
slightly reduced from the loadings obtained by fitting only a unidimensional factor; 
this would support claims for sufficient unidimensionality. When modelling patient-
reported outcomes, the bifactor model has been suggested as having advantages over 
the closely related concept of higher-order factors (Chen et al. 2006).

Example from the literature

Pain is frequent in palliative cancer patients. Reliable pain assessment is nec-
essary for patient management, treatment decisions, and clinical studies. In 
palliation, the most important dimensions of pain are intensity and interfer-
ence. However, since pain interference is a consequence of and largely reflects 
pain intensity, Fayers et al. (2011) postulated that an overall summary measure 
of pain severity could be constructed by combining these two dimensions. Pain 
items, extracted from various validated questionnaires, were available from 
assessments of 395 cancer patients in palliative care and 168 chronic pain 
patients.

Experts reviewed the pain items, determining whether they assessed mainly  
pain intensity or pain interference (Table 6.8). EFA confirmed that both  
one- and two-dimension models (Models 1 and 2) were consistent with the 
observed data. The one-factor solution of Model 1 accounted for about 82% 
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6.18  Do formative or causal relationships matter?

Section 6.10 argued that there EFA should be used with caution when there are causal 
items, and Section 6.11 supported this with an example in which a factor was clearly 
a heterogeneous combination of treatment-related side effects that made little sense as 
a meaningful construct of QoL. On the other hand, in Section 6.12 the large study by 
Gundy et al. (2012) failed to find evidence that a causal model provided better fit. At 
first sight this may seem curious.

The technique of EFA was originally developed with parallel, reflective items firmly 
in mind (see Sections 2.6 and 2.7). In such a model, the items have been selected and 
developed as being independent characteristics of the postulated underlying latent vari-
able, such as intelligence or personality. In contrast, in QoL research, for disease- or 
treatment-specific instruments we endeavour to identify all the symptoms that are rel-
evant and impact on a patient’s well-being. In the first case, EFA identified clusters of 
highly correlated items – factors – and these can reasonably be interpreted as constructs 
that underlie the latent variable. In the second case, EFA again identifies clusters of 
highly correlated items; that is what EFA is good at doing. This time, however, when 
symptoms are highly correlated and form ‘symptom clusters’, it is because they are 
closely related, both conceptually and through underlying biological mechanisms. For 
example, it is no surprise to find nausea and vomiting are highly correlated and form a 
‘factor’. Nor is it in the least surprising that items assessing pain severity and pain inter-
ference are correlated and form a ‘factor’. Usually the factors from EFA will be concep-
tually sensible, because highly correlated items are usually closely related to each other.

of the variation in the data, while the two-factor solution increases this by a 
modest amount to 89.8%, again providing but limited support to the presence 
of two factors. Model 3, the bifactor model, simultaneously fits a common 
factor as well as the intensity and interference factors. Factor loadings from 
Model 3 suggest that although it would be reasonable to regard the pool of 
items as unidimensional, it is preferable to retain two factors. This is shown 
by the loadings for the interference and the intensity items in the bifactor 
model, which are mainly above 0.3, while those for the common factor were 
rather lower than loadings shown for Model 1. This suggests that the intensity 
and the interference items do form separate clusters that are distinct factors 
or ‘dimensions’ of pain. However, the reduction from Model 1 is not substantial 
and thus the results of the bifactor analysis also imply that the two dimen-
sions may be combined with little loss of information to form a single factor 
for overall pain severity.

Subsequent analyses also suggested that the two-factor solution might be 
simply an example of ‘difficulty-factors’, with the interference items predomi-
nantly indicating very high levels of pain.
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Two examples where this fails have been provided. Firstly, Fayers and Hand 
(1997a), as described in Section 6.11, exemplified this by deliberately choosing a sam-
ple in which a control group of patients is contrasted against another group of patients 
receiving a treatment known to provoke a mixture of ‘causal’ side effects; a seemingly 
illogical combination of symptoms formed a factor. Secondly, EFA failed to produce 
the desired result in the example of items in the pain scale of Whistance et al. (2009), 
described in Section 5.7. Here, the three pain items are weakly correlated formative 
indicators, and EFA would not indicate a single factor even though the items can com-
bine to form a scale for ‘pain at any relevant site’.

When formative or causal items are included, any extrapolation of the EFA results 
to QoL constructs is dubious and relies upon additional assumptions that are frequently 
true but rarely spelt out. For example, if an instrument developer included some items 
that are irrelevant to QoL but are highly correlated with each other, EFA would cor-
rectly identify them as a ‘factor’ even though they are irrelevant to the construct sup-
posedly being evaluated. But if we assume that the instrument developer has been 
thorough and sensible, such items would already have been thrown out before get-
ting as far as EFA. Similarly, before even collecting data, instrument developers have 
usually selected and included items because they were deemed to have high impact 
on QoL.

So, with EFA we usually obtain the ‘right’ answers, but for the wrong reasons. The 
wrong theoretical model is being applied, but it may frequently appear to work well 
in practice. The factor loadings for causal indicators are difficult to interpret, and for 
composite indicators are meaningless.

6.19  Conclusions

Causal models, SEM and CFA hold great potential but have been little used in QoL 
research. There remain many controversial issues to be resolved before they can be 
recommended for routine usage. The simplest of the three, EFA, has many disadvan-
tages, not the least of which is that it will frequently be an inappropriate model for 
QoL instruments because of the occurrence of causal indicators. Perhaps the principal 
attraction of EFA is its relative ease of application, and its ability to suggest possible 
factors in the data; but, as emphasised, these factors must be regarded as tentative and 
treated with circumspection. Also, provided one can be confident that only indicator 
variables are present, EFA offers convenient facilities for assessing the number of fac-
tors necessary to explain the data; dimensionality should always be explored before 
applying techniques such as item response theory. EFA is available through many of 
the commonly used statistical packages, and analyses using EFA can readily be car-
ried out. On the other hand, SEM models are considerably more difficult to specify, 
even though most software is moving towards model specification using graphical path 
diagrams. The results output by the software packages are more difficult to interpret. 
Large sample sizes are required to fit or evaluate these models. But SEM does offer an 
appropriate means for confirming construct validity.
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The emphasis with all three procedures is in testing goodness-of-fit of models. 
Alternative methods, such as item response theory, offer more justifiable methods for 
developing the scoring algorithms for questionnaires.

One overall conclusion should be that EFA, CFA and SEM are not black-box pro-
cedures that can be applied blindly. Before embarking on any such analysis, the inves-
tigator must consider the possible path structures for the relationships between the 
explanatory variables and the latent structures. Usually there will be a number of alter-
native models that are thought plausible. The role of the approaches we have described 
is to examine whether one or more of these models provides reasonable fit, and if it 
does the investigator may feel satisfied. But this neither ‘proves’ that the model is cor-
rect and unique, nor that the scale has been truly ‘validated’; it confirms only that there 
is no evidence of bad fit.

6.20  Further reading, and software

Although dated, the book by Gorsuch (1983) is still recommended for a detailed 
description of factor analysis and related techniques. A more up-to-date and briefer text 
is Child (2006). Unlike many others on this topic, these books avoid detailed mathemat-
ics while covering factor analysis in depth; for example, Gorsuch has a whole chapter 
about selecting the number of factors, and two chapters about rotation methods. Nun-
nally and Bernstein (1994) contains extensive chapters about EFA and CFA, and has the 
advantage of greater emphasis on psychometric scales. Structural equation and latent 
variable models are fully described by Bollen (1989) and Kline (2010). Barrett (2007), 
and the many companion articles that were published simultaneously, make interesting 
reading about goodness-of-fit indices and the chi-square test of perfect model fit.

Widely used programs for fitting SEM models include AMOS (Arbuckle, 2009), 
EQS (Bentler, 1995), LISREL (Jöreskog and Sörbom, 2006) and MPLUS (Muthén 
and Muthén, 2010). Byrne (1998, 2006, 2009, 2011) has written practical books exem-
plifying the use of all these packages. Many statistical packages now implement SEM 
facilities.
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7
Item response theory and 
differential item functioning

Summary

In contrast to the traditional psychometrics, item response theory introduces a different 
underlying model for the responses to questions. It is now assumed that patients with 
a particular level of QoL (or other PRO) will have a certain probability of respond-
ing positively to each question. This probability will depend upon the ‘difficulty’ of 
the item in question. For example, many patients with cancer might respond ‘Yes’ to 
‘easy’ questions such as ‘Do you have any pain?’, but only patients with a high level 
of pain are likely to reply ‘Yes’ to the more ‘difficult’ question ‘Have you got very 
much pain?’ This chapter explains the role of item response models for instrument 
development, and how to fit them. Use of these models to examine the psychometric 
properties of items and scales, and in particular differential item functioning, is also 
described.

7.1  Introduction

As we have seen, under the traditional psychometric model of parallel test items with 
summated scales, it is assumed that each item is a representation of the same single 
latent variable. This is therefore a simple form of unidimensional scaling, in which it 
is frequently assumed that the items are of equal importance for measuring the latent 
variable, and that summated scales with equal weights can be used. It is also implicit to 
this model that the intervals between the levels (responses) for each category are equal, 
so that (e.g. on a typical four-category scale as used on QoL questionnaires) a change 
from 1 to 2 is of equal importance as a change from 2 to 3. Since it is assumed that each 
item is an equally strong estimator of the latent variable, the purpose of increasing the 
number of items is to increase the reliability of the scale and hence improve the preci-
sion of the scale score as an estimate of the latent construct.
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In contrast, item response theory (IRT) offers an alternative scaling procedure. IRT 
was developed largely in fields such as education, and initially focused upon the simple 
situation of binary items such as those that are frequently found in educational tests and 
which are scored ‘correct’ or ‘wrong’. There are a number of reasons explaining the 
importance of IRT in education. Firstly, the traditional psychometric theory of parallel 
tests tends to result in items of equal difficulty. In educational tests this is not appropri-
ate, as it tends to polarise students into those who find all questions easy and those who 
do not have the ability to answer any question. IRT methods lead to examinations that 
include questions of varying difficulty, enabling students to be classified into levels of 
ability. Secondly, educational tests should not discriminate unfairly between students 
of equal ability but of different sex, race, culture, religious background or other fac-
tors deemed irrelevant. IRT provides sensitive methods for detecting differential item 
functioning (item bias) in different subgroups. Thirdly, in annual examinations the 
questions will have to change in each successive year to prevent students learning of 
the correct solutions. IRT provides methods for standardisation, to ensure that each 
year the examinations contain questions of similar difficulty and result in comparable 
overall scores. Fourthly, when students are faced by questions that are beyond their 
capability, if the valid responses are ‘Yes’ and ‘No’, it is likely that a proportion of the 
correct responses will be simply lucky guesses. IRT models can support adjustment for 
guessing, although this is less relevant in clinical applications. Thus IRT meets many 
of the demands of educational tests and much of the terminology such as test difficulty 
and item bias is most easily explained with reference to educational examinations.

Many aspects of IRT are equally pertinent to PROs and QoL. IRT is most clearly 
of relevance when considering scales that aim to classify patients into levels of abil-
ity, for example activities of daily living (ADL) or other physical performance scales. 
These scales usually contain questions describing tasks of increasing difficulty, such 
as ‘Can you walk short distances?’, ‘Can you walk long distances?’ and ‘Can you do 
vigorous activities?’ with ‘Yes’ or ‘No’ response items. As a consequence, the earli-
est examples of IRT in relation to PROs have been in the area of assessing ADL and 
mobility. Pain assessment is another natural field of application because level of pain 
may be regarded as analogous to level of ability, and many pain instruments contain 
items relating to severity or ‘difficulty’.

From a modelling perspective, the main difference between IRT and traditional 
methods is that IRT considers the probability that a respondent selects particular cat-
egories of each item, whereas traditional methods focus on average scores; an obvious 
analogy can be made with linear regression versus logistic and ordered logistic regres-
sion. Historically, early applications of IRT focused on binary outcomes such as Yes/
No or Correct/False while most PRO items permit responses at more than two levels 
and multicategory IRT is commonly applied.

Considering the practical aspects of item selection highlights the differences 
between the traditional parallel test and IRT approaches. A simple traditional test 
might consist of a single item, scored with multiple categories ranging from very poor 
(lowest category) to excellent (highest category). Then ability is assessed by the level 
of the response category. To increase precision and reliability, using traditional theory, 
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additional parallel tests would be introduced and the average (or sum-score) used as 
the measure. In contrast, under the IRT model, items are chosen to be of varying dif-
ficulty, and to increase precision and reliability any additional items that are introduced 
are chosen so as to have difficulties evenly distributed over the range of the continuum 
that is of greatest interest. Although originally IRT-based tests included mainly dichot-
omous items, there has been a trend towards multicategory tests that can take three or 
four response levels.

In this chapter we primarily consider the application of IRT methods for valida-
tion of instruments, including the use of IRT to identify both the amount of informa-
tion provided by each item in a multi-item scale and the extent of any differential 
item functioning. The next chapter describes how IRT can also be used for scoring of 
responses even when respondents complete different subsets of items, and how this can 
be exploited in the development of efficient computer-adaptive tests.

7.2  Item characteristic curves

The principal concept in IRT is the item characteristic curve, usually abbreviated as 
ICC (not to be confused with ICC, intraclass correlation). The ICC relates the prob-
ability of a positive response to the level of the latent variable. If we consider a ques-
tionnaire that is intended to measure physical functioning, the ICC for a single item is 
constructed as follows.

First, we require an estimate of the latent variable (overall physical functioning) for 
each patient. Ideally there would be an independent estimate of the ‘true’ value of their 
physical functioning, but in practice that is unknown. Possible choices include use of 
(i) a global question such as ‘Overall, how would you rate your physical condition’, 
(ii) an internally derived estimate based upon a number of items on the questionnaire, 
or (iii) another, possibly lengthier, questionnaire that has already been validated. For 
each level of the latent variable it is possible to calculate the percentage or probability 
of patients who respond positively to the item. When items have multiple response cat-
egories, it is customary to collapse them into two levels for estimating the probability 
of, for example, having ‘no difficulty or limitations’ versus ‘some difficulty’. Usually 
the ICC obtained will look similar to those in Figure 7.1. The global score is assumed 
to be an estimate of the true value of a latent variable, θ, such as physical functioning. 
Thus patients with a global score of 3 will on average give a positive response to item 
A approximately half of the time, but have only a very small probability (less than 
0.05) of responding positively on item B.

Item difficulty

In educational examinations there is the concept of difficulty when comparing items. 
The more intelligent or more successful pupils are able to answer even difficult ques-
tions successfully. In Figure 7.1, the two items shown vary in their difficulty. If the 
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global score described educational attainment, item B would represent a more difficult 
question since for any particular global score the probability of answering B correctly 
is less than that for A. Although ‘difficulty’ is also a suitable word for describing abil-
ity to perform physical functions, it may be intuitively less obvious for describing 
some other aspects of PRO measures. It simply means that for a given value of the 
latent variable fewer patients will answer positively to a question related to a more 
advanced symptom or a more demanding task. Thus the difficulty parameter identifies 
the location of the item along the construct’s continuum. In this chapter we adopt the 
widely used terminology ‘item difficulty’, although some authors prefer the less spe-
cific or more neutral words ‘item location’.

One of the most useful features of IRT is that it provides a solid theoretical 
framework for estimating this item difficulty. Thus IRT facilitates the design of 
questionnaires containing items with a spread of levels of difficulty, and ena-
bles formal procedures to be used for selecting these items. It also leads to the 
development of scaling and scoring procedures for the aggregation of items into 
summary measures of ability. It provides methods for comparing different ques-
tionnaires and enables measures of patients’ ability scores to be standardised across  
instruments.

Another important aspect of IRT is that it is ‘sample free’, because the relative item 
difficulties should remain the same irrespective of the particular sample of subjects. 
Thus the most difficult item remains the most difficult item irrespective of the sample 
and the mix of patient ability levels. It is this feature that enables IRT to be used for 
providing standardised tests.

Figure 7.1  Item characteristic curves (ICCs) for two items of differing difficulty.
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Item discrimination

In Figure 7.1, a patient who responds positively to item A is most likely to have a 
global score of 3 or more; however, even about 10% of patients with a global score of 
2 are expected to respond positively. Thus a positive response to A does not provide 
a clear indication of the global score. An ideal test item is one with an ICC nearly 
vertical, since the central sloping region of the S-shaped curve represents the region 
of uncertainty in which we cannot be certain whether patients with a specified value 
of the global score will respond positively or negatively to the item. Conversely, an 
extremely poor item would be one with an ICC close to the horizontal line correspond-
ing to a probability of 0.5, for which all patients irrespective of their global score 
would answer positively half the time; this item would contain no information about 
the patients’ ability.

The ability of a test to separate subjects into high and low levels of ability is known 
as its discrimination. Thus discrimination corresponds to the slope of the curve, and 
the steeper the slope the better. In Figure 7.2, item A discriminates between patients 
better than item B. Thus, for item A, patients whose global score is less than 2 will 
answer positively with low probability, and patients with a score greater than 4 will do 
so with high probability. Only those patients whose score is between 2 and 4 may or 
may not respond positively – a range of uncertainty of 4–2. In contrast, item B has a 
wider range of uncertainty of approximately 7–3.

Difficulty and discrimination are the two fundamental properties of binary items in 
questionnaires. If an item has poor discrimination, it may help to include several other 
items of similar difficulty so as to improve the reliability of the test. If an item has 
good discrimination, it is less necessary to have additional items with closely similar 
difficulty. An ideal test would consist of evenly spaced, near vertical ICCs that cover 
the range of abilities that are of interest.

7.3  Logistic models

Although IRT is a generic term for a variety of models, the most common form is the 
logistic item response model. It has been found that logistic curves provide a good fit to 
many psychological, educational and other measurements. If a patient, h, has an ability 
which is represented by the latent variable θh, then for a single item in a test the basic 
equation for the logistic model takes the form

	 P
b

b
( )

exp{ }

1 exp{ }
,h

h

h

θ θ
θ

=
−

+ −
	 (7.1)

where P(θh) is the probability of a positive response by patient h, exp is the exponential 
function, and b is the item difficulty that we wish to estimate. Alternatively, this equa-
tion can be rearranged and written in the so-called logit form
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P

P
blog

( )

1 ( )
( ).h

h
h

θ
θ

θ
−







= − 	 (7.2)

Thus b is the value of θh that has a probability of 0.5 for being positive (or negative). 
For example, in Figure 7.1, if the global score is 3 (b = 3) then item A has probability 
of 0.5 of being endorsed, and similarly when b = 5 for item B.

Since equation (7.1) requires only a single parameter b to be estimated, it is com-
monly described as the one-parameter logistic model. It is also often called the Rasch 
model in honour of the Danish mathematician who promoted its usage in this area 
(Rasch, 1960). This equation can be generalised by adding a second parameter, a. It 
then becomes

	 P
a b

a b

exp{ ( )}

1 exp{ ( )}
.h

h

h

θ
θ

θ
( ) =

−
+ −

	 (7.3)

The parameter a in equation (7.3) measures the slope of the ICC curve and is called 
the discrimination of the test. This is known as the two-parameter logistic model. 
Figure 7.2 shows ICCs with the same values of b as in Figure 7.1, but with a taking the 
values 1.75 for item A and 1.0 for item B. When there are n items on the questionnaire 
it is possible to fit a generalised form of equation (7.3), with different values of a and 
b for each item.

Figure 7.2  Item characteristic curves for two items of differing discrimination and difficulty.
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One of the important properties of the logistic item response model is that it proves 
unnecessary to have estimates of the latent variable θ, provided one is interested only 
in the relative difficulties and discrimination of the items. The reason for this is that 
one can identify the relative positions of the curves without knowing the true values 
of the latent variable. These relative positions, corresponding to the relative sizes of 
the b-parameters, are usually expressed in terms of log odds-ratios (logits). A logit dif-
ficulty is the mean of the log odds that a patient of average ability will be able to move 
from one category to the next higher one. Typically the logits will range from −4 to +4, 
with +4 being the most difficult test.

Logistic regression

Although Rasch and other item response models are logistic models, there are crucial 
distinctions between estimation for IRT and standard statistical logistic regression. In 
logistic regression, θ is known and is the dependent or ‘y-value’; in the Rasch model it 
is unknown. In the Rasch model, θh takes different values for each patient, h, leading 
to as many unknown parameters as there are subjects. Hence IRT is related to the so-
called conditional logistic regression. For each item, i, one or more of the correspond-
ing item parameters ai and bi have to be estimated according to whether the one- or 
two-parameter model is used.

Example from the literature

Haley et al. (1994) used IRT to examine the relative difficulty and the reproduc-
ibility of item positions of the 10-item physical functioning scale of the MOS 
SF-36, in a sample of 3,445 patients with chronic medical or psychiatric condi-
tions. The Rasch one-parameter logistic model was used, with each item first 
dichotomised into ‘limitations’ or ‘no limitations’.

The item difficulties of Table 7.1 were estimated in terms of Rasch logit val-
ues, and largely confirmed the authors’ prior expectations. ‘Bathing or dressing’ 
was the easiest task (with a value −3.44), and ‘vigorous activities’ the most 
difficult (+3.67). The standard errors (SEs) of the b-values show the observed 
differences to be highly significant (greater than 2 × SE).

Item difficulties are clustered in the central region of the scale, with four 
items between −0.5 and +0.5. There is weaker coverage of the two extremes 
of the scale. The goodness-of-fit statistics (which we describe in Section 7.5) 
indicate that the Rasch model does not fit very well, with three items scor-
ing item-misfit indices greater than +2, and another five items scoring less 
than −2.
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7.4  Polytomous item response theory models

The models described have been for binary or dichotomous items. Most QoL ques-
tionnaires use polytomous items. Creating dichotomous responses by grouping the 
response categories (as was done in the example of Table 7.1) results in loss of infor-
mation. Appropriate models should be used according to the data. Although various 
other IRT models have been proposed for particular applications, such as psychomo-
tor assessment, we focus on those models that are most commonly encountered in 
outcomes research. One approach that has been proposed for ordered categorical data 
involves dichotomising the data repeatedly at different levels, so that each g-category 
item is effectively decomposed into g – 1 binary questions. Thus an item that has three 
levels (such as ‘not limited’, ‘limited a little’, ‘limited a lot’) can be regarded as equiva-
lent to two binary questions: ‘Were you limited a little in doing vigorous activities?’ 
(Yes or No), and ‘Were you limited a lot in doing vigorous activities?’ (Yes or No). In 
this way the PF-10, for example, is equivalent to 20 binary questions that can be ana-
lysed by a Rasch analysis. A number of models have been proposed that adopt this and 
other strategies. The most commonly used polytomous models are the graded response, 
partial credit, rating scale and generalised partial credit models, and these have all been 
used for modelling PROs that have ordered categorical response options. With these 
models it is usual to refer to thresholds rather than difficulties, where the threshold 
parameters identify the boundaries between successive categories; a response thresh-
old is defined as the point at which a pair of consecutive response categories for an 
item are equally likely to be endorsed. Table 7.2 summarises the main models. Those 
that constrain the item slopes (discrimination) to be equal across all items belong to 
the ‘Rasch family’ of models.

Table 7.1  Rasch analysis of the PF-10 subscale in the SF-36

PF-10 items
b  

Item difficulty SE Item-misfit index

Vigorous activities 3.67 0.04 2.3
Climbing several flights of stairs 1.44 0.04 −3.4
Walking more than one mile 1.27 0.04 −0.2
Bending, kneeling, stooping 0.36 0.04 6.2
Moderate activities 0.18 0.04 −2.7
Walking several blocks −0.11 0.04 −3.1
Lifting, carrying groceries −0.36 0.04 0.0
Climbing one flight of stairs −1.07 0.05 −5.1
Walking one block −1.93 0.06 −3.2
Bathing or dressing −3.44 0.07 8.9

Source: Hayley et al., 1994. Reproduced with permission of Elsevier.
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7.5  Applying logistic IRT models

Having seen the range of IRT models, how should we choose, fit and evaluate a suit-
able model?

Choosing IRT models

There is some controversy between those who favour the one-parameter Rasch model 
(and the corresponding generalisations for polytomous data), as opposed to those who 
advocate the more general two-parameter models. In education, where so much of the 
development of IRT has been carried out, there is a limitless choice of potential exami-
nation questions that can be coded ‘right’ or ‘wrong’. The enthusiasts for the Rasch 
model point to the relative robustness of this model, and to a number of other desirable 
features to do with simplicity and consistency of scoring the scales. Thus they advocate 
selecting test items that fit the Rasch model, and rejecting all other candidate test items. 
In other words, they choose data that fit the model. In medicine, the choice of items is 
usually restricted to those that have high face and content validity, and there are finite 
choices for rephrasing any questions that do not fit the model. Thus it is common to find 
that one-parameter models are inadequate, and that to obtain reasonable fit we must use 
a two-parameter model. In medicine, we must choose a model that fits the data.

The choice of model can be tricky and is usually a combination of trial-and-error 
and evaluation of goodness-of-fit. Few software packages fit the full range of models 
and at the same time offer adequate diagnostics and goodness-of-fit measures.

Table 7.2  Characteristics of the main IRT models

Model Item response format

Model characteristics

Discrimination Difficulty/Threshold

�Rasch Model  
(One Parameter 
Logistic Model)

1-PL Dichotomous Equal across 
all items*

Varies across items

�Two Parameter 
Logistic Model

2-PL Dichotomous Varies across 
items

Varies across items

�Nominal 
Response Model

NRM Polytomous (no pre-
specified ordering of 
response categories)

Varies across 
items

No ordering of category 
thresholds

�Graded Response 
Model

GRM Polytomous, 
ordered categories

Varies across 
items

Varies across items

�Partial Credit 
Model

PCM Polytomous, 
ordered categories

Equal across 
all items*

Varies across items

Rating Scale 
Model

RSM Polytomous, 
ordered categories

Equal across 
all items*

Distance between 
categorical threshold steps 
is constant across items

Generalised Partial 
Credit Model

GPCM Polytomous, 
ordered categories

Varies across 
items

Varies across items

*Models with equal discrimination across all items belong to the ‘Rasch family’.
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Fitting the model

Fitting IRT models and estimating the item-parameters for difficulties and abilities is 
complex and usually requires iterative calculations. Most standard statistical packages 
have limited IRT-specific facilities for modelling although, as noted above, conditional 
logistic regression can in theory be used. However, specialised software incorporates 

Examples from the literature

Reeve et al. (2007) argued in favour of the graded response model (GRM): 
“The GRM is a very flexible model from the parametric, unidimensional, polyt-
omous-response IRT family of models. Because it allows discrimination to vary 
item by item, it typically fits response data better than a one-parameter (i.e.  
Rasch) model. Further, compared with alternative 2-parameter models such as 
the generalised partial credit model, the model is relatively easy to understand 
and illustrate to ‘consumers’ and retains its functional form when response 
categories are merged. Thus, the GRM offers a flexible framework for modelling 
the participant responses to examine item and scale properties, to calibrate the 
items of the item bank, and to score individual response patterns in the PRO 
assessment.”

In contrast, Petersen et al. (2011) chose the generalised partial credit model 
(GPCM) as the basis for developing a computerised adaptive test for the EORTC 
QLQ-C30 physical functioning dimension: “In the GPCM, each item has a slope 
parameter describing the item’s ability to discriminate between subjects with 
different levels of PF, and a set of threshold parameters describing how likely 
it is to report problems on the item. An advantage of the GPCM is that it is 
a generalization of other well-known item models. If all items have the same 
slope, the model reduces to the partial credit model, which belongs to the fam-
ily of Rasch models.” However, Petersen et al. added: “To evaluate the effect of 
model choice on the item fit, we planned also to calibrate the graded response 
model, which has the same number of item parameters as the GPCM and often 
gives trace lines that are very similar to the GPCM trace lines.”

Pallant and Tennant (2007) took another different approach, arguing that 
only Rasch models possess consistent measurement properties. They used 
the partial credit model (PCM) because it has equal slopes for all items and 
thus belongs to the Rasch family of models, explaining: “Note the orienta-
tion; because the model defines measurement, data are fitted to the model to 
see if they meet the model’s expectations. This is opposite to the practice in 
statistical modelling where models are developed to best represent the data.” 
This approach emphasises the testing of adequacy of fit of the model. Items 
are only accepted provided they have closely similar discrimination slopes and 
adequately satisfy the model.
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better estimation facilities and display of results, and has the added advantage that IRT 
diagnostics such as goodness-of-fit indices are usually provided. Some programs for 
IRT modelling are listed at the end of this chapter (Section 7.15). Software for logistic 
IRT analysis usually displays estimates of the logit values and their accompanying 
standard errors. The estimated logits can be compared with each other, and their differ-
ences tested for significance using t-tests.

Graphical methods for goodness of fit

Graphical methods, and in particular the display of ICCs and item information curves, 
provide a useful overview of which items have the best fit and which are problematic; 
it is recommended that such displays form a starting point to any appraisal of item fit. 
Since most PROs are assessed by items that can have multiple response options, we 
shall assume polytomous IRT models are being used.

Item characteristic curves show which items contribute most effectively. The 
ideal item will have the following features. It should exhibit steep slope param-
eters, corresponding to very ‘peaky’ curves for each category on the ICC; such items 
have high discrimination. Successive categories should show distinct and uniformly 
spaced curves. The item should cover a distinct range of the continuum, comple-
menting other items in the scale. An item with these properties contributes high  
levels of information to the dimension that is being evaluated. Conversely, poor 
items are those with weaker slopes that result in shallow curves. Four test items are 
shown in Figure 7.3, items A and C having steeper slopes than item B. Items A and 
C also cover different parts of the trait-level continuum, with A separating trait levels 
from approximately 0 to 2 and C from −2 to 0. Both are therefore useful. Although 
item B covers a similar range of trait levels as C, the less steep slopes of B tell us that 
it is less informative than C.

Response thresholds are an important feature of the ICC-plot. Since response thresh-
olds are the points at which consecutive response categories of an item are equally 
likely to be endorsed, they are indicated on the ICC-plot by the points where the curves 
for adjacent categories intersect. A well-functioning item will have a response for-
mat that respondents use in a consistent manner. In particular, the response thresholds 
between successive categories should be ordered, such that the threshold between cate-
gories 1 and 2 falls below the threshold between categories 2 and 3, and so on. An item 
that shows one or more disordered response thresholds does not provide an adequate 
fit to an IRT model. The disordered responses indicate that responders are not able to 
discriminate sufficiently between the response categories they are asked to select from. 
Overlapping and disordered categories either indicate items with problems that should 
either be excluded or, at the very least, have categories that should be combined or 
reworded to produce a revised item with better performance. In Figure 7.3, category 2 
of item D shows disordered thresholds because the intersection of categories 1 and 2 is 
to the right of the intersection of categories 2 and 3; respondents appear to be confused 
as to when to choose response 2. Thus this item has poor characteristics, and response 
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option 2 should either be combined with one of the adjacent categories, the options 
reworded, or the item excluded.

Item information functions can summarise the overall value of including individual 
items. Items that contribute little information are natural candidates for either removal 
or modification. Test information functions can also expose areas in the scale that are 
inadequately covered, and which would benefit by the addition of extra test items. 
Low levels of information imply high measurement error, because the test information 
function is inversely related to the square of the measurement error associated with the 
varying levels of the scale score:

	 SE InformationFunction= 1 . 	 (7.4)

The reading material listed at the end of this chapter describes how to estimate and 
use information functions, and most IRT software has facilities for displaying them. 

Figure 7.3  Item characteristic curves for four items, each with four categorical response options. 
The intersections between adjacent categories correspond to threshold parameters of the Generalized 
Partial Credit Model. Items A and C exhibit good properties, having steep slopes and covering differ-
ent trait levels; item B covers a similar range of levels to C, but has weaker discrimination illustrated 
by less steep slopes; Item D is a weak item with disordered thresholds.
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Figure 7.4  Item information curves corresponding to the four items of Figure 7.3. Items A and C 
are markedly superior to items B and D.
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Example from the literature

Fayers et al. (2005) explored the use of the 20-item Mini-Mental State Exami-
nation (MMSE) in palliative care patients. The MMSE is normally used as an 
interviewer-administered screening test for dementia, with a score of less than 
24 out of the maximum 30 being regarded as the threshold implying cognitive 
impairment. It is also the most commonly used instrument for the assessment 
of cognitive impairment and delirium in palliative care. For these patients it 
is especially important to minimise the test burden, and it was found that 
between four and six items were sufficient when screening for delirium in these 
patients, with little loss of information compared to the full test. In Figure 7.5, 
a score of −3 corresponds to the MMSE threshold score of 24.

The item information curves corresponding to the items in Figure 7.3 are shown in 
Figure 7.4. Items A and C are more informative than B and D, and as already observed 
A and C target different levels of the trait being assessed.
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Goodness-of-fit indices

Goodness-of-fit indices enable the adequacy of the model to be assessed, and a poor fit 
implies that one or more of the assumptions has been violated. Thus, a poor fit for a 
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Figure 7.5  Standard error of MMSE score estimates in palliative care patients, showing that 
a 6-item test has similar properties to the full MMSE. Source: Adapted from Fayers et al., 2005, 
Figures 2 and 4. Reproduced with permission of Elsevier.

Example from the literature

Pallant and Tennant (2007) examined responses to the HADS questionnaire made 
by from 296 outpatients attending a six-week musculoskeletal rehabilitation 
programme. The objective was to assess the appropriateness of a total score 
(HADS-14) as a measure of psychological distress. Initial testing revealed that 
responses to the two central options of the item ‘dep2’ seemed to be over-
lapping. This led to these response options being combined, leaving a three-
category scale. Table 7.3 shows the results from fitting the PCM after item ‘dep2’ 
was recoded. The fit of the individual items was checked, and revealed two 
items (`dep2’ and ‘anx11’, shaded) as showing misfit to the model. Both items 
showed fit-residual values above 2.5, and the p-value for item ‘anx11’ is highly 
significant even after allowing for multiple significance testing (Bonferroni cor-
rection). The positive fit-residual values obtained for these two items suggest 
low levels of discrimination. This was confirmed by inspection of the ICC plots.
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Example from the literature

Petersen et al. (2011) collected data from 1,176 patients with cancer, on 56 can-
didate items for the development of a computerised adaptive testing (CAT) scale 
for physical functioning (PF). Fit of the GPCM model was appraised using item 
fit index. Because of multiple testing and a large sample, they used p < 0.001 as 
indicating misfit. Furthermore, they calculated the average difference between 
expected and observed item responses (bias) and the root mean square error 
(RMSE) of expected and observed item responses. Finally, they calculated the 
information function for the selected set of items to evaluate whether the items 
seemed to have acceptable measurement precision across the continuum.

Based on the evaluations of item fit, three items were deleted: item 2 had 
p  <  0.001 for the fit test and the difficulty level and content of the item 
seemed to be covered by several better fitting items; item 48 had p < 0.001, 
RMSE = 0.63 (on a 0–3 scale) and for 13% of the patients, the observed and 
expected responses differed more than one response category; item 51 had 
p < 0.001 and disordered threshold parameters.

The GPCM was then recalibrated to the remaining 31 items, and the parame-
ter estimates and fit statistics summarised (Table 7.4 provides a small excerpt). 

one-parameter model could imply that the two-parameter version may be more appropriate, 
that local independence is violated or that the logistic model is inappropriate. Usually, 
goodness-of-fit statistics will be produced for the overall model and ‘misfit indices’ may 
be given for individual items (item-misfit index) and for patients (person-misfit index). 

Although the precise statistics used can vary, in general a large (positive or negative) 
value for the misfit statistic indicates that an item is frequently scored wrongly (item-misfit) 
or that a patient has given inconsistent responses (person-misfit). For example, the item-
misfit index would be large for an item that is expected to be easy (low difficulty) if it can-
not be accomplished by a number of patients with high overall levels of ability. Similarly, 
the value will be high if those with low overall ability are able to answer ‘difficult’ items. 
Most goodness-of-fit statistics follow an approximate χ2 distribution (Appendix Table T4), 
and thus a significant p-value is evidence that the model does not provide a perfect fit.

Fit-residuals estimate the divergence between the expected and observed responses 
for each respondent or item response; fit-residuals are summed over all items (item 
fit-residuals) or summed over all persons (person fit-residuals). The residuals are 
standardised such that the mean item or person fit-residual should be approximately 
zero with a SD approximately equal to 1.0.

It is important, however, to remember that most models are nothing more than an 
approximation to reality. If the dataset is sufficiently large, even well-fitting and poten-
tially useful models may fail to provide perfect fit to the observed dataset, and the 
p-value may be significant. On the other hand, if the dataset is small there will be insuf-
ficient information to detect poor fit even when the model is inappropriate. Statistical 
tests of goodness-of-fit should be used with caution.
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Sample size

Large numbers of patients are required for the estimation procedure. Although it is 
difficult to be specific, sample sizes of 500 to 1,000 appropriately chosen respondents 
are recommended for item calibration, although in some simple cases as few as 250 
may suffice (Thissen et al., 2007). By ‘appropriately chosen’, it is implied that the 
sample should be representative of the full range of the target population and with at 
least some of the respondents selecting each response option of each item. Even with 
Rasch models, which are more robust than more general IRT models, it is advised to 
have sample sizes greater than 250 respondents for reliable fitting of the model and 
estimation of the parameters (Chen et al., 2014).

7.6  Assumptions of IRT models

Latent variable models, including IRT models, are computationally more sensitive to 
their underlying assumptions than are models in which there is an observed dependent 
variable. Thus IRT models are less robust than logistic regression models. It is impor-
tant to check the following assumptions before fitting an IRT model.

Item 35 had p < 0.001, but since this was one of the few items relevant for 
patients with good PF, and the bias and RMSE were relatively small, Petersen 
et al. decided to keep the item. Otherwise, the fit of the 31 items appeared 
satisfactory. The 31 items appeared to provide good content coverage of the 
PF aspects of interest and there was good variability in the difficulties of the 
items, although the item pool has relatively few items at the upper extreme.

Table 7.4  Parameter estimates and fit statistics for a few items of the final IRT model for 
a physical functioning computer adaptive test

Item
No. of 

categories Slope
Mean 

threshold
Item fit 
p-value Bias RMSE

  1 2 2.29 −1.99 0.213 0.000 0.18
  3 4 3.42 −1.33 0.003 0.004 0.39
  4 2 1.99 −0.99 0.177 0.002 0.34
  6 4 2.95 −1.21 0.054 0.004 0.45
  7 4 2.99 −2.01 0.001 0.002 0.22
  8 3 3.09 −1.91 0.130 0.001 0.19
11 4 3.05 −0.87 0.286 0.005 0.50
. . . . . .

35 4 2.61   0.32 < 0.001 0.001 0.57

Source: Petersen et al., 2011, Table 4. Reproduced with permission of Springer Science and Business 
Media.
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Monotonicity

Under the logistic IRT model, each ICC must be smoothly increasing. That is, the 
probability of a positive response should always increase as the ability increases, 
and thus the ICC curves should increase as the latent variable increases; this is called 
monotonically increasing. Confirming the monotonicity assumption is essential to the 
application of item response models. One way to assess monotonicity of an item is by 
regression of the item-score on the ‘rest-score’, where the rest-score is the scale score 
after omitting the item that is being examined (for example, the sum score of all items 
except the item in question). If an item complies with monotonicity, the average item 
score should not decrease for increasing values of the rest score (Junker and Sijtsma, 
2000). Items that fail to show monotonicity should be rejected.

Unidimensionality

In addition, as with traditional psychometric scales, the latent variable should be uni-
dimensional. This means that a single latent trait underlies all the items in the model 
and is sufficient to explain all but the random variability that was observed in the data. 
Section 6.17 illustrates the use of bifactor analysis for examining whether a scale is 
essentially unidimensional. After fitting the bifactor model, the standardised loadings 
of all items in the ‘common factor’ should exceed 0.30, and items with loading below 
this are candidates for removal. Alternatively, Rose et al. (2008) use confirmatory fac-
tor analysis to fit a single factor and eliminated all items with loadings below 0.40.

Local independence

Related to unidimensionality is the concept of local independence, which states that 
for patients with equal levels of ability there should be zero correlation between any 
pair of items within the scale. That is, although we would expect to observe a (possibly 
strong) correlation between any two items in a scale if we calculate the correlation 
for a group of patients, this correlation should arise solely because both items reflect 
the same latent trait. Therefore, if we take account of the value of the latent trait, all 
remaining variability should be attributable to random fluctuations and the correlation 
should become zero after the latent trait is ‘held constant’. In practical terms of PROs, 
when two items appear to be correlated, that correlation should arise solely because 
both items are measuring the same single dimension or construct. Local independence 
is implicit in the reflective model (Section 2.6) and the assumption of parallel inter-
changeable items (Section 2.7), and is a crucial assumption for fitting and estimating 
the parameters of the logistic IRT model. Without local independence there would be 
too many unknown parameters to estimate and it becomes impossible to obtain a solu-
tion to the IRT equations. To test for local independence, after having decided that a 
factor (or bifactor) model indicates that the items belong to an essentially unidimen-
sional scale, the residual correlations of the items after fitting the one-factor model 
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can be examined. If local independence applies, the residual correlations between 
pairs of items should not differ from zero; correlations exceeding 0.2 are suggestive of 
dependence, and Rose et al. (2008) suggest eliminating an item when a pair of items 
have residual correlation > 0.25. Reeve et al. (2007) review several other methods for 
assessing local independence.

Examples from the literature

Fliege et al. (2005) used residual correlations to test the local independence 
of items in their computer-adaptive test for depression (D-CAT). They noted 
that research suggests that IRT models are fairly robust to minor violations of 
unidimensionality, and specified that one item would be eliminated from each 
pair of items with a residual correlation of 0.25 or more; in such pairs, the 
item with the higher number of residual correlations (> 0.15) with other items 
was deleted. Fliege et al. acknowledged that the choice of 0.25 was arbitrary; 
models of local independence are approximations of reality and the effect on 
parameter estimation of small departures from local independence is unclear.

In the study of Petersen et al. (2011), inspection of residual correlations for 
the 34 physical functioning items led the authors to comment that: “of the 561 
possible correlations, seven (1.2%) were > 0.2 and three (0.5%) were >0.25 
(details not shown). Since no clear pattern was observed in these correlations 
(i.e., they may just be random findings), all 34 items were retained in a unidi-
mensional physical functioning model.”

When causal indicators (Section 2.6) are involved, the IRT model becomes ques-
tionable. Firstly, local independence is usually strongly violated because causal 
variables are correlated by virtue of having been themselves caused by disease or 
treatment; they are not independent for given levels of the latent variable. Symp-
tom clusters are, by definition, groups of highly inter-correlated symptoms and, for 
example, QoL instruments may contain many symptom clusters. Secondly, ‘dif-
ficulty’ is a central concept to the whole IRT approach. However, the frequency 
of occurrence of a symptom does not relate to its impact on a patient. Pain, for 
example, might occur with the same frequency as another (minor) symptom; yet for 
those patients with pain its affect upon QoL can be extreme. Also, if we consider 
patients with a given level of ability (QoL), the frequency of different symptoms 
does not reflect their ‘item difficulty’ or their importance as determinants of QoL. 
IRT is clearly inappropriate for use with composite indicators that form summary 
indexes (see Section 2.6).

Any scale consisting of heterogeneous symptoms associated with disease or treat-
ments, and which may therefore contain causal variables that affect QoL, should 
be carefully checked. The most suitable scales for logistic IRT modelling are those 
in which there is a clear underlying construct and where the items are expected to 
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reflect levels of difficulty. Hence we have used physical functioning as our prime 
example: in most disease areas, items such as ‘walking short distances’, ‘walking 
long distances’, ‘climbing flights of stairs’ and ‘carrying heavy loads’ are likely to 
reflect the overall level of physical functioning. Thus although these items may be 
causal variables with respect to levels of QoL, they are also indicators of the level of 
physical functioning.

7.7  Fitting item response theory models: Tips

IRT models place heavy demands upon datasets. The parameter estimates may be 
imprecise and associated with large standard errors, models may be unstable and com-
puter programs may fail to converge to a solution. The tips in Figure 7.6 are analogous 
to those that can be applied to other forms of modelling, including linear regression, 
but they assume special importance for estimating IRT models.

	 1.	U se large datasets!

	 2.	U se purpose-built computer software with output that is tailored for IRT modelling 
and provides IRT-specific diagnostic information such as goodness-of-fit and misfit 
indexes.

	 3.	S tudies should be designed so that the observations cover the full range of item values. If 
there are few patients with extreme values, it can become unfeasible to obtain reliable 
estimates of the item difficulties. For example, when evaluating physical function in a 
group of elderly patients, the majority of patients may have poor overall physical function 
and respond ‘No’ to difficult questions, such as those about carrying heavy loads, walking 
long distances and going up stairs. It may then be impossible to estimate these item 
difficulties.

	 4.	 Person-misfit indexes identify individuals who fail to fit the model well. The stability of the 
model estimation can be greatly improved by excluding these patients from analyses. For 
example, some patients might state that they are unable to take a short walk, yet inconsist-
ently also indicate that they can take long walks. Such conflicting responses cause problems 
when fitting IRT models.

	 5.	 Item-misfit indexes can identify items that should be excluded before rerunning the IRT analy-
ses. For example, the question ‘Do you have any trouble going up stairs?’ might have a high 
level of misfit since some patients who cannot go up stairs will reorganize their lifestyle accord-
ingly. If they believe that the questionnaire concerns the degree to which they are inconven-
ienced or troubled, they might truthfully respond ‘no problems, because I no longer have any 
need to go upstairs’.

	 6.	 Item parameter estimates should be invariant if some of the other items are dropped.

	 7.	P erson scores should be relatively invariant even if some items are dropped.

Figure 7.6  Tips for fitting IRT models.
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7.8  Test design and validation

One of the important uses of IRT is in aiding the design of PRO questionnaires. IRT 
can identify items that are not providing much information, perhaps because they 
have low discrimination, are of similar difficulty to other items and provide little 
extra information or because the response options result in disordered thresholds. 
If it is important to evaluate all levels of the latent variable, items should be spaced 
fairly uniformly in terms of their difficulty and should cover the full range of the 
latent variable. If, on the other hand, one were only interested in subjects with high 
levels of ability, it would be sensible to concentrate most items in that region of dif-
ficulty. Also, if existing items have poor discrimination levels, it may be necessary 
to add several parallel items of approximately equal difficulty so as to increase the 
overall reliability or discrimination of the scale. Alternatively, it may be possible 
to explore why certain items on the questionnaire have poor discrimination (e.g. 
by interviewing patients with extreme high or low ability and for whom the item 
response differs from that expected), and to consider substituting other questions in 
their place. When IRT is used for test design purposes, it can be useful to start with a 
large pool of potential or candidate items and estimate the difficulty and discrimina-
tion of each item. The questionnaire can then be developed by selecting a set of items 
that appear to provide adequate coverage of the scale and which have reasonable  
discrimination.

The graphical methods and goodness of fit indices described in Section 7.5 can be 
used for assessing the quality of items. Items that have poor performance should usu-
ally be revised or excluded, unless they fill an important gap in the scale and no better 
item is available.

7.9  IRT versus traditional and Guttman scales

Each item in a traditional psychometric scale will often be either multicategory or 
continuous, and the level of the item provides an estimate of the latent variable. A 
single item would be prone to errors, such as subjects incorrectly scoring responses, 
and would lack precision. Thus the main purpose of having multiple parallel items, 
in which all items have equal difficulty, is to reduce the error variability. This  
error variability is measured by reliability coefficients, which is why Cronbach’s α 
is regarded as of fundamental importance in psychometric scale development and 
is commonly used in order to decide which items to retain in the final scale (see 
Section 5.5).

Scales based upon IRT models, in contrast, frequently use binary items. Estimation 
of the latent variable now depends upon having many items of different levels of dif-
ficulty. In this context Cronbach’s α is largely irrelevant to the selection of test items, 
since a high α can arise when items have equal difficulty – which is of course the 
opposite of what is required.
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IRT can also be useful for testing the assumption of parallel items. Logistic 
models can be fitted, confirming that the items are indeed of equal difficulty and 
have equal discrimination. To do this, the item categories can be grouped to reduce 
multi-category items into dichotomous ones. IRT then provides a sensitive statisti-
cal test for validation of traditional scales, confirming that the scales perform as 
intended.

Guttman scales are multi-item scales that require each successive item to be more 
difficult than its predecessor, and are thus conceptually closely related to IRT models. 
For example, the item ‘Can you take short walks?’ is easier than and therefore comes 
before ‘Can you take long walks?’, which in turn would be followed by even more dif-
ficult tasks. Although Guttman scales are seemingly similar to IRT models, they make 
a strong assumption that the items are strictly hierarchical. Thus, if a patient indicates 
inability to accomplish the easiest item, they must respond similarly to the more dif-
ficult items. Conversely, if a patient answers ‘Yes’ to a difficult question, all prior, 
easier questions must be ‘Yes’, too. Hence in a perfect Guttman scale the response 
pattern is fully determined by the subject’s level of ability. Under this model the ICCs 
are assumed to have almost vertical lines, leading to nearly perfect item discrimina-
tion. Such extreme assumptions may occasionally be realistic, as for example in child-
hood physical development (crawling, walking and running), but are likely to be rarely 
appropriate for PROs. IRT, based upon non-perfect discrimination and logistic prob-
ability models, seems far more appropriate.

7.10  Differential item functioning

Differential item functioning (DIF) arises when one or more items in a scale per-
form differently in various subgroups of patients. Suppose a physical functioning 
scale contains a number of questions, one of which is ‘Do you have trouble going 
to work?’ Such a question might be a good indicator of physical problems for many 
patients but could be expected to be less useful for patients who have reached retire-
ment age. They would not experience trouble going to work if they were no longer 
in employment. As a consequence, a summated scale that includes this question 
could yield misleading results. If retirement age is 65, say, there might appear to be 
an improvement in the average scale score at the age of 66 when compared with 64, 
simply because fewer 66-year-olds report trouble going to work. The item ‘trouble 
going to work’ could therefore result in a biased score being obtained for older 
patients.

One example of a PRO instrument that contains exactly this question is the Rotter-
dam Symptom Checklist (RSCL), although the RSCL prudently contains qualifying 
patient instructions that say: ‘A number of activities are listed below. We do not want 
to know whether you actually do these, but only whether you are able to perform them 
presently.’ Those instructions make it clear that the authors of the RSCL were aware 
of potential item bias and that they sought to eliminate the problem by using carefully 
worded instructions.
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One particularly important application of DIF analysis in outcomes research is the 
detection of linguistic and cultural differences. It provides a powerful tool for detect-
ing whether patients in one language group respond to an item differently from other 
patients; if an item shows DIF, it may be indicative of cultural differences or, more 
probably, a translation inadequacy.

Although the term item bias used to be widely used as a synonym for DIF, most 
authors prefer the latter as a less pejorative term. DIF simply assesses whether 
items behave differently within different subgroups of patients, whereas ascribing 
the term ‘bias’ to an item constitutes a judgement as to the role and impact of the 
DIF.

A more general definition is that items with DIF result in systematically differ-
ent results for members of a particular subgroup. Rankings within the subgroup 
may be relatively accurate, but comparisons between members of different sub-
groups would be confounded by bias in the test item. In the colorectal trial exam-
ple, subjects over the age of 65 were not directly comparable with those under 
65, because those retired tended to interpret differently the question about trouble 
working.

DIF can be an issue whenever one group of patients responds differently from 
another group and may be associated with gender, age, social class, socioeconomic 
status and employment differences. It may also be associated with disease severity. 
For many questionnaires the extent of DIF problems is largely unknown. Fortunately, 
the problems may be less severe in treatment comparisons made within a randomised 
clinical trial, since randomisation should ensure that roughly similar proportions of 
patients from each relevant subgroup are allocated to each treatment arm. DIF may, 
however, distort estimates of the absolute levels of QoL-related problems for the two 
treatment arms.

Several methods have been developed for DIF analysis, including powerful 
approaches using logistic regression models or IRT models, but we shall first illustrate 
a robust nonparametric analysis using a chi-squared test.

Example from the literature

It is difficult to be certain that all patients will read the instructions thoroughly 
and act upon them. The UK Medical Research Council (MRC) colorectal trial CR04 
used the RSCL, and found that 88% of patients over the age of 65 reported 
trouble going to work, as opposed to 57% under that age. This is consistent 
with the suggestion of age-related DIF. It was also noted that 25% of patients 
left that item blank on the form, with most of these missing responses being 
among older patients. This further supports the idea of DIF, since it implies 
that those patients had difficulty answering that item or regarded it as non-
applicable; by contrast, less than 6% of patients left any of the other physical 
activity items blank.



212	 Item response theory and differential item functioning

Example from the literature

Groenvold et al. (1995) tested the EORTC QLQ-C30 for DIF, using data from 
1,189 surgically treated breast cancer patients with primary histologically 
proven breast cancer. They examined each of the 30 items, using age and treat-
ment (whether they received adjuvant chemotherapy or not) as the two external 
variables for forming patient subgroups.

The QLQ-C30 contains five items relating to physical activities. For the DIF 
analysis, each item was scored 0 (no problem doing activity) or 1 (unable to 
do, or only with some trouble), and so the summated scores of the physical 
functioning ranged from 0 to 5. When a patient scored 0 for physical function-
ing, all five of the items must have been zero. Similarly, those scoring 5 must 
have responded with 1 for each item. These patients provide no information 
about DIF and were excluded, leaving 564 patients to be examined for evi-
dence of DIF.

Table 7.5 shows that the item ‘Do you have to stay in a bed or chair for most 
of the day?’ behaves differently from the other items in the same scale. At each 
level of the physical functioning scale, this particular item behaves differently 
in relation to age. Younger patients are more likely to reply ‘Yes’ to this ques-
tion. A significance test confirmed that this was unlikely to be a chance finding 
(p < 0.006). This item was also biased in relation to treatment.

Groenvold et al. note that the bias seen here may reflect an effect of chemo-
therapy (mainly given to patients below 50 years of age): some patients may 
have been in bed owing to nausea, not to a bad overall physical function. They 
also found that the pain item ‘Did pain interfere with your daily activities?’ and 
the cognitive function item ‘Have you had difficulty remembering things?’ were 
biased in relation to treatment.

Table 7.5  DIF analysis of the EORTC QLQ–C30 physical functioning scale

Physical 
functioning 
score (PF) Age

Have to stay in bed or  
a chair Number of 

patients0 (no) 1 (yes)

1 25–50 97.3 2.7 113
51–60 99.0 1.0 104
61–75 100 0 92

2 25–50 92.3 7.7 52
51–60 96.7 3.3 61
61–75 100 0 85

3 & 4 25–50 28.6 71.4 21
51–60 46.7 53.3 15
61–75 47.6 52.4 21

Source: Groenvold et al., 1995. Reproduced with permission of Elsevier.
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Mantel–Haenszel test

In the example of Table 7.5, age defined the subgroups in each two-way table and 
Groenvold et al. used a test statistic called partial-gamma. An alternative method is 
the Mantel–Haenszel approach for testing significance in multiple contingency tables, 
using a χ2 test. This is easier to calculate by hand and is widely available in statistical 
packages. Whereas the partial-gamma test can analyse multiple levels of age, we now 
have to reduce the data to a series of 2 × 2 tables by creating age subgroups of 25–50 
years and 51–75 years.

To apply this method, the data are recast in the form of a contingency table with 
2 × 2 × G cells, where G represents the levels of the test score (physical functioning 
scores 1, 2, and 3 & 4). Thus at each of the G levels there is a 2 × 2 table of item score 
against the two age subgroups that are being examined for DIF.

Suppose each of the G 2 × 2 tables is of the form:

  Item score

Subgroup 1 2 Totals

I a b r

II c d s

Totals m n N

Then we can calculate the expected value of a, under the assumption of null hypothesis 
of no DIF. This is given by

	 E a
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The Mantel–Haenszel statistic examines the differences between the observed a and 
its expected value, E(a), at each of the G levels of the test score, giving in large-study 
situations
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where j = 1, 2, … G. This is tested using a χ2 test with degrees of freedom df = 1.
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Furthermore, an estimate of the amount of DIF is given by the average OR across 
the G tables, which is

	 OR
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A value of ORMH = 1 means no DIF, and other values indicate DIF favouring sub-
group I (ORMH >1) or subgroup II (ORMH <1).

Example

The data of Groenvold et al. (1995), summarised in Table 7.5, can be collapsed 
into 2 × 2 tables (G = 3) as in Table 7.6.

Using equations (7.5) and (7.6) we calculate the expected value and variance 
of a, and the OR for each table, giving Table 7.7.

The three odds ratios are less than 1, reflecting that at all levels of PF there 
were fewer patients in the older age group who were limited to having to stay in 
a bed or chair. From equation (7.8), ORMH = 0.306. Applying equation (7.7), the 
Mantel–Haenszel statistic is 6.65. Appendix Table T4 for χ2, with df = 1, shows 
this to be statistically significant (p = 0.0099). Groenvold et al. report a slightly 
smaller p-value when using partial-gamma, but the Mantel–Haenszel test is 
regarded as more sensitive and the difference between the two results is small.

Table 7.6  DIF analysis of the number of patients having to stay in bed or a chair (Data 
corresponding to Table 7.5)

Physical 
functioning 
score (PF) Age

Have to stay in bed or  
a chair Number of 

patients0 (no) 1 (yes)

1 25–50 110   3 113
51–75 195   1 196

2 25–50 48   4   52
51–75 144   2 146

3 & 4 25–50 6 15   21
51–75 17 19   36

Table 7.7  Results for the Mantel–Haenszel test used to detect DIF

Physical functioning score (PF) a E(a) Var(a) Odds ratio

1 110 111.54 0.919 0.188

2 48 50.42 1.132 0.167

3 & 4 6 8.47 3.249 0.447
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IRT and logistic regression for DIF analyses

Two other approaches to DIF involve fitting models and estimating parameters: logis-
tic regression models, and IRT models. Three advantages of both these methods are 
that (a) other prognostic factors can be included in the models, and (b) patterns of DIF 
(uniform, non-uniform) can be explored, and (c) estimates of the magnitude of DIF 
are available.

IRT provides a natural method for examining DIF. In principle, the ICCs should be 
the same for all subgroups of patients, but DIF occurs if, for example, males of a given 
ability find a test more difficult than females of the same ability. Thus IRT approaches 
make use of the sample-free invariance implicit in the estimation of ICCs. The null 
hypothesis is that there is no DIF, and that therefore the ICCs are equal. Thus, for the 
two-parameter logistic model, this implies:

bMale = bFemale and aMale = aFemale

The use of IRT for testing DIF has, however, been criticised (by, for example, 
Hambleton and Swaminathan, 1991). It should be used only when there is evidence 
that IRT models provide a good fit to the items and that all the assumptions for IRT are 
valid. We focus here on use of logistic regression, which is computationally simpler 
and more robust against violation of the assumptions.

Logistic regression

Although logistic regression may be less robust than the Mantel–Haenszel method 
described above, it possesses major advantages of flexibility and ease of application. 
As with the Mantel–Haenszel approach, the basis is to examine the observed data to 
see whether, for each level of overall scale score, the items perform consistently. In 
statistical terms, the analyses are ‘conditioned’ on the scale score.

We start by considering a scale that contains binary yes/no items; writing X for the 
item being examined for DIF, S for the scale score derived from all the items including 
X, and G for the grouping variable (in the previous example, G was the age group), the 
logistic model is

	
P X
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S Glog
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where P is the probability of endorsing X = 1 for given levels of S and G. This is a 
standard logistic regression equation.

Applying this model, an item X does not exhibit DIF if it depends solely on the 
scale score S, with statistically significant values of β0 and β1. If S is insufficient to 
explain the value of X – as indicated by a significant value for β2 – there is evidence 
of DIF across the groups G. Statistical significance only indicates that there is some 
evidence supporting the existence of DIF; the value of β2 provides the log odds-ratio 
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as a measure of effect size. Some authors have suggested that only log odds-ratios with 
absolute value exceeding 0.64 are important. Others use changes in R2, the proportion 
of variance explained by adding G to the model, as an indicator of effect size; Zumbo 
(1999) proposes that an R2 change of 0.13 to 0.26 is moderate, and above 0.26 is large.

When an item takes higher (or lower) values within one group, as we have been 
describing, it is called uniform DIF. Non-uniform DIF occurs when the level of dis-
crepancy of an item varies according to the scale score; in an extreme case, this might 
be manifested by an item that only shows DIF between the G groups at high levels 
of S, but not at lower scale scores. Non-uniform DIF also implies that an item is less 
strongly related to the scale score in one of the groups.

In the logistic model, non-uniform DIF is represented as an interaction term and 
may be tested using the β3 coefficient in

	
P X

P X
S G S Glog

( )

1 ( )
( ).0 1 2 3β β β β

−






= + + + × 	 (7.10)

The logistic regression approach can also allow for other explanatory factors, such 
as patient characteristics. Ordered logistic regression can accommodate items with 
ordered or numerical response categories. Thus the logistic regression approach can be 
readily extended to cover various situations. Scott et al. (2010) review DIF analyses of 
PROs using logistic regression.

Although the summated scale score, S, is commonly used as the conditioning vari-
able for logistic regression approaches, a hybrid approach is to use an IRT-based scale 
score instead (Crane et al., 2006); this may be of advantage if IRT-based scores differ 
appreciably from the sum scores.

Examples from the literature

Martin et al. (2004) used logistic regression to assess DIF among the 13 trans-
lations of the short-form Headache Impact Test (HIT-6). Since the question-
naire was developed in the USA and then translated into other languages, US 
English was regarded as the reference group. Thirteen ‘dummy variables’ were 
created, corresponding to the 13 languages, and for each patient the appropri-
ate dummy variable was set to 1 so as to flag the language, and all others set to 
0. Since six items were evaluated for DIF in each of the translations, there were 
78 comparisons. An arbitrary double criterion was used to reduce the impact of 
multiple testing: statistical significance of p < 0.05 and R2 > 0.20.

No items showed uniform or non-uniform DIF causing concern, and so the 
translations were regarded as equivalent.

In contrast, Petersen et al. (2003) examined equivalence of nine transla-
tions of the EORTC QLQ-C30 emotional functioning scale, using log odds-ratio 
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numerically larger than 0.64 with a p-value < 0.001. Two pronounced instances 
of DIF were the Norwegian translation of ‘Did you worry?’ (log OR  =  1.30, 
p < 0.001) and the Swedish version of ‘Did you feel depressed?’ (log OR = −1.18, 
p < 0.001). Inspection of these items suggested possible sub-optimal transla-
tion. The Norwegian ‘Har du vært engstelig?’ is literally ‘Have you been anx-
ious?’, and it seems likely that being anxious is more extreme than worrying. 
The Swedish word nedstämd is not only a possible translation of depressed, but 
has additional connotations of being dejected and feeling ‘down’; ‘nedstämd’ 
was thought to be a more common state than ‘depressed’.

If DIF is detected in a short scale, it may be difficult to ascribe the DIF to any par-
ticular item. This is because differential item functioning, as its very name implies, 
only shows that within the target group as opposed to the reference group the items 
behave differently relative to each other. Thus, considering the extreme case of a 2-item 
scale, if one item manifests true DIF in, say, a negative direction, the other item will 
inevitably show ‘pseudo DIF’ of comparable magnitude but in the opposite direction. 
Unless there are qualitative grounds for deciding that one of the items is responsible 
for the DIF, all one can say is that the two items behave differently relative to each 
other in this group of subjects. This is demonstrated in the next example. This example 
also illustrates the problems of selecting a reference group and focal groups.

Example from the literature

Scott et al. (2006) used logistic regression to explore DIF attributable to cultural 
differences in completing the EORTC QLQ-C30. It can be difficult to separate the 
effects of language/translation and culture, and so the approach adopted was 
to form geographical clusters that each included a number of countries and lan-
guages. Since the QLQ-C30 was developed in English and translated into other 
languages, these groupings were contrasted against each other and against UK 
English. Figure 7.7 shows the log odds-ratios for the two items (‘severity’ and 
‘interference’) of the pain scale. Confidence intervals (95%) are shown, and log 
odds-ratios that were both significantly different from 0 and exceeded ±0.64 
were regarded as important.

Pseudo DIF was apparent: for any given level of pain severity, many of the 
non-English groups reported significantly greater pain interference. But we can-
not ascribe the DIF to the reporting of severity or the reporting of interference. 
All we can say is that these two items behave differently relative to each other 
in the different geographical clusters.
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Scott et al. discuss the extent to which these somewhat arbitrary geographi-
cal groupings represent different cultures. For example, the East Asian group 
includes both South Koreans and Chinese speakers from China, Singapore and 
Hong Kong. Although countries such as Korea and China might be deemed cul-
turally highly distinct, the patterns were similar across all these countries both 
for pain and for other scales that Scott et al. explored. Interestingly, a cohort of 
patients in Singapore completed the English language version of the question-
naire, yet their responses were consistent with the Chinese speakers.

7.11  Sample size for DIF analyses

There are no established guidelines on the sample size required for DIF analyses, but 
the following recommendations are made by Scott et al. (2010). The minimum number 
of respondents will depend on the type of method used, the distribution of the item 
responses in the two groups, and whether there are equal numbers in each group. For 
binary logistic regression it has been found that 200 per group is adequate, and a sample 
size of 100 per group has also been reported to be acceptable for items without skew-
ness. For ordinal logistic regression, simulations suggested that 200 per group may be 

Figure  7.7  DIF analysis of EORTC QLQ–C30 2-item pain scale, by geographical region. 
Source: Scott et al., 2007, Figure 4. Reproduced with permission of Springer Science+Business 
Media.
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adequate, except for 2-item scales. As a general rule of thumb, we suggest a minimum 
of 200 respondents per group as a requirement for logistic regression DIF analyses.

7.12  Quantifying differential item functioning

It can be difficult to quantify how much of a problem the issue of DIF is in prac-
tice. Although DIF has the potential to bias international comparative studies that use 
PROs, it may be less of a problem in clinical trials. Randomised treatment allocations 
in trials are usually stratified by country or centre, and many of the biases due to uni-
form DIF ought to occur in each group equally. For example, the consequences of DIF 
due to language or cultural effects are likely to be diminished in a trial that has been 
stratified by country. This would not necessarily apply to non-uniform DIF, nor to 
observational studies that are unable to make comparisons against a randomised con-
trol group. Although it is unclear how frequently substantial non-uniform DIF occurs, 
most authors suggest it is less common than uniform DIF. It may also be noted that 
DIF in an individual item will have much less impact on a long scale (for example, 
containing more than twenty items) than on a short one. Issues of DIF may affect all 
instruments, but its true extent and impact remains unknown.

When DIF is expressed as a log odds-ratio, the results can be translated into a clinically 
meaningful scale in the context of a specific scenario. Practical details of an approach for 
calculating the impact of the observed DIF effect are provided by Scott et al. (2009b).

Example from the literature

Scott et al. (2006) illustrate the impact of their results by considering a real 
study. Compared to the original English version, the Norwegian translation of the 
EORTC QLQ-C30 fatigue scale showed significant DIF in one of the three items, 
with Norwegians less likely to endorse the question ‘Were you tired?’ (log odds-
ratio = −0.58). Scott et al. observed that, if it were assumed this item showed 
DIF, the FA scale scores would be around six points higher if the study had been 
carried out in an equivalent group of English patients, which corresponds to 
a difference that is generally regarded as small but clinically important. Since 
the patients in this randomised clinical trial were stratified by country, this DIF 
would not have affected the conclusions regarding the treatment comparison.

7.13  Exploring differential item functioning: Tips

DIF, like so many psychometric techniques, has been most extensively researched 
in fields such as education – because it is crucial that examinations should not con-
tain questions that favour one ethnic group over another or one gender over the other. 
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Figure 7.8  Tips for exploring DIF.

	 1.	L ogistic regression is easier to use than most other forms of tests for DIF, and has the ad-
vantage of considerable flexibility. However, unlike IRT-based approaches, it makes use of 
the observed scale score as the conditioning variable.

	 2.	S ample sizes should usually be at least 200 patients per group, and appreciably larger 
samples are required for using two-parameter IRT models.

	 3.	O rdered logistic regression for items with multiple categories requires larger sample sizes.

	 4.	M any investigations of DIF involve a considerable degree of multiple testing, and so it 
is commonly recommended to demand p-values of at least 0.01, or even p < 0.001, as a 
requirement for statistical significance. Alternatively, p-values may be adjusted using Bon-
ferroni or other corrections.

	 5.	 Both statistical significance and effect size should be considered when deciding whether an 
item displays DIF. When using logistic regression, log odds-ratios with absolute value greater 
than 0.64 have been suggested. Other authors have used odds ratios outside the range 0.5 to 
2.0. Another widely used criterion for logistic regression is the combination of p < 0.01 with 
a multiple correlation coefficient R2. Moderate DIF is indicated by R2 > 0.13, and large DIF by 
R2 > 0.26.

	 6.	 It is generally thought that non-uniform DIF occurs less frequently than uniform DIF, but 
that it should be routinely tested for.

	 7.	T est purification has been recommended by many authors. This is an iterative process 
that consists of recalculating the scale score (used as the conditioning variable) after 
deleting items that were most strongly identified as showing DIF, and then repeating the 
analyses.

	 8.	T he item being studied for DIF should be included when calculating the scale. Several pa-
pers have shown that type-I errors may be inflated if it is omitted.

	 9.	P atients should be matched as accurately as possible; this implies that categories of the 
scale score should not be collapsed to form larger groups.

	10.	C are should be taken in defining the focal group. When evaluating translations, the original 
language version will normally form the reference group and the translated versions will be 
the focal groups.

Therefore much of the extensive theoretical work that has been carried out and most of 
the empirical studies into the effectiveness of DIF techniques have focused on educa-
tional and similar examinations. These examinations commonly contain large numbers 
of questions. In contrast, little is known about the effect of using DIF analyses on short 
scales of, say, fewer than 10 items. However, it seems likely that IRT-based methods 
may perform poorly under these situations, whereas the assumptions underlying the 
application of logistic regression imply that it is likely to be relatively robust.
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Theory from educational psychometrics not only focuses on lengthy multi-item 
scales but also frequently assumes items are scored dichotomously as correct/incor-
rect, in which case floor and ceiling effects are generally not an issue. In contrast, PRO 
scales may be short, with items taking multi-category responses, and there may be 
serious floor/ceiling effects. Bearing these reservations in mind, we provide a list of 
tips culled mainly from Scott et al. (2010) (Figure 7.8).

7.14  Conclusions

IRT is becoming widely applied to PROs, despite the mathematical complexity of 
many of the models, the need for large sample sizes, the problems of including multi-
category items, and the need for specialised computer software. Unfortunately, IRT 
makes strong assumptions about the response patterns of the items, and is sensitive to 
departures from the model. Patient outcome data are not as tidy and homogeneous as 
the items in educational examinations. The example that we considered by Haley et al. 
(1994) found that a Rasch model did not fit items in the physical functioning scale of 
the SF-36 very well. Perhaps this is not surprising: the assumption of local independ-
ence is a very demanding requirement, yet it is crucial to the estimation procedures 
used for IRT. Scales that include causal variables influencing QoL, such as treatment- 
or disease-related symptoms, will usually violate this assumption because the external 
variable (treatment or disease) introduces correlations that cannot be fully explained 
by the latent variable (QoL). Although scales such as physical functioning may appear 
to be homogeneous and contain items that are more closely hierarchical (increasing 
difficulty), the requirements for IRT are still highly demanding. For example, tasks 
such as bending and stooping may usually be related to physical functioning, but some 
patients who can walk long distances may have trouble bending and others may be 
able to bend but cannot even manage short walks. Thus the seemingly hierarchical 
nature of the items may be violated, with some patients providing apparently anoma-
lous responses.

One important feature of IRT is that the mathematical nature of the model enables 
the inherent assumptions to be tested, and goodness-of-fit should always be examined. 
The logistic models can help to identify items that give problems, but when items do 
not fit the model it becomes difficult to include them in subsequent IRT analyses. Esti-
mates of relative difficulty of items appear to be reasonably robust, but caution should 
be used when extending the model to other analyses. Tests of DIF are probably most 
easily applied using non-IRT approaches such as logistic regression conditioning on 
the computed scale score.

IRT is a useful tool for gaining insights that traditional techniques cannot provide. DIF 
analyses provide another powerful tool to complement the methods we have described 
in earlier chapters. Both IRT and DIF analyses are particularly useful in screening 
items for inclusion in new questionnaires, and for checking the validity of assumptions 
even in traditional tests. For these purposes alone, both techniques certainly deserve 
wide usage. The most exciting roles for IRT in outcomes research, however, lie first in 
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the standardisation of different instruments so that PROs as assessed by disease- and 
treatment-specific instruments can be compared across different groups of patients 
and, secondly, in the development of computer-administered adaptive testing – as dis-
cussed in the next Chapter. Both of these objectives require extremely large databases 
for the exploration of IRT models.

7.15  Further reading, and software

IRT is a complex subject, and a good starting point for further reading is the book 
Fundamentals of Item Response Theory by Hambleton et al. (1991). For a comprehen-
sive introduction, Item Response Theory for Psychologists by Embretson and Reise 
(2000) provides an excellent review while still avoiding complex mathematics. The 
Rasch model is described in detail by Andrich in Rasch Models for Measurement: 
RUMM2030 (2010). Reeve et al. (2007) lay out in detail the plans used by the Patient-
Reported Outcomes Measurement Information System (PROMIS) group.

There have been a number of recent advances in methods for assessing DIF, which 
are comprehensively covered in Differential Item Functioning by Osterlind and Ever-
son (2009). Item bias is also the subject of the extensive book edited by Holland and 
Wainer (1993). A review of a wide range of methods, parametric and non-parametric, 
for assessing DIF, measurement equivalence and measurement invariance are reviewed 
by Teresi (2006), while Scott et al. (2010) review the choices that must be made when 
using logistic regression.

Examples of programs for IRT modelling include the following: PARSCALE 
(Muraki and Bock, 2003) can estimate parameters for one- and two-parameter models 
containing dichotomous and polytomous items, using graded response and generalised 
partial credit models. It can display item and test information functions. PARSCALE 
can use IRT to test for DIF. MULTILOG (Thissen, 2003), which focuses on multiple-
category and polytomous models, can also fit graded response and generalised par-
tial credit models, and in addition offers the nominal response model for polytomous 
items. However, it provides less information about item analysis and goodness-of-fit. 
RUMM (Andrich et al., 2010) and WINSTEPS (Linacre, 2011) both fit Rasch models 
and provide comprehensive facilities for test and scale development, evaluation and 
scoring. In the spirit of Rasch modelling, these packages assume common slopes and 
estimates the thresholds (difficulties) for dichotomous and polytomous items. IRTPRO 
(Cai et al., 2011) is a program with graphical interface and extensive modelling and 
graphics facilities. There are also packages that focus on specific functions, such as 
SIBTEST (Stout and Roussos, 1996) for IRT-based DIF analysis. Finally, general 
statistical packages increasingly provide facilities for comprehensive IRT modelling.
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Item banks, item linking and 
computer-adaptive tests

Summary

Self-administered questionnaires have traditionally been paper-based. Apart from 
groups of items that are skipped over as not applicable, all patients complete the same 
questionnaire items. Computer-adaptive testing, in contrast, enables questions to be 
tailored to the individual patient, thereby maximising the information gathered. This 
offers two advantages: questionnaires can be shorter and the scale scores can be esti-
mated more precisely for any given test length. Computer-adaptive testing involves 
accessing a large item bank of calibrated questions, and when a new patient is being 
assessed the computer program selects the most appropriate and informative items. 
Thus no two patients need complete the same set of items, and the computer-adaptive 
test imitates a clinical interview in that the choice of successive items to use depends on 
interpreting the accruing information from responses to previously asked items. In this 
chapter we show how IRT enables us to calibrate a collection of items, select the most 
informative items on a dynamic basis, and generate consistent scores across all patients.

8.1  Introduction

Computer-adaptive tests (CATs) concern the development of ‘tailored’ or adaptive tests. 
If a group of patients are known to be severely limited in their physical ability, it may 
be felt unnecessary to ask them many questions relating to difficult or strenuous tasks. 
Conversely, other patients may be fit and healthy, and it becomes less relevant to ask them 
detailed questions about easy tasks. Thus specific variants of a questionnaire may be more 
appropriate for different subgroups of patients. In a few exceptional cases, this approach 
can be adopted even when using traditional questionnaires. For example, if a question 
about physical functioning were to ask ‘Can you walk a short distance?’ and the respond-
ent answers ‘No’, it would not be informative to ask next ‘Can you run a long distance?’ 
as we already know what the answer will be. In this simple example an experienced 

Quality of Life: The Assessment, Analysis and Reporting of Patient-Reported Outcomes, Third Edition.  
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interviewer might complete the answer without asking the item. However, in the more 
general case, such as when the response to the question about walking is ‘with a little dif-
ficulty’, we may suspect that the question about running will not add much information, 
but we cannot predict the exact response. Therefore, in a conventional interview setting, 
we would ask the full set of questions so as to be able to calculate the overall scale score.

An alternative is to use a dynamic procedure known as computer-adaptive testing. 
The principle of CAT is to make use of a previously generated pool of items, termed an 
item pool or an item bank. When assessing a patient, at each stage of the test process 
we evaluate the responses that have been made so far, and we draw the most informa-
tive item from the pool of those remaining. This process continues until we have a 
sufficiently precise estimate of the scale score. Thus the aim is to attain a precise score 
while asking the patient to answer as few questions as are necessary. Wainer (2000) 
has shown that CAT questionnaires are typically 30–50% shorter than conventional 
questionnaires with the same measurement precision.

The key to CAT is the use of logistic item response theory (IRT) modelling, which 
was introduced in the previous chapter. IRT enables each item to be calibrated along 
a single continuum that represents the latent trait, or scale score. Thus a consistent 
scale score can be calculated, irrespective of which set of items was completed by an 
individual patient. In effect, we have a single ability scale and can identify and exploit 
those items that relate to the segments of interest along the scale. After each item has 
been answered, the computer dynamically evaluates the respondent’s location on the 
ability continuum. Then, according to the previously calibrated item difficulties, the 
maximally informative item to present next is selected. Continuing the above exam-
ple, if the respondent has very much difficulty walking a short distance, the computer 
might have selected for the next question an item about walking around the house. 
In contrast, if the response were that there is no difficulty at all in walking, far more 
informative items might concern walking long distances or running.

Figure 8.1 shows the principles of the CAT algorithm. IRT provides the essential 
features that enable CATs. In this chapter, we shall explore each of the issues indicated 
in Figure 8.1 and illustrate the implementation of CATs.

8.2  Item bank

The first stage in developing a CAT is the creation of a comprehensive item bank. 
An item pool, or item bank, is a collection of items that represent and define a single 
dimension (domain) (Figure 8.2). The aim of item banking is to gather together a num-
ber of items that are positioned along the full range of the continuum being addressed. 
That is, the items should be of varying difficulty and should cover all levels of ability 
or functioning that are of relevance for measurement. If the objective of the instru-
ment is screening for symptoms needing treatment, the emphasis might be on having a 
comprehensive set of items with difficulties either side of the threshold for therapy; on 
the other hand, for most research applications, a wider segment of the continuum – or 
even the entire range – may be of interest.
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●● Item banking and item calibration
The difficulty of each item can be evaluated, providing estimates of the item positions along 
the ability continuum.

●● Scale standardisation and test equating
Once the items have been calibrated for difficulty, consistent scale scores may be calculated 
irrespective of which particular set of items have been used. This approach can also be used 
when comparing similar subscales in different instruments, when it is known as test linking 
or test equating.

●● Test information
As already outlined, we can evaluate the amount of information in a test, and also the additional 
information contributed by each item (Section 7.5). This enables us to identify which item is 
optimally informative and should be selected for the next stage of the test procedure.

●● Precision of scale scores
The test information function is inversely related to the SE of the estimated score. Thus at 
the same time as evaluating the test information, we can calculate the SE that applies to 
the current estimate of the patients scale score. When the SE becomes sufficiently small, we 
know that we have attained sufficient precision and can terminate the test.

Figure 8.2  Item banking.

Figure 8.1  Chart representing the computer algorithm for a computer adaptive test (CAT).
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When building an item bank, a common initial approach is to review the literature on 
existing instruments and assemble a number of items from these questionnaires. Also, 
at an early stage of the development, thought should be given to any gaps in the contin-
uum or segments that are not well covered. Although the subsequent data collection and 
quantitative analyses will in due course reveal any gaps, frequently an early qualitative 
review will indicate whether there is need for additional items, for example at the high 
and low ends of the continuum. Items may come from many different sources and will 
inevitably have a variety of formats, phrasing and response options. To produce a coher-
ent instrument such idiosyncrasies will have to be standardised, although care should 
be taken to ensure that this does not compromise the conceptual basis of those items.

Examples from the literature

Fatigue is a common symptom both in cancer patients and in the general popula-
tion. It is commonly regarded as difficult to assess effectively and efficiently, and 
is frequently under-treated. Lai et al. (2005) developed an item bank for assess-
ing cancer-related fatigue. The preliminary item bank consisted of 92 items. 
Fourteen came from the authors’ existing FACIT questionnaires and another 78 
were written following a review of the literature, to cover the continuum in terms 
of content and item difficulty and to eliminate ceiling and floor effects.

Another example of an item bank was the development of the Headache 
Impact Test (HIT) for assessing the burden of headaches (Bjorner et al., 2003). 
These authors began by selecting items from four widely used measures of 
headache of impact, which resulted in 53 items in total. These items were 
standardised to have five-category rating scales, and the items were reworded 
to specify a recall period of 30 days.

8.3  Item evaluation, reduction and calibration

After developing the list of candidate items (Figure 8.3), the next step is to test them on 
patients and collect response data. Patients, representative of the diversity of the target 
groups at which the measurement scale will be directed, should be recruited and asked 
to complete the items. The aim is to establish that

	 1.	 all items relate to a single unidimensional scale,

	 2.	 the assumptions of local independence and monotonicity are satisfied,

	 3.	 an IRT model provides adequate fit for each item,

	 4.	 there is no evidence of substantial DIF across the patient subgroups,

	 5.	 item difficulty can be assessed.

The first three points are interrelated. Essentially, they concern ensuring that the 
items perform equally across all subgroups of patients, and that all items represent the 
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Figure 8.3  Stages in the development of an item bank, for use in a computer adaptive test (CAT). 
Source: Rose et al. 2008, Figure 1. Reproduced with permission of Elsevier.
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same single dimension. Methods of the previous chapters provide the means for mak-
ing these tests – for example, dimensionality may be assessed by the factor analysis 
methods of Chapter 6 (exploratory-, confirmatory- or bi-factor analysis). Items that fail 
to meet the dimensionality requirements should be reviewed and possibly revised or 
reworded. Alternatively, they might be excluded from the item bank. The IRT methods 
of Chapter 7 can then be applied, to assess the validity of the assumptions (Section 
7.6). After fitting an IRT model, the items are tested for fit to the IRT model, and 
those that do not show adequate fit should be modified and retested, or considered 
for removal from the item bank. Poorly performing items, with weak discrimination 
or disordered response categories (Section 7.5) should be deleted. Finally, the possi-
bility of DIF with respect to major socio-demographic and clinical factors should be 
explored (see Section 7.10), leading again to further items that may have to be rejected.

After this ‘winnowing’ or pruning of the item bank, the remaining items should be 
calibrated according to the IRT model. The aim is to calibrate along a single latent trait 
the difficulties of all items, providing estimates of their location and discrimination. 
Not only are these parameters required for the application of CAT, but they also reveal 
any gaps in the item bank where there may be a lack of items targeting a particular 
range of difficulties. New items may be required to address these gaps; after testing, 
they may be added to the item bank.

Example from the literature

To evaluate and calibrate the 53 candidate items of the HIT, Bjorner et al. (2003) 
used a national survey to interview 1,016 randomly selected persons in the USA. 
First, dimensionality was explored using confirmatory factor analysis (CFA). Three 
alternative factor models were considered and the authors decided that, despite 
poor model fit, it would be justifiable to apply a unidimensional IRT model to the 
data. Then, initial evaluation of the item characteristic curves (ICCs) indicated 
that for some items adjacent categories were non-informative, and so these were 
combined to give fewer distinct categories. Next, the generalised partial credit IRT 
model (see Section 7.5) was applied for a more extensive exploration of the char-
acteristics of each item, and to estimate the item thresholds. Logistic regression 
DIF analyses confirmed that there were no major signs of DIF and that the items 
performed similarly in all patients. The authors concluded that the item pool could 
be considered as a basis for a CAT test (this example is continued in Section 8.5).

8.4  Item linking and test equating

Item linking

So far we have been describing the situation where all patients complete the full set of 
items that will be included in the item bank. This may not be feasible for several rea-
sons. Sometimes the item bank will be too large, and the burden on patients would either 
be too great or might be likely to lead to poor compliance; it may be preferable to divide 
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the items into smaller ‘testlets’ or sub-tests. Sometimes there may be existing data avail-
able for some items, which can contribute to the estimations. Also, if the item bank is 
deemed inadequate in places, it may be desired to add further items at a later date.

Fortunately it is not necessary for all patients to give responses to the full set  
of items – indeed, it is possible to fit the IRT models even if no patients receive all 
of the items. All that is required is that there should be a sufficient overlap of items 
administered to different patients so that the estimated scale scores can be anchored 
and the item difficulties estimated. Thus when considering existing sets of data, the 
important thing is that there should be anchor items that are the same as items used in 
other questionnaires. Without such anchor items, the problem of different respondent 
samples being likely to have different underlying trait levels would make the analyses 
and the estimates difficult, or even impossible, to interpret.

When constructing large item banks, the usual solution is to divide the items across 
two or more separate and shorter questionnaires, with each questionnaire including a 
common set of questions as anchor items. Thus all respondents receive the anchor items. 
These anchor items are chosen to be broadly representative of the item bank and roughly 
uniformly spaced across the latent trait continuum. Optimally, these should include 
items towards both the upper and lower limits of the scale. Ten or more anchor items are 
frequently advocated, although for linking a large number of items some authors rec-
ommend that as many as 20% of the total should be anchors (Cook and Eignor, 1989).

This study design is known as the common item design. There are then several meth-
ods for calibrating the items onto a common continuum, or item linking. One method is 
concurrent calibration, in which IRT software is used to calibrate the combined set of 
items onto a single standard metric. The assumption is that there is a ‘true’ underlying 
score (the latent trait) that is being estimated by all items.

A variant of concurrent calibration is to first estimate only the parameters of the 
common items, and then while holding them fixed (anchored) the parameters of the 
remaining items are estimated for each questionnaire. A linear transformation function 
can then be derived from the parameter estimates.

Alternatively, using separate calibration, each respondent sample is analysed sepa-
rately, and the parameter estimates of the anchor items are used to identify an appropri-
ate linking transformation. This approach allows items from a number of samples to be 
transformed to the metric defined by a single specified base sample.

Usually, linear transformation functions are used, and one test or questionnaire is 
defined as the base to which others will be transformed. The equating of questionnaires 
can be accomplished either by identifying a function for transforming the scores, or by 
determining a function that transforms the IRT parameter estimates from one test to the 
other. A simple approximate procedure for matching is in terms of how many SDs the 
scores, or parameter estimates, are above the mean for the test – this is known as the mean 
and sigma method. Details of all these procedures are given in Kolen and Brennan (2010).

A number of other study designs have been proposed for item linking. For example, a 
sample of respondents can be randomly allocated to receive one of two (or more) instru-
ments. Then we can assume that all differences in overall trait level are random and 
that the groups are randomly equivalent. These, and other more complex designs, are 
outlined by Embretson and Reise (2000) and discussed by Kolen and Brennan (2010).
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Test equating

A topic related to item linking is the linking of scale scores, known as test equating. 
The aim here is to calibrate different instruments against each other. Similar proce-
dures to those mentioned above can be used. Strictly, however, two scales can only be 
equated if they satisfy the following conditions:

●● Equal construct requirement

They should measure the same construct and refer to the same continuum.

●● Equal reliability requirement

They should have the same reliability.

●● Symmetry requirement

If a score on one questionnaire is equated to a score on the second questionnaire us-
ing a transformation procedure, the second scores can also be equated to the first by 
using the inverse transformation procedure. Note that this is unlike solutions from 
linear regression, in which a regression of x on y is not the inverse function of the 
regression of y on x.

●● Equity requirement

The scales must be equally effective so that it is immaterial which is used.

●● Population invariance requirement

They must have the same relationships for different populations.

These requirements are clearly mandatory for equity in educational testing. In a 
medical context, however, it is perhaps more common to use regression methods for  
prediction of the scores that would have been expected if another instrument had been 
used (see Section 17.7); this is frequently the aim when comparing results across studies. 
However, Fayers and Hays (2014b) show that regression-based methods for test-linking 
result in artificially reduced estimates of the standard deviations and must be used with 
caution for group comparisons and clinical trials. Calibration is used when questionnaires 
measure the same construct but with unequal reliability (for example when less reliable 
short-form instruments are used instead of the longer and more precise standard ver-
sions), or unequal difficulty (an example of the latter would be a difficult version of a 
questionnaire for healthy people and an easier version for those with severe illness).

Example from the literature

McHorney and Cohen (2000) constructed an item bank with 206 functional sta-
tus items, drawn from a pool of 1,588 potential items. Even 206 items was con-
sidered too lengthy for a mail survey of the elderly, and also it was thought that 
some closely similar items would be perceived by the respondents as redundant 
duplicates. Therefore three questionnaires were constructed, each containing a 
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Example from the literature

Bjorner et al. (2003) examined the information content of the items used in 
the Headache Impact Test (HIT). Figure 8.4 shows the information function for 
the HIT item pool, together with the SE of measurement. The scale has been 
defined such that the population mean is zero and the SD is one. It can be seen 
that the item pool is most informative at two SDs above the mean, where there 
are relatively few headache sufferers. The items in the pool are less informative 
for patients with little headache.

common set of 89 anchor items and 39 unique items. The response options to 
all items were standardised to have six categories.

A graded response IRT model was fitted using the package MULTILOG (Thissen, 
2003). Concurrent calibration was used for all groups. First, the anchor items 
were tested for DIF, as it is essential that these items should function in the same 
way within all the groups. A total of 28 items exhibited DIF and were excluded 
as anchors. Another 18 items were excluded because they exhibited little vari-
ability in participants’ responses. The remaining items were used as anchors for 
equating the three forms. As output from the equating, the authors presented a 
four-page table of the IRT thresholds and discriminations for all items.

Although no items were ‘very, very easy’, about two-thirds were located at 
the easier end of the continuum. Only six items were rated as ‘very difficult’ 
(such as ‘climbing more than 30 steps’, ‘carrying large bags of groceries’, ‘scrub-
bing the floor’). Items with highest discrimination were those associated with 
clearly defined explicit activities, including ‘put underclothes on’, ‘move between 
rooms’, ‘get into bed’, ‘take pants off’. Poorly discriminating items tended to be 
those that could be ambiguous. For example, the response to ‘difficulty using a 
dishwasher’ would be unclear if the respondent does not have a dishwasher, and 
similar ambiguities apply to items such as ‘difficulty driving in the dark’.

8.5  Test information

Test information functions, as described in Section 7.5, can be evaluated for the full 
item pool, to assess the adequacy of coverage of the items. Also, as we have seen in 
Figure 7.5 and equation (7.4), the standard error of measurement is estimated by the 
square root of the inverse of the information function. Any inadequate coverage should 
be addressed by creating new items to complement the existing pool.

The test information function is also used after the CAT has been developed and is 
being applied to individual patients. During each cycle of the algorithm in Figure 8.1, 
the test information function is evaluated for the set of items that have been currently 
included in the test. The corresponding SE is calculated and the CI (confidence inter-
val) can be computed.
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Bjorner et al. (2003) conclude that the item pool shared the weakness of the 
original instruments in providing inadequate information for people with little or 
average headache. Therefore they investigated additional items that clinical experts 
proposed as suitable for discriminating amongst people with mild headache.
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Figure 8.4  Information function and standard error of measurement for the HIT item pool 
compared with the population distribution of headache impact. Source: Bjorner et al., 2003, 
Figure 3. Reproduced with permission from Springer Science and Business Media.

8.6  Computer-adaptive testing

After constructing the initial item bank and calibrating the items, the preliminary CAT 
test can be developed and tested on patients. The outline of the CAT procedure was 
shown in Figure 8.1. Each patient will receive a different set of questions. These ques-
tions are chosen with difficulties that should be challenging to the patient, and are 
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therefore maximally informative when estimating a precise scale score. For these scale 
scores, simple summated scores would be inconsistent and are inappropriate. Instead, 
since the individual questions have been calibrated along the continuum and their item 
difficulties estimated, IRT-based scoring makes use of these item difficulties to cal-
culate scores that reflect the patient’s position on the continuum. This is a complex 
calculation, and hence adaptive testing is invariably computer based.

When a patient commences the test, the initial item is usually chosen as one of medium 
difficulty. From the patient’s response, the current (initial) estimate of their scale score is 
made. Being based on a single item, this will not be a very precise score. Therefore the next 
(second) item is selected, chosen to have difficulty (or thresholds) in the region of this current 
estimate of the patient’s scale score. The response to this item enables the score to be recal-
culated with greater precision. The precision of this revised estimate is calculated using IRT, 
and the SE and CI are determined. If the SE is not considered sufficiently small or the CI is 
too large, another question is selected from the item bank. This process continues, as shown 
in Figure 8.1, until satisfactory values are obtained for the SE and the CI (or until the items 
have been exhausted or the patient has answered the maximum permitted number of items).

We have presented the development and calibration of the item bank as being a 
separate and distinct phase from the application of the CAT. However, the CAT data 
that is subsequently collected on patients can be also added to the information already 
in the item bank, enabling a more precise computation of the item characteristics. New 
items may also be added as necessary to the item bank. Thus there may be overlap 
between the development and application phases, with the item bank that feeds into the 
CAT model continuing to be expanded and modified.

Figure 8.5 summarises the main advantages and disadvantages of CAT over conven
tional questionnaires.

Figure 8.5  Advantages and disadvantages of CAT.

Advantages
●● The number of questions presented to each respondent is minimised.
●● Selection of items is individually tailored, and irrelevant items omitted—potentially 

enhancing responder compliance.
●● Floor and ceiling effects can be minimised.
●● The user can specify the desired degree of precision, and the test continues until the precision 

is attained.
●● Individuals making inconsistent response patterns can be identified.
●● Items and groups of respondents showing DIF are readily identified.

Disadvantages

●● Comprehensive item pools have to be developed and tested.
●● Item calibration studies require large numbers of patients.
●● The methodology is more theoretically complex than that of traditional psychometrics.
●● Implementation in hospital and similar settings may present practical difficulties.
●● Ideally, item banks will have continued expansion and refinement even after the CAT has 

been released.
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Examples from the literature

Lai et al. (2003) illustrate how the precision increases as successive items from 
their fatigue CAT are applied to an example patient. Initially, a screening item (‘I 
have a lack of energy’) was applied. The patient responded 1 on the 0–4 scale, 
indicating ‘quite a bit’ of fatigue. From the previously calibrated item bank, it 
was known that this meant the patient’s score on the 0–100 fatigue scale was 
expected to be between 29.6 and 47.3, with the midpoint value of 38.5 being 
the best estimate. However, the range of uncertainty is 47.3–29.6 = 17.7, which 
is very wide. Therefore another item was selected, with difficulty (mean threshold 
value) close to 38.5; this item was ‘I have trouble finishing things because I am 
tired.’ The patient endorsed 1 on this item, too, which led to a more precise score 
estimation of 38.5 to 47.3, with a midpoint estimate of 42.9. The test continued 
until four items had been applied, when the predicted scale score was 44.9 plus 
or minus 2.0.

Figure 8.6, adapted from Ware et al. (2003), compares the CAT scores against 
the scale scores based on the full item pool of 54 headache impact items. The 
agreement and precision improve as the number of items in the CAT increases 
from 6 to 10, 13 and 20.

Figure 8.6  Relation between HIT scores based on the full 54-item pool and the CAT based 
on 6, 10, 13 or 20 items. Source: Ware et al., 2003, Figure 2. Reproduced with permission of 
Springer Science and Business Media.
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8.7  Stopping rules and simulations

The CAT continues until terminated by a stopping rule, as shown in Figure 8.1. The 
choice of stopping rule is a compromise between the wish to obtain high precision and 
the desire to keep the test short. The most effective way to review the consequences of 
various stopping rules is by computer-based simulations. Simulations generated from 
the patient-response data already collected for the item bank are called real simula-
tions (McBride, 1997). The principle is to apply the algorithm shown in Figure 8.1 to 
each of the previously observed patients that are in the database. The computer only 
uses the responses that would have been obtained during a live CAT, and the responses 
that the patient made to other items is ignored.

This simple approach is less useful when item-linking of multiple questionnaires 
has been used, as many respondents may not have answered some of the items that 
become selected when the CAT is applied. Instead, the IRT model that has been fitted 
can be used to simulate responses that would be representative of a random sample of 
respondents (simulees).

Example from the literature

Fliege et al. (2005) adopted both these simulation approaches when developing 
a CAT for depression (D-CAT). After calibrating the items, the CAT algorithm was 
applied and the stopping rule of SE ≤ 0.32 was evaluated. For ‘real simulations’, 
the response data collected for calibrating the CAT was used. For IRT simula-
tions, 100 virtual persons were simulated at each 0.25 interval along the latent 
trait continuum from −3.5 to +3.5, resulting in a sample of 2,900 ‘simulees’.

Most of the respondents had depression scores within two SDs of the mean 
value, that is, over the latent trait continuum of −2.0 and +2.0. The real simu-
lations indicated that over this range an average of 6.12 items (SD = 2.11) was 
needed to obtain estimates with an SE ≤ 0.32. Using simulees, an average of 
7.15 items (SD = 1.39) were needed over this range.

It was concluded that there is little difference in information between the 
total 64-item test score and the CAT score, which is based on an average of 
approximately six items. Fleige et al. comment: ‘The considerable saving of 
items without a relevant loss of test information is in line with previous studies.’

The example of Fliege et al. is interesting, as this is one of the few studies that has been 
able to create an item pool with item locations so effectively spread across the full con-
tinuum. However, Reise and Waller (2009) observe that this was accomplished by treat-
ing depression as a bipolar continuum marked by happiness items (optimistic) on one end 
and depression items on the other; they question this, firstly suggesting that the lower end 
of a depression scale should not be ‘happiness’ but ‘lack of depression’, and secondly cit-
ing the findings of Stansbury et al. (2006) that positively worded items on a well-known 
depression measure needed to be eliminated to achieve adequate fit to an IRT model.
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8.8  Computer-adaptive testing software

Many investigators have found it necessary to develop their own CAT programs, as 
commercially available software for handling polytomous responses is limited. First, 
standard IRT software is frequently used to estimate the item parameters, and this cali-
bration process is repeated at intervals whenever an appreciable number of additional 
patients have been accrued to the central database. Recalibration would also occur 
whenever new items are being written and added to the item pool. Then when a new 
patient is being tested, CAT software can use these stored item parameters and their 
associated IRT models. The algorithm of Figure 8.1 is used, with the CAT program cal-
culating the individual patient scores and SEs. Further items are selected and applied, 
until the stopping rule is satisfied.

Some questions and issues that should be considered when developing or purchas-
ing software include those in Figure 8.7.

Figure 8.7  Issues to be considered for CAT software.

●● Patients have varying computer skills, and software should be robust and ‘user friendly’, 
with an effective human-computer interface.

●● What input device or devices should be supported? Possibilities include touch sensitive PC 
tablets, mobile phones and voice input.

●● Many patients may be old, have poor eyesight, or have limited dexterity. Therefore the 
questions should be written in a large bold font, with large boxes for tapping the  
response.

●● Should several items be displayed on the screen simultaneously, or should they be 
presented one at a time? The decision may partly depend on the complexity of the 
questions being used.

●● Should there be a facility for patients to go back and either review their responses or 
correct them?

●● Are translations of the item bank needed, and if so can the software support all of them?
●● How will the data be saved? Is it desired to integrate or link the CAT results with hospital 

information systems or other databases?
●● Are individual patient scores to be calculated and made available to the patient’s clinician? 

In what format will these be displayed or printed?
●● Will patient responses be accumulated for subsequent analyses and improvement  

of the item bank? Monitoring of patients’ responses (such as recording the time taken 
for responding to each item) can also be useful for improving the item bank and  
the CAT.

●● Checks of data quality should be implemented, with detection of inconsistent responses and 
‘patient misfit’.

●● The usual needs for data security and data protection of confidential medical data will apply.
●● Comprehensive backup facilities in case of system failure are essential.
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8.9  CATs for PROs

Major benefits from using CAT have been found in other fields, such as educational 
testing. Similar gains should be attainable for PRO and QoL instruments, although 
there are some challenges:

●● Items should have varying difficulty

In educational examinations it is easy to identify test items that have major differ-
ences in difficulty levels. Similarly, it is easy to demonstrate the efficiency of CAT 
for outcomes such as physical functioning, or the impact of pain on daily activities. 
For many other PROs the advantages may be far smaller.

●● Length of questionnaires

In educational examinations, the students are clearly motivated to respond to as 
many questions as they can – the issues of examination length are of less concern 
than in health-related applications. In contrast, the usual requirement for QoL stud-
ies to assess multiple dimensions means that for many applications the maximum 
number of items per scale will be tightly limited. This may reduce the benefits of 
CAT. On the other hand, the efficiency of CAT should offer major advantages over 
traditional paper-based questionnaires.

●● Dimensionality/local independence

As emphasised in previous chapters, concerns about dimensionality, and especially 
local independence, may be more severe in health assessment than in education. This 
may be particularly important for symptoms of disease and side effects of therapy, 
which may constitute formative scales.

●● Item sequencing

The developers of almost all traditional questionnaires rigidly emphasise that 
the order of questions must remain fixed and that no new items may be inserted. 
This is because of fears that responses to earlier items may influence later ones 
in some unspecified manner. In CAT, each patient will receive different items 
and in varying sequences. The impact of changes in item order remains largely 
unknown.

●● Cost and practicality

In educational settings, the provision of computer facilities is more easily structured 
than in busy hospital environments. Costs and delivery are important considerations 
for any test, and the implementation of CAT in hospital settings and in multicentre 
clinical trials needs further investigation.

Given these considerations, careful evaluation of the benefits of CAT in outcomes 
research is called for.
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Multidimensional CAT

Since QoL is, by definition, multidimensional, it has been suggested that multidimen-
sional CAT should be used (Petersen et al., 2006). The principle here is that since many 
of the dimensions are strongly correlated they are informative about each other, and 
so either the total number of items that are presented can be further reduced or extra 
precision derived by making maximum use of all the information collected. For exam-
ple, a person who is very fatigued will tend to report a correspondingly poor physical 
functioning. Thus, when assessing levels of fatigue, the CAT ought to make use of 
information from dimensions such as physical functioning. Petersen et al. found that 
by using multidimensional CAT for the EORTC QLQ-C30 about half the items suf-
ficed to obtain comparable precision to the standard QLQ-C30 version 3.

DIF and CAT

Although items exhibiting DIF are generally deprecated, CAT may also offer a poten-
tial to correct for DIF effects. In some scales it may be difficult to avoid item bias, and 
the investigators may decide to overcome DIF by including different items for different 
subgroups of respondents. For example, suppose an instrument is required for use in a 
clinical trial that will be recruiting patients aged from 10 to 70. It might be desired to 
obtain a single indicator of physical function even though ‘good physical functioning’ 
will take on a different meaning for children as opposed to adults. In such a situation 
the investigator might have one question for adults about going to work, a different 
question for children about going to school, and possibly other questions aimed at 
other subgroups of patients such as the retired. Then each question would be relevant 
only for its own target subgroup, and would not be valid for other patients. The results 
could be analysed by calibrating the individually targeted questions onto the overall 
physical functioning continuum. In this simple example one could in principle have 
considered instead using a compound question, such as: ‘Do you have trouble going 
to school/work or doing housework/performing retirement activities?’ However, this 
could be confusing and easily misunderstood, and the listed activities might have dif-
ferent relevance in the various subgroups; IRT and CAT offer greater potential for a 
consistent scaling.

8.10  Computer-assisted tests

This chapter is mainly about the use of IRT to develop CATs – computer-adaptive 
tests. However, another important use of computers is in computer-assisted testing. 
In clinical and related settings it is standard practice for the nurse, clinician or other 
interviewer to adapt the questions according to the relevant issues. For example, if a 
patient says they have a particular symptom, the interviewer may inquire about sever-
ity and duration. Some symptoms may be intermittent, in which case frequency may be  
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relevant. Sometimes significant questions may concern impact on the patient or inter-
ference with activities. Computer-assisted tests can be developed, mimicking the tra-
ditional patient–clinician interview. The objective of these tests is to expand out the 
reported symptoms, as appropriate in each case, by exploring the relevant aspects and 
issues surrounding each specific symptom.

This form of testing is most useful when the assessments are intended for routine 
patient management, but may also be of value when collecting information in clinical 
trials: an obvious situation concerns the detection and reporting of unusual adverse 
effects.

A useful combination of testing may be CAT for measuring the main QoL dimen-
sions, and tailored questions for expanding out relevant symptomatology.

8.11  Short-form tests

The methodology of IRT and CAT can also be used to generate efficient so-called 
short-form (SF) versions of questionnaires, in which an optimal set of items is selected 
from the item bank such that maximum precision over a specified range is obtained 
when using the minimal number of items. The benefit of adding items can be assessed 
in terms of the impact on precision of the estimated scores; either the maximum num-
ber of items or the desired precision may be prespecified when developing the SF 
instrument. Many instrument developers offer brief SF versions, frequently developed 
in parallel with a full CAT approach. Since these SF versions consist of fixed sets of 
items, all respondents complete the same questionnaire, and it may for example be 
presented in a traditional paper-and-pencil format.

One particular aspect of an IRT-based SF approach is that separate SF versions of a 
questionnaire may be developed for specific populations. For example, when assessing 
physical functioning of severely ill hospital in-patients the range of interest is different 
from that in a relatively healthy population. In terms of IRT, we can search for items 
that yield an information function covering the required population distribution. Thus 
different SF versions, all calibrated to provide scores on a single common metric, may 
be generated for specific populations that are expected to have different mean scores, 
ranges or SDs. Also, for some applications brevity (fewer items, less burdensome) may 
be more important than precision. IRT and CAT provide the tools for deriving such SF 
questionnaires.

8.12  Conclusions

CAT potentially presents major advantages over traditional testing. In particular, it 
offers the possibility of gaining greater precision while presenting fewer questions to 
the patient. It also results in tailored tests that avoid asking patients irrelevant – and 
therefore possibly irritating – questions. Scores from CAT also have the advantage that 
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their precision is automatically determined as part of the computational process, which 
is rarely the case with traditional methods. But, on the other hand, the development 
process is more complex and involves the development, validation and calibration of 
large item banks.

The benefit of the CAT approach is that it is less burdensome for the respondents. 
Fewer items are required for any given level of precision. For any given number of 
items, the estimated scores from a CAT are more precise than for a traditional ques-
tionnaire with a fixed set of items.

Although CATs are theoretically more efficient than traditional tests, the greatest 
gains are apparent only when dimensions are amenable to evaluation using items of 
varying difficulty. Thus the assessment of physical functioning and activities of daily 
living offer ideal examples – even traditional instruments resort to questions regarding 
from easy tasks, such as ability to get out of bed, through to more difficult activities 
such as running a long distance. Similarly, ‘impact’ scales readily offer items of vary-
ing difficulty. Examples include the impact of fatigue on daily activities, the interfer-
ence of pain on activities, and the headache impact test that we have described. For 
other types of scale it may be more difficult to devise items of appreciably varying 
difficulty, in which case the benefits of CAT are less clear.

8.13  Further reading

The book by Wainer (2000) provides a comprehensive discussion of the development 
of CATs. Examples of papers setting out principles and methodology for developing 
item banks and CAT systems for PROs are Reeve et al. (2007), Rose et al. (2008), 
Thissen et al. (2007) and Petersen et al. (2010). The special issue of Quality of Life 
Research (2003) volume 12, number 8, contains several papers illustrating the devel-
opment of the headache impact test. Two groups have developed CATs for cancer-
related fatigue, and both provide comprehensive details: the reports of the Functional 
Assessment of Chronic Illness Therapy (FACIT) group (Lai et al., 2003, 2005) may be 
compared against those of the EORTC group (Giesinger et al., 2011; Petersen et al., 
2013). Test equating, scaling and linking are detailed by Kolen and Brennan (2010).
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Summary

Previous chapters have reviewed the aims, principles and psychometric techniques 
of questionnaire design, validation and testing. We have emphasised that develop-
ing a questionnaire is a lengthy and time-consuming process; it is recommended that 
investigators make use of existing questionnaires whenever appropriate. This chapter 
discusses how to identify and select a suitable questionnaire. We also describe the 
principal methods of scoring the results.

9.1  Introduction

There is a wide diversity of instruments for assessing QoL and measuring PROs, and 
the choice of instrument may be crucial to the success of a study. Although many ques-
tionnaires exist, not all have been extensively validated. The selection must be made 
with care, and expert advice is important. The choice of questionnaire will depend on 
the study’s objectives and the characteristics of the target population. For some stud-
ies, it will be most natural to seek a generic instrument that enables comparisons to be 
made against other groups of patients, possibly from other disease areas. This might 
be the case when an expensive intervention is being explored in a clinical trial and the 
study results are to be used in a health-economic evaluation. In other studies, it may be 
more important to identify areas in which a new treatment affects the QoL of patients, 
and patient-reported side effects may be the principal objective. In this chapter, we 
explore how the study objectives may influence the choice of questionnaire.

A large part of the instrument selection process consists of checking and verifying 
that the candidate instruments have been developed with full rigour and that there is 
documented evidence to support claims of validity, reliability, sensitivity and other 
characteristics. In effect, the investigator who is choosing an instrument will need to 

Quality of Life: The Assessment, Analysis and Reporting of Patient-Reported Outcomes, Third Edition.  
Peter M. Fayers and David Machin. 
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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judge the extent to which formal development procedures have been followed, and will 
then have to decide how important any omissions may be. We present a checklist to aid 
the evaluation of instruments.

Clinical trials or clinical practice?

This chapter focuses on clinical trials. QoL instruments are also being increasingly 
used in clinical practice, for individual patient monitoring and management. This 
raises other issues, which are not covered here. The comprehensive review by Snyder 
et al. (2012) is recommended reading.

9.2  Finding instruments

There are a number of books providing extensive collections of reviews, both for gen-
eral and disease-specific questionnaires. Examples include Bowling (2001, 2004),  
McDowell and Newell (2006) and Salek (2004).

Many disease-specific reviews of QoL instruments exist. These reviews may report 
the results of literature searches, describing all generic and disease-specific ques-
tionnaires that have been used for a particular condition, and sometimes debate the 
contrasting value of the approaches. It can be worth searching bibliographic databases 
for articles containing the keywords ‘review’ together with ‘quality of life’ and the 
disease in question. Unfortunately, some of these reviews are likely to have been writ-
ten as part of a justification for developing a new instrument, in which case they may 
conclude that no satisfactory tool exists for assessing QoL in this population – and 
declare the author’s intent to fill the gap.

The Patient-Reported Outcome and Quality of Life Instruments Database  
(PROQOLID) is an Internet resource at <http://www.proqolid.org/>. PROQOLID is 
indexed by pathology/disease, targeted population and author’s name, and has general 
search facilities. It is a useful aid for identifying disease-specific instruments. For sub-
scribers, it additionally contains descriptions and review copies of a growing number 
of instruments.

Special populations

Standard instruments may not be suitable for particular populations. For example, 
instruments intended for children present a set of challenges. Children have age-
dependent varying priorities that are frequently misunderstood by adults. Younger 
children may need help completing questionnaires, while proxy assessment may be 
necessary for the youngest ones. Landgraf (2005) and Solans et al. (2008) provide 
reviews of the issues and thoughts about how to assess QoL in children, and describes 
the more prominent questionnaires.

http://www.proqolid.org/
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Another example is the assessment of patients with dementia, which may pose chal-
lenges both in understanding what causes distress and in the measurement of the perti-
nent issues. Again, proxy assessment may be necessary. Ettema et al. (2005) provides 
a review, although more recent instruments have been developed since then.

9.3  Generic versus specific

Generic instruments focus on broad aspects of QoL and health status, and are intended 
for use in general populations or across a wide range of disease conditions. If it is 
considered important to compare the results of the clinical trial with data from other 
groups of patients, including patients with other diseases, a generic instrument will be 
appropriate.

A generic instrument is required when making health-economic assessments that 
cover a range of disease areas, or when contrasting treatment costs versus therapeutic 
gains across different diseases. However, for the valid application of health-economic 
methods, it will be necessary to use an instrument that has in addition been developed 
or calibrated in terms of utilities, preferences or a similar system of values.

In contrast, disease-specific instruments are usually developed so as to detect 
more subtle disease and treatment-related effects. They will contain items reflect-
ing issues of importance to the patients. In some clinical trials, the objective of 
the QoL assessments is to detect patient-reported differences between the test and 
the control treatment. In these trials, the instrument of choice will frequently be 
disease-specific and therefore sensitive to the health states that are likely to be 
experienced by patients eligible for the study. Disease-specific instruments may 
also provide detailed information that is of clinical relevance to the management of 
future patients.

When evaluating new treatments, or novel combinations of therapies, the possible 
side effects and consequent impact on QoL may sometimes be uncertain. An instru-
ment that is sensitive to the potential side effects of therapy may be required, and this 
will generally indicate the need for a disease- or treatment-specific instrument. Even 
so, not all disease-specific instruments have the full range of appropriate treatment-
specific items that are relevant for the particular form of therapy under investigation, 
and at times multiple questionnaires must be used, or supplementary items devised, to 
address the pertinent issues of interest.

The separation of instruments into generic and specific can function at different 
levels. Thus the EORTC QLQ-C30 and the FACT-G are examples of instruments that 
are generic for a class of disease states. These instruments are core modules that are 
intended for use with supplementary modules focusing on particular subcategories of 
disease and specific treatments. Since they were designed to be modular, both the core 
and a supplementary module can be used together on each patient.

Other instruments assess individual aspects of QoL, with PROs for symptoms such 
as pain, fatigue, anxiety and depression, and if these dimensions are of particular inter-
est in the trial the questionnaires may be used alongside disease-related or generic 



246	 Choosing and scoring questionnaires  

instruments. Thus a trial investigating the use of erythropoietin (EPO) for fatigue in 
cancer patients might use an instrument such as the EQ-5D for health-economic pur-
poses, to evaluate the cost-effectiveness of treating the fatigue in cancer patients, with 
the EORTC QLQ-C30 to assess QoL and a fatigue questionnaire to explore the ben-
efits of EPO on individual patients.

Although it may occasionally be possible to use a combination of generic, disease-
specific and dimension-specific instruments, the result may be a questionnaire package 
that takes an unacceptably long time to complete and which contains questions that are 
more or less repeated in different formats.

9.4  Content and presentation

When one or more potentially suitable instruments have been identified, ostensibly 
covering the same issues, the next stage is to consider the whether it addresses all 
the relevant issues in a suitable manner. The content – and even the style of presenta-
tion – of instruments can vary considerably. For example, the two most widely used  
generic cancer instruments, the FACT-G and the EORTC QLQ-C30, differ apprecia-
bly. The developers of the FACT-G placed emphasis on psychosocial aspects, whereas 
the team designing the QLQ-C30 included a far greater proportion of clinicians. This 
is reflected in the nature of the two questionnaires. However, there is sufficient overlap 
that it would seem inappropriate to use both questionnaires in a treatment comparison 
study. A choice has to be made.

Example from the literature

Holzner et al. (2001) studied a heterogeneous group of 56 patients who were 
treated with bone marrow transplant (BMT), and 81 who were diagnosed as 
having chronic lymphatic leukaemia (CLL). All patients completed both the 
FACT-G and the EORTC QLQ-C30. Holzner et al. show that the two instruments 
have substantial differences even in the four major domains.

In the physical domain, the QLQ measures basic physical functions and effi-
ciency (‘physical functioning’), while the FACT focuses primarily on symptoms 
such as fatigue and pain (‘physical well-being’). This was reflected in lower QLQ 
scores in the CLL patients compared to the BMT patients, partly because the CLL 
patients are on average 30 years older; there was no such difference between 
CLL and BMT with the FACT.

In the emotional domain, BMT patients had lower FACT scores than CLL 
patients, but the QLQ scores showed no differences. This was attributed to the 
QLQ emotional functioning scale referring to mood states (irritability, tension, 
depression, worry), whereas the FACT emotional well-being scale emphasises 
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existential issues (worries about the future, death) – and thus patients under-
going life-threatening BMT scored lower.

In the social domain, the FACT is directed at aspects of social support, while 
the QLQ focuses on how physical condition interferes with family and social 
life. It is suggested that this explains why the QLQ shows lower scores for BMT 
than for CLL, while there is no difference between the FACT scores.

Finally, the QLQ defines `role functioning’ in terms of work and leisure activi-
ties, but the equivalent FACT dimension is many-faceted and includes aspects 
of working, enjoyment, coping and satisfaction.

Holzner et al. note that:

a.	when selecting a QoL instrument, investigators should not rely on names of 
subscales and domains but must take into account the contents of individual 
items,

b.	 similarly, interpretation and comparison of study results should be based on 
the content of items and not rely on names of subscales,

c.	 similar differences could probably be found among other QoL instruments.

9.5  Choice of instrument

Criteria for choosing

How should one select an instrument for use? Assuming that you have formed a 
shortlist of potentially suitable instruments that purport to address the scientific 
issues that are relevant to your study, the next steps are first to review the content of 
the instruments and, secondly, to check whether the instruments have been devel-
oped rigorously.

Points to consider are included in the checklist shown in Box 9.1. It is likely that 
few, if any, instruments will be found to satisfy all these requirements – and, for many 
instruments, much of the required information may be unreported and unavailable. A 
judgement must be made as to the adequacy of the documented information and the 
suitability of the instruments.

The checklist has a brief section titled validation. The topics from Part 1 of this 
book provide a basis for checking the validity and related aspects, such as sensitivity, 
responsiveness and reliability. Terwee et al. (2007) have produced a checklist of crite-
ria for measurement properties of instruments, and the COSMIN group extend this in 
a very thorough and comprehensive checklist covering the full range of psychometric 
issues (Mokkink et al., 2010). Valderas et al. (2008) also provide a general checklist. 
Validation of translations is outlined in Part 1 (Section 3.14), and further details are 
also provided in Wild et al. (2005).
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The reasons for selecting a particular instrument should be documented in the study 
protocol, and may be referenced when later reporting the results of the study.

Box 9.1 Choosing an instrument – a checklist

Documentation
1.	Is there formal written documentation about the instrument?
2.	Are there peer-reviewed publications to support the claims of the developers?
3.	Is there a user manual?

Development
1.	Are the aims and intended usage of the instrument clearly defined?
2.	Is there a clear conceptual basis for the dimensions assessed?
3.	Was the instrument developed using rigorous procedures? Are the results 

published in detail? This should include all stages from identification of 
issues and item selection through to large-scale field-testing.

Validation
1.	How comprehensive has the validation process been, and did the validation 

studies have an adequate sample size?
2.	Do the validated dimensions correspond to the constructs that are of rel-

evance to your study?
3.	Is there documented evidence of adequate validity?
4.	Is there evidence of adequate reliability/reproducibility of results?
5.	What is the evidence of sensitivity and responsiveness? How do these values 

affect the sample size requirements of your study?

Target population
1.	Is the instrument suitable for your target population? Has it been tested 

upon a wide range of subjects from this population (e.g. patients with the 
same disease states, receiving similar treatment modalities)?

2.	If your population differs from the target one, is it reasonable to expect the 
instrument to be applicable? Is additional testing required to confirm this?

3.	Will your study include some subjects, such as young children or cognitively 
impaired adults, for whom the instrument may be less appropriate?

Feasibility
1.	Is the method of administration feasible?
2.	How long does the instrument take to complete (patient burden)?
3.	Are the questions readily understood, or is help necessary?
4.	Are there any difficult or embarrassing items?
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5.	Is the processing of questionnaires easy or do items require coding, such as 
measurement of visual analogue scales?

6.	If multiple questionnaires are to be used (e.g. generic- and disease-specific 
questionnaires), are they compatible with each other? Many instruments 
come with the advice: ‘If more than one questionnaire is to be used, our one 
should be applied first’—which is clearly impractical when several make the 
same demand.

Languages and cultures
1.	Has the instrument been tested and found valid for use with patients from 

the relevant educational, cultural and ethnic backgrounds?
2.	Are there validated translations that cover your needs, present and future?
3.	If additional language versions are required, they will have to be developed 

using formal procedures of forward and backward translation and tested on 
a number of patients who also complete a debriefing questionnaire.

Scoring
1.	Is the scoring procedure defined? Is there a global score for overall QoL?
2.	Are there any global questions about overall QoL?

Interpretation
1.	Are there guidelines for interpreting the scale scores?
2.	Are there any reference data or other guidelines for estimating sample size 

when designing a trial?
3.	Is there a global question or a global measure of overall QoL?
4.	Is there, or is it necessary to provide, an open-ended question about ‘other 

factors affecting your QoL, not covered above’?
5.	Are treatment side effects covered adequately?

Adding ad hoc items

Sometimes an existing instrument may address many but not all of the QoL issues that 
are important to a clinical investigation. In such circumstances, one can consider add-
ing supplementary questions to the questionnaire. These questions should be added at 
the end, after all the other questions of the instrument, to avoid any possibility of dis-
turbing the validated characteristics of the instrument. Interposing new items, deleting 
items and altering the sequence of items may alter the characteristics of the original 
questionnaire. The copyright owners of many instruments stipulate that new items may 
only be added at the end of their questionnaire.
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Sometimes it may be thought possible to extend a questionnaire by adopting an item 
taken from other sources and thus known to have been tested. Commonly, however, the 
wording of both the item and its response options will have to be changed, making the 
new item consistent with the rest of the questionnaire. Thus, ideally, each additional 
item should be tested rigorously to ensure that it has the desired characteristics. In 
practice, this is frequently not feasible. For example, a clinical trial may have to be 
launched by a specific deadline. However, as a minimum, all new items should be 
piloted upon a few patients before being introduced to the main study. Debriefing ques-
tions similar to those we have described (Part 1, Sections 3.6 and 3.15) should be used.

Although the use of ad-hoc items to supplement a questionnaire may readily be crit-
icised, in many situations it is better to devise additional questions, with care, than to 
ignore completely issues that are clearly relevant to a particular illness or its treatment.

9.6  Scoring multi-item scales

There are three main reasons for combining and scoring multiple items as one scale. 
Some scales are specifically designed to be multi-item, to increase reliability or 
precision. Sometimes items are grouped simply as a convenient way of combining 
related items; often this will follow the application of methods such as factor analysis, 
which may suggest that several items are measuring one construct and can be grouped  
together. Also, a multi-item scale may arise as a clinimetric index, in which the judge-
ment of a number of clinicians and patients is used as the basis for combining hetero-
geneous items into a single index.

In the following descriptions it is assumed that all items in a scale are scored in the 
same direction. For example, in a symptom scale it is usual for high scores to represent 
a high level of symptoms, in which case it would be necessary to recode any items in 
the scale for which high scores indicate a favourable outcome, fewer symptoms or less 
severe symptoms.

Summated scales

The simplest and most widely practised method of combining, or aggregating, items 
is the method of summated ratings, also known as Likert summated scales. If each 
item has been scored on a k-point ordered categorical scale, with scores either from 1 
to k, or 0 to k – 1, the total sum-score is obtained by adding together the scores from 
the individual items. For a scale containing m items, each scored from 0 to k – 1, the 
sum-score will range from 0 to m × (k – 1). Since different scales may have different 
numbers of items or categories per item, it is common practice to standardise the sum-
scores to range from 0 to 100. This is done by multiplying the sum-score by 100/(m × 
(k – 1)). As noted above, if some questions use positive wording and others negative, 
it will be necessary to reverse the scoring of some items so that they are all scored in 
a consistent manner with a high item score indicating, for example, a high level of 
problems.
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The main requirement for summated scales is that each item should have the same 
possible range of score values. Usually it would not be sensible to sum, for example, 
an item scored 1–3 for ‘not at all’, ‘moderately’, ‘very much’ with another item scored 
from 1 (‘none’) to 10 (‘extremely severe’). One way to correct for this is to standardise 
the items so that they have similar means and variances. However, it is usually best to 
develop questionnaires so that they have uniformly rated items with similar numbers 
of categories and similar ranges of score values.

Likert summated scales are optimal for parallel tests because the foundation of these 
is that these each item is an equally good indicator of the same underlying construct 
(see Part 1, Section 2.7). Perhaps surprisingly, summated scales have in practice also 
been found to be remarkably robust and reliable for a wide range of other situations. 
Thus when scoring a number of items indicating presence or absence of symptoms, 
a simple sum-score could represent overall symptom burden. Similarly, hierarchical 
scales – although totally different in nature from parallel tests – are also often scored in 
the same way, and a high score indicates a high number of strong endorsements. Occa-
sionally multi-item scales are comprised of items that are neither consistently parallel 
nor hierarchical; perhaps summated scales will still be a reasonable method of scoring.

Example

The emotional functioning scale of the EORTC QLQ-C30 (Appendix E6) consists 
of questions 21–24. These four items are scored from 1 to 4. A patient respond-
ing 2, 2, 3 and 4 for these items has a sum-score of 11. The range of possible 
scores is from 4 to 16. Thus we can standardise these scores to lie between 0 
and 100 by first subtracting 4, giving a new range of 0 to 12, and then mul-
tiplying by 100/12. Hence the standardised score is 11 4 100 12 58 3−( )× =/ . .  
However, the Scoring Manual for the EORTC QLQ-C30 (Fayers et al., 2001) 
specifies that high scores for functioning scales should indicate high levels 
of functioning, whereas high responses for the individual items indicate poor 
functioning. To achieve this, the scale score is subtracted from 100 to give a 
patient score of 41.7.

Example from the literature

The items of the physical functioning scale of the EORTC QLQ-C30 are clearly 
not parallel items. However, using the property of summated scales that higher 
scores correspond to greater numbers of problems, this is the approach rec-
ommended by the EORTC Quality of Life Study Group for scoring the physical 
functioning scale (Fayers et al., 2001).
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Section 15.5 explains methods of calculating sum-scores when some of the items 
are missing. Essentially, the most common approach is that if at least half of the items 
are present, the mean of those items is calculated and it is assumed that the missing 
items would have taken this mean value.

Weighted sum-scores

It is sometimes suggested that weights should be applied to those items that are 
regarded as most important. Thus, for example, an important item could be given dou-
ble its normal score, or a weight of 2, so that it would have values from 0 to 2 × (k – 1). 
If there are three items in a scale, and one is given double weight, that is equivalent to 
saying that this item is just as important as the other two combined. If the ith item has 
a score xi, we can assign weights wi to the items and the sum-score becomes  w xi i∑ . 
However, empirical investigations of weighting schemes have generally found them to 
have little advantage over simple summated scales.

Other methods for aggregating items into scores have been proposed, including 
Guttman scalogram analysis, the method of equal-appearing intervals and multidimen-
sional scaling. These methods are now rarely used for PRO scales. In the past, factor 
weights derived from exploratory factor analysis have occasionally been used when 
aggregating items; in Part 1, Section 6.6, we showed that the use of factor loadings 
to produce weights for scale scoring is unsound. For indicator variables, the principal 
alternative to summated scales is item response theory, or IRT-scoring (see Part 1, 
Chapters 7 and 8). IRT-scoring is most pertinent when items are chosen from an item 
bank specifically because they are of varying difficulty, and becomes essential when 
computer-adaptive tests are used.

For scales containing causal variables, or ‘formative scales’, there are other con-
siderations. Although summated scores are frequently used, causal variables should 
only be included in Likert summated scales with caution. There is no reason to expect 
that symptoms such as, for example, pain, dyspnoea and appetite loss will have equal 
impact on patients; many investigators argue that it is more likely that some issues are 
more important than others in terms of their impact, and that therefore items should 
‘weighted’ to reflect their relative importance. Thus, Fayers et al. (1997a) argue that 
if a scale contains several causal items that are, say, symptoms, it is surely inconceiv-
able that each symptom is equally important in its effect upon patients’ QoL. While 
some symptoms, even when scored ‘very much’, may have a relatively minor impact,  
others may have a devastating effect upon patients. Instead of a simple summated 
scale, giving equal weight (importance) to each item, symptom scores should in theory 
be weighted, and the weights should be derived from patients’ ratings of the impor-
tance and severity of different symptoms. In practice, most well-designed instruments 
will only contain causal items if they that are deemed to have an important impact on  
patients’ QoL. Also, for those instruments that ask about the intensity of symptoms, it is 
likely that many patients may rate a symptom less severe if it impacts to a lesser extent 
on their QoL (i.e. the distinction between severity and impact may become blurred). In 
any event, experience suggests that summated scales are surprisingly robust to causal 
items, and it has been observed that weighting makes little difference in practice 
(for example, Hsieh C-M, 2012; Russell et al, 2006; Wu CH, 2008). From empirical  
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studies, it has repeatedly been observed that performance of the ensuing scale scores 
is relatively insensitive to the choice of weights; this has been termed the flat maxi-
mum effect (Von Winterfield and Edwards, 1982). Hand (2004) uses a mathematical 
argument to explain this: if the constituent items are moderately highly correlated, 
scale scores formed by equal weights (i.e. unweighted) will be fairly highly correlated 
with scales that use optimal weights and will thus have similar performance proper-
ties (Hand, 2004, pp. 171–172). By performance, we mean for example that weighted 
and unweighted scores will generally be found to be equally discriminative in known-
group comparisons and equally responsive to changes over time.

In an extreme case the causal variables might be sufficient causes, such that a high 
score on any one of the sufficient-cause symptoms would suffice to reduce QoL, even 
if no other symptoms are present. Linear models, such as Likert summated scales and 
weighted sum-scores, will no longer be satisfactory predictors of QoL. Non-linear 
functions may be more appropriate. A maximum of the symptom scores might be a 
better predictor of QoL than the average symptom level. Utility functions are another 
possibility (see, for example, Torrance et al., 1996), and these lead to an estimation of 
QoL by functions of the form ∑wilog(1 − xi), where xi lies between 0 and 1.

Although also described as formative, scales such as activities of daily living (ADL) 
are solely defined by their component items, and these items are composite indicators 
that do not have a causal impact on the latent variable (see Part 1, Chapter 2 for discus-
sion of causal and composite indicators). Such scales are usually summarised as an 
index score formed by a linear sum-score. Most commonly equal weights are assumed, 
although in some cases weighted sum-scores, with weights based on judgement of 
item contribution to the index that is being formed, might be better able to reflect the 
definition of the index (Bollen and Bauldry, 2011).

Norming systems: Z-scores and T-scores

A variety of norming systems have been used for psychological, personality and edu-
cational tests, to standardise both individual measurements and group means. First a 
reference group is defined, which is typically a national sample of the random popula-
tion. This is used to derive the normative data, which is commonly divided by age and 
gender strata. National reference samples are available for many of the most widely used 
generic questionnaires, covering an increasing number of countries. The data from clini-
cal trials and other studies can then be scored by comparison with these normative data.

One of the simplest methods is percentile rank. Each subject can be given a percen-
tile ranking in comparison with the reference sample. Thus a percentage-rank score of 
75 would indicate that a subject has a raw score or response that is greater in magnitude 
than 75% of the reference group. A patient with a percentile rank of 50 would have a raw 
score equal to the median. Percentile ranks are easily understood and communicated: 
‘Your quality of life is as good as that of the top 10% of the population’. However, they 
suffer the disadvantage that the scale is non-linear: if we assume an underlying Normal 
distribution, a change from 50% to 55% corresponds to a much smaller change in raw 
score than a change in the extreme values, such as from 5% to 10% or 90% to 95%.

Z-scores are raw scores expressed in standard deviation units, and indicate how 
many SDs the raw score is above or below the reference mean. If the reference sample 
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has a mean of ZPop and a standard deviation SDPop, to transform the raw score Xi of the 
ith patient in a trial, we use

= −Z X Z SD( ) /i i Pop Pop.

Thus Z-scores have a mean of zero, and an SD of 1. If the raw scores follow a 
Normal distribution, the Z-scores will too, and it becomes easy to translate between 
percentile-ranks and Z-scores.

More commonly used, T-scores are similar to Z-scores but with a mean of 50 and 
an SD of 10 (although, curiously, some well-known intelligence tests use an SD of 15). 
Thus a patient’s T-score can be derived from

T Zi i= × +( ) .10 50

Example from the literature

Linder and Singer (2003) used T-scores to show the health-related QoL of adults 
with upper respiratory tract infections (Figure 9.1). The SF-36 was used, and 
the T-scores were calculated using reference values from the 1998 USA gen-
eral population National Survey of Functional Health Status. The patients with 
urinary-tract infections were also contrasted against adults with self-reported 
chronic lung disease, osteoarthritis and depression drawn from the same survey. 
p-values are indicated, but it would have been more informative to provide 
exact p-values and show 95% confidence intervals.

Figure 9.1  The SF-36 health status of 318 adults with upper respiratory tract infections 
(URIs). T-scores were calculated using the general USA population. The URI patients were also 
contrasted against patients with lung disease, osteoarthritis and depression. Note: *p < 0.001, 
†p <  0.05 for comparisons with URI. Source: Reproduced with kind permission of Springer 
Science and Business Media. Linder JA and Singer DE (2003) Health-related quality of life of 
adults with upper respiratory tract infections. Journal of General Internal Medicine 18: 802–807.
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There is inconsistency over the use of the terms Z-score and T-score. Many authors 
– but by no means all – reserve the use of Z-scores to refer to data that do have a Nor-
mal distribution, if necessary by the prior application of a suitable normalising trans-
formation. For some psychometric tests this is achieved by making use of extensive 
look-up percentile tables that provide the T-score. Unfortunately, many PRO scales 
have a limited number of possible categories. This, together with floor and ceiling 
effects, may make it impossible to obtain a Normal distribution.

However, frequently the distributions are at least moderately close to a Normal dis-
tribution. Then, since a T-score of 30 is two SDs below the reference mean of 50, 
patients with scores below 30 are outside the 95% Normal range and are in the lower 
2.5% of the population. The same applies to all scales that are converted to the T-scores 
metric, making it possible to draw comparative inferences regarding which scales show 
the largest departure from the population values.

IRT-based scoring

When instruments have been developed using IRT models, it is natural to use IRT-
based scoring. The process is complex, and makes use of computer software. One 
major advantage of IRT models is that the relative difficulties of the items are 
estimated, enabling valid scale scores to be calculated for patients who may have 
answered different subsets of items. This means that allowance is automatically 
made when there are missing items within a scale; it also provides the basis for 
computer-adaptive tests.

Examples from the literature

Norquist et al. (2004) compared Rasch-based (one-parameter IRT) scoring 
versus sum-scores, for the Oxford Hip Score (OHS) questionnaire. Data were 
collected on 1,424 patients receiving total hip replacement surgery. The OHS 
contains two 6-item scales, representing pain and functional impairment. 
Each item has five response categories. Using the summated-scale method as 
the base (1.0), the relative precision of the Rasch scores was estimated. These  
varied between 0.96 and 1.48, with most of the values not representing a 
statistically significant improvement over the use of summated scales. Higher 
relative precisions were found for the changes in scores from baseline to one 
year. The authors conclude that there may be some gains in sensitivity from 
using Rasch-based scoring, although they also suggest that in some situ-
ations there may be substantial gains, such as when comparing groups of 
patients.

In contrast, Petersen et al. (2005) report no gains when using IRT methods 
to score the physical functioning, emotional functioning and fatigue scales of 
the EORTC QLQ-C30.
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Since IRT scoring is so powerful, several authors have explored using these meth-
ods on conventionally designed instruments. In particular, scales such as those for 
physical functioning will typically have items of varying difficulty, ranging from 
‘easy’ tasks such as being able to get out of bed and get dressed, through to the more 
difficult activities such as running long distances. These scales theoretically appear 
ideally suited to IRT scoring. In practice, the gains appear to be at best modest. Per-
haps this is because in most instruments these scales are short, and the few items they 
do contain have multi-category response options. Also, since the items have presum-
ably been selected using traditional psychometrics, they are less likely to be optimal 
for IRT scaling.

Health-economics scores

The scoring methods described above are intended to produce a score for each patient, 
summarising their overall QoL or individual dimensions and issues. These scores may 
then be used for individual patient management, or averaged across patients to provide 
group means.

In contrast, the aim in health-economic assessments is rather more to obtain a single 
summary index that encapsulates a patient’s QoL, such that this can be combined with 
other outcomes such as survival and cost, enabling the estimation of overall treatment 
cost–benefit for groups of patients. This leads to fundamentally different approaches 
to scoring, using utilities, as discussed in Chapter 17.

9.7  Conclusions

Designing and developing new instruments constitutes a complex and lengthy process. 
It involves many interviews with patients and others, studies testing the questionnaires 
upon patients, collection of data, and statistical and psychometric analyses of the data 
to confirm and substantiate the claims for the instrument. The full development of an 
instrument may take many years. If at any stage inadequacies are found in the instru-
ment, there will be a need for refinement and retesting. Many instruments undergo 
iterative development through a number of versions, each version being extensively 
reappraised. For example, the Appendix shows version 3.0 of the EORTC QLQ-
C30 and version 4 of the FACT-G. Instruments in the appendices, like many other 
instruments, will have undergone extensive development along the lines that we have 
described.

In summary, our advice is: Don’t develop your own instrument – unless you have 
to. Wherever possible, consider using or building upon existing instruments. If you 
must develop a new instrument, be prepared for much hard work over a period of 
years.

Similarly, scoring should usually follow the recommendations of the instrument 
developers. Unless otherwise specified by the developers, simple summations serve 
well for a wide variety of scales.
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9.8  Further reading

The books listed in Section 9.2 for finding instruments (Bowling, 2001, 2004;  
McDowell and Newell, 2006; Salek, 2004) also contain advice about the criteria that 
should be used to inform choices. Reeve et al. (2013) recommends minimum standards 
for PRO measures used in patient-centred outcomes research or comparative effec-
tiveness research. Lohr (2002) provides a useful checklist of ‘attributes and review 
criteria’, as does also the EMPRO group (Valderas et al., 2008). Terwee et al. (2007) 
describe criteria for measurement properties of instruments; the COSMIN group pro-
vide a thorough and comprehensive checklist for validity and other psychometric  
issues (Mokkink et al., 2010).
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 Clinical trials

           Summary

 The inclusion of PROs in clinical trials, and especially multicentre clinical trials,

presents a number of diffi cult organisational issues. These include standardisation

of the procedures for assessment and data collection, specifi cation of measurement 

details to ensure consistent assessment, methods for minimising missing data and

the collection of reasons for any missing responses. In particular, many trials report 

serious problems of compliance, and there are problems for interpretation of results

when data are missing. Hence it is important to seek methods of optimising the level of 

compliance, both of the participating institution and of the patient. In this chapter we

describe a number of methods for addressing these issues, which should be considered

when writing clinical trial protocols involving QoL assessment. A checklist is provided 

for points that should be covered in protocols.

 10.1 Introduction

 The success or failure of the trial will depend on how well the protocol was written. A

poorly designed, ambiguous or incompletely documented protocol will result in a trial

that will not be able to answer the questions of interest. The protocol must be concise,

yet detailed and precisely worded with all the requirements clearly indicated so that the 

trial is carried out uniformly by all participants. Protocols should contain a statement 

about the rationale for assessing QoL or PROs, justifying their importance to the par-

ticipating clinician. Sometimes this may be brief, although a more detailed discussion

might be appropriate when QoL is a major endpoint of the study. 

 Poor compliance bedevils randomised clinical trials with PROs, leading to serious

problems of analysis and interpretation. In some instances the potential for bias in

the analyses could even render the results uninterpretable. Compliance can be greatly

enhanced by ensuring that all those involved in the trial, from medical staff to patients, 

are aware of, and agree with, the relevance of PROs as a study endpoint. 

Quality of Life: The Assessment, Analysis and Reporting of Patient-Reported Outcomes, Third Edition. 

Peter M. Fayers and David Machin.

© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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 Equally, it is important to recognise that QoL assessment should be incorporated in a

clinical trial only when it really is relevant to do so. This may depend on the aims of the

trial and the precise objective in including a QoL assessment. PROs are not necessarily

relevant to all clinical trials. It may be unnecessary to measure overall QoL in small early

phase I or phase II trials, although it can be useful on an exploratory basis or as a pilot 

study when developing instruments for subsequent studies. On the other hand, PROs for 

particular domains of QoL may be more pertinent in early trials, and in some cases may

be the primary outcome (for example, when the objective is to treat pain). Overall QoL is

mainly of importance in phase III clinical trials. The following situations can be identifi ed:

1.  Trials in which the new treatment is expected to have only a small impact on such

clinical endpoints as long‐term survival, cure or response and any small improve-

ment in the primary clinical endpoint may have to be weighed against the negative

aspects upon QoL of an intensive therapy. This appears to cover the majority of 

long‐term chronic diseases, including cancer. 

2.  Equivalence trials, where the disease course in both arms is expected to be similar 

but there are expected to be QoL benefi ts or differences in morbidity. QoL may be

a primary endpoint in these trials.

3.  Trials of treatments that are specifi cally intended to improve QoL. This includes

trials in palliative care, for example palliative radiotherapy for cancer and bisphos-

phonates for metastatic bone pain. QoL is most often the primary endpoint in these

studies.

4.  Studies involving health‐economic cost‐effectiveness balanced against QoL gain.

10.2 Basic design issues

Type of study

The choice of study design is always crucial. However, in most situations the assess-

ment of QoL or PROs will have to be repeated with each subject on two or more oc-

casions, and hence the study will be both prospective and longitudinal in nature. The

design options are therefore limited in number. It could either be a follow‐up study of a

single cohort of subjects with any comparisons made between subject types within the

cohort, or a two (or more) group comparison of which the randomised parallel group 

trial is a specifi c example. Crossover designs are less frequently appropriate in QoL 

studies, and in this chapter we focus on parallel‐group randomised trials.  

Organisational issues 

There are often choices within a QoL study as to when and by who the instrument is

to be completed. Even in the context of self‐completed QoL instruments there will be

occasions when help is needed, perhaps for an elderly person who can comprehend but 
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not easily complete a questionnaire, or for someone with vision diffi culties. It is often

important to specify whether the instrument is to be completed before or after a clinic

appointment with the responsible physician, and whether or not the physician has any

knowledge of the patient responses when conducting the medical examination. Some

of these options may infl uence the responses.   

 Mode of administration

 Traditionally, questionnaires have been paper‐based. Electronic approaches are also

available, such as computer touch‐screens, web‐based data capture and smart‐phone

methods. Computer‐adaptive testing, as the name implies, is founded on electronic

capture. Most studies that compare different modes of administration fi nd small

or negligible impact on the results (e.g. McColl and Fayers, 2005; Gundy and

Aaronson, 2010), although others disagree: Hays et al . (2009) report that telephone 

administration is associated with more‐positive scores, with differences of up to a

half‐SD .   

 Protocol

 As with any clinical study, it is important to describe the details of the study in a pro-

tocol. In any event, this will often be a mandatory requirement of the investigators’ 

local ethics committee. The protocol should describe the main purpose of the study

and the target subjects or patient group. It should also address specifi c issues, includ-

ing the principal hypotheses and the QoL outcomes to which they relate, the defi nition 

of ‘clinically important differences’ used for sample size estimation, and strategies for 

minimising the number of missing QoL forms.  

 Sample size

 The sample size necessary for a good chance (‘power’) of detecting a realistic target 

difference should be calculated during the study design stage, and full details must 

be specifi ed in the protocol. This calculation is usually based on a PRO that is pre‐

specifi ed as the primary outcome. It depends on aspects of the analysis, which should

also be specifi ed in the protocol, including the statistical test to be used. Examples of 

sample size estimation are provided in Chapter   11  .   

 Defi ning multiple endpoints

 By its nature, QoL assessment tends to incur problems of endpoint multiplic-

ity – multiple PROs (items/domains), assessed at multiple time points. Chapter   11

discusses how p ‐values are affected by multiple signifi cance testing. One ap-

proach that avoids much of the complexity of correcting p ‐values is to pre‐specify a
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hierarchy of endpoints, identifying one or more PRO measures as the primary out-

comes of interest and a few additional outcomes as secondary. The analysis of all

other PRO measures is then regarded as exploratory. Similarly, if it is intended to

carry out a cross‐sectional analysis, a single assessment time can be pre‐specifi ed for 

the primary analysis; alternatively, for a longitudinal analysis, details of the statisti-

cal methods should be provided. It is essential that the clinical trial protocol defi nes

the endpoint measures and the criteria for the statistical analysis and interpretation of 

results. Decisions about the handling and analysis of endpoints should be made and

recorded before recruiting patients; failure to do this may jeopardise the creditability

of a trial. Later chapters discuss in greater detail the analysis and reporting of PROs

in clinical trials.    

10.3 Compliance

When QoL is assessed in a clinical trial, it is important to ensure that the informa-

tion collected is representative of the patients being studied. However, when data are

missing for some patients, a question arises as to whether the patients with missing

data differ from those who returned completed forms. As a consequence, missing data

present severe problems with the analysis and interpretation of results. Therefore the

amount of missing data in a trial should be minimised. Data may be unavailable for 

two principal reasons:

●    unavoidable reasons, of which the most common in some disease areas is patient 

attrition due to early deaths.

●    low compliance, in which forms that should have been completed by patients and

returned to the trials offi ce may be missing; this has frequently been a serious prob-

lem in clinical trials.      

    Example from the literature

 The Lung Cancer Working Party of the UK Medical Research Council (MRC) as-
sessed aspects of QoL with a fi ve‐item daily diary card that patients completed
at home (Fayers et al ., 1997b). Only 47% of the expected patient daily diaryl
cards were returned, and a third of the patients provided no data at all. It was 
noted that there were major differences in compliance rates according to the
centre responsible for the patient, providing strong support for the belief that
much of the problem is institution compliance rather than patient compliance.

 Compliance has continued to be a problem in later MRC trials, when other 
instruments have also been used, and when assessments have been made while
patients attended the clinic.
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 Measuring compliance

Compliance  is defi ned as the number of QoL questionnaires actually completed as a 

proportion of those expected. The number of patients alive at each protocol assessment 

point represents the maximum number of QoL forms, as patients must be excluded 

upon death.

 It is important to verify that the forms received have indeed been completed at the

scheduled times. For example, if the scheduled QoL assessment is on day 42 and the

corresponding QoL form is not completed until (say) day 72, the responses recorded

may not refl ect the patient QoL at the time point of interest. However, it is necessary

to recognise the variation in individual patient’s treatment and follow‐up, and so a

time frame, or window , may be allowed around each scheduled protocol assessment 

time. The exact defi nitions will depend upon the nature of the trial, but the initial as-

sessment will usually be given a tight window such as no more than three days before

randomisation, to ensure that it represents a true pre‐treatment baseline. During the

active treatment period, the window may still have to be narrow, but it should allow

for treatment delay. Similarly, if an assessment is targeted at, say, two months after 

surgery, a window of acceptability must be specifi ed. Later, during follow‐up assess-

ments, the window may widen, particularly in diseases for which there is a reason-

able expectation of long survival and follow‐up. Finally, since it is unlikely that many

patients will continue to complete forms until the day of death, when analysing and

reporting the results it may be appropriate to impose a cut‐off point at some arbitrary

time prior to death. 

    Example from the literature

 In a trial comparing two chemotherapy regimens (labelled IF and CF) for pal-
liative treatment of patients with cancer of the stomach or oesophagogastric
junction, QoL assessments were required at baseline, every eight weeks until 
disease progression and then every three months until death (Curran, 2009). To 
be considered evaluable at baseline, a questionnaire must have been fi lled in
within 15 days before randomisation. To be considered evaluable on treatment,
a questionnaire had to be fi lled in more than four days after the completion of 
the latest infusion so as not to take into account the immediate toxicities fol-
lowing infusion. Data were to be analysed according to time windows of eight‐
week periods, i.e. plus/minus four weeks of the theoretical assessment date for 
assessments before progressive disease. Compliance was calculated as the ratio
of the total number of subjects with at least one evaluable questionnaire per 
time window over the total number of expected questionnaires.

 Table   10.1    indicates the compliance within these windows for the fi rst fi ve
assessment periods. The overall compliance rates were low, at 60% (IF) and
56% (CF).
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 Various trials groups use different defi nitions of windows, making it diffi cult to

compare reported compliance rates. Clearly, a group using a window of plus or minus 

a week from the time of surgery might expect to report worse values for compliance

than if they used a window of plus or minus two weeks. Given this variation in defi ning

compliance, it is slightly surprising to fi nd that the reported experience of several study

groups has been similar.   

Causes and consequences of poor compliance 

Serious problems in compliance with QoL assessments have been reported in many

multicentre clinical trials, especially in palliative trials involving poor‐prognosis pa-

tients. In some trials only about half the expected post‐baseline QoL questionnaires 

were returned. In the palliative setting many patients are frail, and it is perhaps not 

surprising that there will be a lack of enthusiasm for completing questionnaires when

death is imminent. However, poor compliance is not necessarily attributable to a lack 

of patient compliance. Compliance rates have repeatedly been found to vary widely ac-

cording to institution, which has often led, perhaps unfairly, to poor compliance being 

attributed to the lack of commitment by clinicians; in busy clinics, the lack of resources

for assisting patients, for example, can be an equally important institution‐related com-

ponent. Thus single‐centre trials can frequently achieve better compliance, especially 

if a research nurse is assigned solely for the purpose of QoL collection.

 When patients become increasingly ill with progressive disease, they can fi nd it dif-

fi cult to continue completing questionnaires. This poses a methodological problem for 

investigators who wish to assess effects in settings such as palliative care during the

terminal stages of disease, because it is highly likely that the patients who do complete

 Table 10.1       Compliance for QLQ‐C30 questionnaires by protocol‐planned assessment during 
the fi rst 9 months, in a trial comparing two chemotherapy treatments for advanced adenocar-
cinoma of the stomach or oesophagogastric junction  

IF (N = 170) CF (N = 163)

Assessment
Number of 
patients

Patients with
at least one 

questionnaire Rate (%)
Number of 
patients

Patients with
at least one

questionnaire Rate (%)

Baseline 170 145 85.3 163 143 87.7
Week 8 162  97 59.9 149  79 53.0
Week 16 138  76 55.1 126  57 45.2
Week 24 106  55 51.9  91  35 38.5
Week 32  73  27 37.0  63  26 41.3

Source: Curran et al . 2009, Table 1. CC NC 4.0 (<http://creativecommons.org/licenses/by/4.0/>). Repro-
duced commercially with permission from Springer Science and Business Media.   

http://creativecommons.org/licenses/by/4.0/
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their assessments will be those with the better QoL. Thus it is well recognised that the

consequence of missing questionnaires may be biased estimates both of overall levels 

of QoL and of treatment differences, and that this bias may be suffi ciently severe to 

invalidate the conclusions of a study.

    Example from the literature

 Hopwood et al.  (1994) describe a trial in which information was provided by
92% of patients who the clinician assessed as having good performance status
(normal activity, no restrictions), compared to only 31% of those assessed as
very poor (confi ned to bed or chair).

 It was concluded: “At present, given the rapid attrition in lung cancer trials
and the rather low levels of compliance in completing questionnaires, there is
no entirely reliable way of analysing data longitudinally.”

 In general, one might anticipate that the patients with missing forms are those that 

have the lowest performance status and the poorest QoL, but this may not always be

the case.     

    Examples from the literature

 Trials in palliative care often have high rates of attrition from death and poor 
rates of compliance because of declining health of patients, and compliance
can be particularly challenging if questionnaires are posted for self‐assessment 
at home. Fielding et al . (2006) describe a trial of 434 palliative care patientsl
randomised to standard care or to comprehensive palliative care at a spe-
cialised unit. The EORTC QLQ‐C30 was used. All patients completed question-
naires at baseline, but at the each of the fi ve following monthly assessments
between 68% and 73% of patients returned questionnaires by post. Fielding
et al . (2006) noted that baseline Karnofsky performance status was signifi -l
cantly different (p < 0.001), with a higher proportion of the non‐responders
having a baseline Karnofsky score of 70 or lower (low scores represent poorer 
functioning). In addition, at each follow‐up visit the previous month’s overall 
QoL score was a signifi cant predictor of compliance. 

 In contrast, Cox et al . (1992) found the reverse effect when using the Not-l
tingham Health Profi le (NHP) on heart transplant patients: those about to die
or to be lost to follow‐up tended to have poorer QoL scores than those who
missed their next follow‐up. Cox  et al . suggest that one reason for poor com-l
pliance is that: “Those experiencing fewer problems may not be so diligent in
returning questionnaires.”
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Improving compliance

It is important to make every effort to maximise compliance, both to avoid bias and to

avoid reduction of sample size. In some studies, it may be necessary to use homecare

staff or home‐visit nurses to assist the patients in completing questionnaires. Compli-

ance may also be greatly improved by providing reminder letters or phone calls. It is

also possible to make major enhancements to compliance rates by suitable training

of the healthcare staff involved in the trial, and by ensuring that patients are fully in-

formed about the usefulness of the information being collected.     

    Example from the literature

 Sadura et al . (1992) developed and implemented a comprehensive programme l
specifi cally aimed at encouraging compliance. They report an overall com-
pliance of above 95% in three Canadian trials, which they attribute to their 
programme.

 However, they acknowledged that it is unclear whether similar success can
be obtained with different questionnaires, in different types of trials, in differ-
ent institutions and during long‐term follow‐up. Also, the Canadian group used
a level of resources that may not be available to other groups conducting inter-
national multicentre randomised trials: in one study, “nurses called the patients
at home on the appropriate day to remind them to complete the questionnaire”.
Given careful planning, and provided adequate resources are made available, it 
is  possible to achieve high compliance.

Acceptable levels of compliance 

At best, low compliance raises questions about whether the results are representative,

and at worst it may jeopardise any interpretation of the treatment comparisons. This is 

especially so when compliance rates differ according to treatment group and patients’

performance status. In addition, poor compliance means that there are fewer data items

available for analyses, and thus there may be questions about the adequacy of the

sample size. However, if this were the only issue one solution would be to recruit extra

patients so as to compensate for the losses owing to non‐compliance. Unfortunately,

this does not address the more serious issue of potential bias in the results; if compli-

ance rates stay the same then, no matter how much patient numbers are increased, the

bias will remain.

 Thus the answer to the question of what is an acceptable rate of loss to follow‐up

is: ‘Only one answer, 0%, ensures the benefi ts of randomisation.’ Schulz and Grimes 

(2002), writing about clinical trials in general, comment that this is obviously unrealis-

tic at times. They note that some researchers have suggested a simple  fi ve‐and‐twenty 

rule of thumb in which less than 5% loss is thought probably to lead to little bias, while

greater than 20% loss potentially poses serious threats to validity, and in‐between 
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levels leading to intermediate levels of problems. Some journals refuse to publish trials

with losses greater than 20%. Schulz and Grimes advise that “Although the fi ve‐and‐

twenty rule is useful, it can oversimplify the problem … Expectations for losses to

follow‐up depend on various factors, such as the topic examined, the outcome event 

rate, and the length of follow‐up.” These conclusions, although written with reference 

to outcomes in general, might be applicable QoL outcomes too.      

    Example from the literature

 Despite publications in the 1990s demonstrating that missing QoL data may
cause bias in the analyses of a clinical trial, and that the amount of missing
data can be reduced by taking simple precautions, it continues to be a serious
problem.

 Fielding et al . (2008) searched four leading medical journals to identifyl
clinical trials published in 2005 or 2006. QoL outcomes were reported in 61
(21%) trials. Six (10%) reported having no missing QoL data, 20 (33%) re-
ported ≤ 10% missing, eleven (18%) 11–20% missing, and 11 (18%) reported
> 20% missing. Missingness was unclear in 13 (21%). 

 The majority of trials (82%) did provide fl ow diagrams and reasons for miss-
ingness such as withdrawal, death or other medical problems. However, there
was no detailed discussion of these reasons and the impact they may have had
on the analysis and subsequent results.

 The authors concluded that there should be a clearer reporting of the meth-
ods used and the amount of missing data, which should be described separately 
for each treatment arm. The impact that missing data potentially has on results
should always be discussed and a sensitivity analysis provided. Where imputa-
tion is used to estimate the most likely values of the missing data (see Chapter 
  15  ), the reason for the choice of method should be given.

 Recording reasons for non‐compliance

 Missing data, and hence low compliance, may arise from many causes, including clini-

cians or nurses forgetting to ask patients to complete QoL questionnaires, and patients

refusing, feeling too ill or forgetting. Low ‘compliance’ does not necessarily imply

fault on the part of the patient or their medical staff.

 One advantage of studying QoL as an integral part of a clinical trial is that additional

clinical information about treatment or disease problems can be collected at each visit 

of the patient, and this information can indicate why QoL data have not been collected.

The reasons for not completing the questionnaire should be collected systematically, 

for example as in Figure   10.1   . This information should be summarised and reported, 

and may also be used as an indication of whether particular missing data are likely to

have occurred at random, in which case the imputation of the corresponding missing

values may be improved.
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10.4 Administering a quality‐of‐life assessment

For QoL to be successfully incorporated into a clinical trial, practical steps have to be

taken to ensure good standards of data collection and to seek as many methods as pos-

sible for improving compliance.

 Because of heavy workloads, many clinicians are unable to give the necessary atten-

tion to data collection in a QoL study. Responsibility for explaining about QoL assess-

ment and distributing questionnaires is often allocated to research nurses or other staff 

associated with the clinical trial. As pivotal members of the research team, nurses and

data managers need a clear view of their job‐specifi c tasks to improve effi ciency and

the quality of data. Research nurses play a major role in the education of patients and

therefore may be infl uential in generating interest in the QoL part of the study. Suitably

trained personnel can ensure better compliance of QoL data through standardisation

and continuity of working procedures, and comprehensive programmes of training

are important. These should be supplemented by written operating procedures and

guidelines for the administration of QoL assessments in clinical trials. One example of 

detailed guidelines for improving data quality and compliance in clinical trials is the

manual written by Young  et al . (2002).  l

The patient 

Most patients are willing to complete QoL questionnaires, especially if they are as-

sured that the data will be useful for medical research and will benefi t future patients.

Therefore patients should be given full information about the procedures, and any of 

their concerns should be answered.

Has the patient fi lled in the scheduled quality of life questionnaire?
0 = no, 1 = yes

If no , please state the main reason:

 1 = patient felt too ill

 2 = clinician or nurse felt the patient was too ill

 3 = patient felt it was inconvenient, takes too much time

 4 = patient felt it was a violation of privacy

 5 = administrative failure to distribute the questionnaire to the patient

 6 = (at baseline) patient didn’t speak the language or was illiterate

 7 = other, please specify ……………………………………………

    Figure   10.1    Questionnaire to ascertain the reason why a patient has not completed the current QoL 

assessment.
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●    Patients should be given a clear explanation of the reason for collecting QoL data.

●    Information sheets should supplement the verbal information given to patients, de-

tailing the rationale for collecting QoL data and explaining aspects of the procedure. 

The information sheet should include the frequency and timing of assessments, the

need to answer all questions, and the importance of completing the questions with-

out being infl uenced by the opinions of others. 

●    Patients should be told how their questionnaires will be used. In particular, they

should be told whether the information will be seen by the clinician or other staff 

involved with their management, or whether it will remain confi dential and used

solely for scientifi c research purposes.

●    The questionnaire should not be too lengthy and should contain clear written

instructions.

●    Patients should be thanked for completing the questionnaire and given the opportu-

nity to discuss any problems. They should be encouraged to help with future assess-

ments. For example, patients could be asked to remind staff if later questionnaires

are not given out.

 The medical team

 Similarly, the medical team deserves to receive an explanation of the value of QoL

assessment in the particular study. Sceptical staff make less effort, and will experience

greater diffi culty in persuading patients to complete questionnaires. 

●    The role of QoL assessment should be emphasised. If it is a primary endpoint for 

the study, patients should be randomised only on condition that relevant QoL assess-

ments have been or will be completed.

●    It is useful to assign a research assistant or a research nurse to QoL studies. Clini-

cians may be engaged in other tasks when patients come for their treatment.

●    Named individuals at participating institutions should be identifi ed for specifi c roles,

especially if the clinical trial is multicentre. At some institutions this might involve

several individuals for the different tasks. Responsibilities include:

   a.  explaining to the patient the rationale for QoL assessment and its implications

   b.  giving QoL questionnaires to patients (one possibility is that questionnaires

should be completed while waiting to be seen by the clinician)

   c.  providing a quiet, private and comfortable place for the patient to complete them

   d.  ensuring that help is readily available for patients who require it 

   e.  collecting and checking questionnaires for completeness

   f.  sending reminders and collecting overdue or missing questionnaires
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 10.5 Recommendations for writing protocols

 Protocols should aim to be concise, practical documents for participating clinicians,

covering all aspects of the day‐to‐day running of the clinical trials. It is to be hoped that 

brevity encourages reading and observance of the content of the protocols. There is no

consensus as to the optimal way of presenting all the relevant background information

and justifi cation of QoL study design. Different approaches are used by different trials

organisations, according to their needs and preferences and according to the nature

of individual trials. Thus while it is important to consider the study’s objectives and

details of the design, it is unclear how much of this should be incorporated in the work-

ing protocol or whether it should be recorded separately. One possibility is to mention

these issues briefl y in the main study protocol, and to address them in greater detail in

written accompanying supplementary documents. These additional documents should

comprise part of the package that is also sent to the Protocol Review Committee and

to the local Ethics Committees (Institutional Review Boards). The following examples

   g.  forwarding completed questionnaires to the clinical trial offi ce and responding to

queries arising.  

●    It is important to consider the provision of systematic training to accompany the

written instructions for staff responsible for administering the questionnaires.

●    Regular feedback should be given, to maintain motivation. This might include

reports of data quality (numbers of completed forms, compliance rates, details of 

missing items) and tabulation of baseline, pre‐randomisation data.

●    Finally, the medical team should be reminded that experience shows that most 

patients are willing to complete QoL questionnaires.  

    Example from the literature

 Hürny  et al . (1992) report that compliance in a trial of small‐cell lung can-l
cer varied between 21% and 68%, with larger institutions having the highest
rates of compliance. Institution was the only signifi cant factor for predicting
compliance. Patient age, gender, education and biological prognostic factors at
randomisation were not found to be predictors.

 It was suggested that smaller institutions might be at a disadvantage, as
they usually do not have the resources to dedicate a full‐time staff member to
data management and quality assurance. However, with an organised effort at
the local institutional level, high‐quality data collection could be achieved. It
was also recommended that to achieve good‐quality QoL data there is a need
for the systematic training and commitment of staff at all institutions.
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    Quality of life follow‐up

  Quality of life is an important endpoint of this study. The timing of treatment 
may have a considerable impact on patients. The long‐term palliation and pre-
vention of symptoms are important factors in the treatment of relapsed disease. 
It is important therefore that all centres participate in this study. 

are taken from a range of protocols, with specifi c illustrations of text that has been used

in MRC protocols (Fayers et al ., 1997b).l

 Rationale for including QoL assessment

 A section in the protocol should explain the reasons why QoL is being assessed. Some

clinicians are less committed to QoL evaluation than others, and so it is important to

justify the need for the extra work that the participants are being asked to carry out.

Such data will be an essential source of information for comparison between the
two arms in this study.
 Emphasise to the patient that completion of these forms helps doctors fi nd out 
more about the effects of treatment on patients’ well‐being.

 Emphasising good compliance

 The need for good compliance should be stressed to participants, telling them that a

serious effort is being made to ensure completeness of QoL data collection. In trials

where QoL is a major endpoint or the principal outcome measure, optimal compliance

is clearly essential: patients who fail to return QoL data do not contribute informa-

tion for analysis. In extreme cases a trial Data Monitoring Committee (DMC) could 

recommend early closure of the trial if the level of QoL compliance is unacceptable.

Thus protocols should emphasise the importance of QoL assessment, and should also

encourage doctors to emphasise this to patients.  

 Identify contact persons

 We have described the need to identify personnel within the medical team, to take

responsibility for the various tasks associated with administering QoL questionnaires.

It is recommended that one named person be identifi ed to serve as the contact at each

centre. This person is responsible for collecting the QoL data and ensuring that the

forms are checked and returned to the trials offi ce. This might or might not be the
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clinician responsible for the patients, although in general it is recommended that a 

person other than the responsible clinician should administer the questionnaire to the

patient, so that the form may be completed prior to consultation with the doctor. In ad-

dition, it has been suggested that patients try to please their doctor or nurse, and thus

the responses may be distorted if the person responsible for managing their treatment 

is present while they complete the forms.  

A named person in each centre must be nominated to take responsibility for the
administration, collection and checking of the QoL forms. This may or may not 
be the clinician responsible for the patients.

   An information pack is sent to all participating centres detailing the pro-
cedures for quality of life assessment and providing guidelines for ensuring
optimal compliance. 

 Written guidelines for administering QoL questionnaires

 There should be written guidelines aimed at those administering the questionnaires

in the clinical setting. These address the issues of poor compliance at the level of the 

participating institute. The topics covered should range from suggestions about adopt-

ing a sympathetic approach towards patients who may be feeling particularly ill or may

have just been informed about the progression of their disease, for example, through

to instructions about the need to ensure back‐up staff for times when the normal QoL

personnel are on leave or absent. 

 There should be instructions about the checking of forms, including procedures for pa-

tients who fail to complete answers for all questions, such as how to handle patients who

have not understood what is required or who do not wish to respond to particular questions

(e.g. ‘Explain to the patient the relevance and importance of these particular questions and

the confi dentiality of the information’). The guidelines should indicate any questions that 

are anticipated to present particular problems. For example, staff might be warned: ‘Some

patients omit to answer the question about sexual interest, because they fi nd it embarrass-

ing and consider it irrelevant. However, it is included as an indicator of the general health

and well‐being of the patient.’ Similarly, for a question about loss of appetite: ‘Patients

may be confused between inability to eat due to symptoms such as dysphagia or inability

to eat because of lack of appetite; it is the latter meaning that is intended.’  

 Checking forms before the patient leaves 

 When clinical data are missing from a form, it is frequently possible to retrieve the

information from hospital notes. QoL is different; once the patient has left the hospital,
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it will be too late to retrieve missing data or clarify unclear information, except by

contacting the patient by telephone, email or post. Therefore there should be state-

ments about the need for the QoL forms to be checked before the patient has left the

clinic and any action to be taken in the event of missing data. There should also be in-

structions regarding procedures to follow when questionnaires are missing: should the

patient be contacted, possibly by post with a pre‐paid envelope or by telephone/email, 

or should the data be accepted as missing and only the reason recorded?  

   The questionnaire must be collected before the patient leaves and  checked to 
ensure that all questions have been answered.   If necessary, go back to the   
patient immediately and ask him or her to fi ll in any missing items.

 If a questionnaire assessment is missed because of administrative failure, 
the patient should be contacted by telephone, email or letter and asked to
complete and return a mailed questionnaire as soon as possible.

 Baseline assessment

 There will usually be a baseline assessment , taken before randomisation. In addition tot
providing a pre‐treatment baseline against which the patient’s subsequent changes can 

be compared, this also enables a baseline comparison between the randomised study

groups. If differences are present, it may be necessary to make compensatory statistical

adjustments when subsequently analysing the data. When follow‐up data are missing,

the baseline information can also allow examination of the patterns of loss, and can

often be used to minimise the systematic biases that may arise from missing data.

 The baseline assessment should be made before the patient has been informed of the

randomised treatment allocation; otherwise, knowledge of the treatment assignment 

may cause different levels of, for example, anxiety within the two treatment groups.

Furthermore, by ensuring that QoL is assessed before randomisation and made an eli-

gibility criterion for randomisation, we can try to ensure that form completion is 100%.     

    Randomisation

Patients should be randomised by telephoning the Trials Offi ce. The person
telephoning will be asked to confi rm that the eligibility criteria have been met,
and that the patients have completed their initial quality of life questionnaires . 

 Assessment during therapy

 Some trials have used a daily diary card, obtaining a complete picture of the chang-

ing symptomatology and QoL before, during and after therapy. More commonly, and
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especially in large multicentre clinical trials, it is necessary to identify specifi c time 

points when a QoL questionnaire should be used. Since administering and completing

questionnaires imposes burdens on the patient, it is desirable to limit the number and

frequency of questionnaires.

 Often, for administrative convenience, assessment times during treatment will

be chosen to coincide with patient visits to the clinic. For diseases requiring long‐

term treatment, for example hypertension, a patient’s condition may be expected

to be relatively stable and so the precise time point may not be critical. In this

situation, the timing of QoL assessment becomes relatively easy. For other dis-

eases, such as cancer, patients commonly attend at the start of each course or cycle

of chemotherapy treatment, with the patient completing the QoL questionnaire

while waiting to be reassessed by the clinician. However, some QoL instruments

specify a time frame of ‘during the last week …’, and will therefore only collect 

information about how the patient recalls feeling during the week preceding the

next course of therapy. If treatment courses are, for example, pulsed at intervals

of three to four weeks, this may or may not be what is ideally wanted, as the im-

pact of transient toxicity might remain undetected. That is, the investigators will

have to decide whether temporary toxicity‐related reductions in QoL are of impor-

tance, or whether the longer‐term effects as seen later during each cycle are more

important. Sometimes it may be appropriate to assess QoL at, say, one week after 

therapy.

 Another point to be considered is that sometimes treatment may be delayed, possi-

bly because of toxicity, in which case if assessments are made immediately preceding

the next (delayed) course of treatment, the impact of the toxicity upon QoL may not 

be noticed.

 In principle, it is desirable to use the same timing schedule in all treatment arms,

with QoL assessments being made at times relative to the date of randomisation. In

practice, this may be diffi cult in trials that compare treatments of different modality

or where the timing of therapy and follow‐up differs between the randomised groups.

In these settings, patients may attend the clinic at different times and therapy in the

treatment arms may also be completed at different times. This leads to differences in

the timing of assessments within the arms of the study, which can make any interpreta-

tion of results diffi cult if patients are deteriorating as a consequence of their disease

progressing from the time of randomisation.

 In summary, there are compromises to be made in those studies that investigate QoL

in the context of treatment events such as surgery and intermittent courses of chemo-

therapy and radiotherapy. Assessments may be made relative to the treatment events or 

relative to the randomisation date. They may also be timed to occur after, but relative

to, the date of the previous course of treatment or immediately preceding the following

course. Sometimes a combination of strategies can be used.

 Clearly the general timing of the assessments must be specifi ed, for example ‘two

weeks after surgery’. However, a more precise specifi cation might specify a window 

within which assessments are valid, for example ‘at least two, but not more than three, 

weeks after surgery’.
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   The quality of life questionnaire should be completed by the patient  before
randomisation, at 6 weeks, 12 weeks, 6 months and 1 year.

 Most patients are expected to keep to their protocol treatment time sched-
ule, but to allow for occasional delays a wind ow of one week around each time 
point will be accepted.

    Follow‐up

The patient should complete the questionnaires while waiting to be seen in the
clinic – this should be done in a quiet area.

 Patients should also be encouraged to request their QoL forms upon arrival at 

the clinic, since this will help to prevent QoL assessments being forgotten and

there is usually suitable time to complete the forms while waiting to be seen by the

clinician. 

 Follow‐up (post‐treatment) assessment

 There may also be follow‐up assessments after completion of treatment. Sometimes

the primary scientifi c question concerns QoL during therapy, and if post‐treatment 

assessment is thought necessary perhaps one suffi ces. In other studies, it may be im-

portant to continue collecting data in order to explore treatment‐related differences

in the long‐term impact of therapy and control of disease progression. Sometimes it 

is relevant to continue assessment until and after any relapses may have occurred,

and in some studies, such as those of palliative care, assessments may continue until

death. In all these situations, to eliminate bias, long‐term assessments in both treat-

ment groups should normally be at similar times relative to the date of randomisa-

tion. If the questionnaires are mailed to patients, any appropriate schedule can be

used; if they are to be handed out at clinics, the choice of times may be restricted for 

logistic reasons. 

 Specifying when to complete questionnaires

 Generally it is advisable for QoL to be assessed before the patient is seen by the clini-

cian. Then the patient will not have been affected by anything occurring during their 

consultation. Furthermore, it is usually convenient for the clinic to administer the as-

sessment while the patient is waiting to be seen. This also enables the clinical follow‐

up form to include the questions: ‘Has QoL been assessed? If not, why not?’
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 Some instruments relate to ‘the past week’. In many trials, the patient attends hos-

pital three or four weeks after the previous cycle of chemotherapy or radiotherapy, and

thus assessments at these times may not always include the period during which therapy

was received. It is important that patients be aware of the time frame of the questions.  

   If you are not given a questionnaire to complete when you think it is due,
please remind your doctor. You can, of course, decline to fi ll in a questionnaire 
at any time. 

It is important to explain to the patient that the questionnaire refers to how 
they have been feeling during the past week.k

    Example from the literature

 Cook et al . (1993) compared the same questionnaire when interviewer‐ or l
self‐administered, on a sample of 150 asthma patients. When using the
self‐administered version, patients recorded more symptoms, more emotional 
problems, greater limitation of activities, more disease‐related problems and a
greater need to avoid environmental stimuli. On average, 47% of items were
endorsed when self‐administered, but only 36% when interviewed.

 Help and proxy assessment 

 Nurses, doctors and family members often underestimate the impact of those items

that most distress the patient. Therefore it is important that the patients should com-

plete the QoL questionnaire themselves. Similarly, patients may be infl uenced by the

opinions of others if either helped to complete questionnaires or if interviewed.

 Similar patterns have been observed by others; patients tend to report fewer prob-

lems and better QoL when interviewed by staff. It is advisable that patients should

receive help only when it is absolutely necessary, and doctors, nurses and partners

should all be discouraged from offering help unless it is really needed.

 However, some patients may be unable to complete the questionnaire by themselves

or have diffi culty understanding the questions. Examples range from vision problems

and forgotten glasses to cognitive impairment. In these cases, help should be provided,

as assisted completion is better than either a total absence of data or incorrect informa-

tion through misapprehension. Similarly, if a few patients are too ill or too distressed to
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complete the forms, someone familiar with their feelings may act as a proxy. Proxies  are 

typically a ‘signifi cant other’ such as a partner, partner or close family member but may

include staff, such as a nurse who knows the patient well. For some trials, such as those

in psychiatry or advanced brain malignancies, it might be anticipated that the majority

of patients will be unable to complete questionnaires and it may be appropriate to make

extensive – or even exclusive – use of proxy assessment. Proxy assessment may also

be needed for young children who are unable to complete questionnaires, even though

parents and other adults usually have a very different set of priorities from children and

value emotional and physical states differently. Sometimes it can be anticipated that a

large proportion of the patients will become unable to complete questionnaires as the trial

progresses, for example in trials of palliative care that involve rapidly deteriorating pa-

tients. In these cases the use of proxy respondents could be considered as an integral part 

of the trial. In general, however, proxy assessment should be avoided whenever possible.

 Despite this, the differences between proxies and patients tend to be small,

with proxies rating patients as having slightly lower levels of functioning and more 

symptomatology (McColl and Fayers, 2005; Gundy and Aaronson, 2008). It is bet-

ter to use proxy raters rather than have either missing data or unreliable data from

cognitively impaired patients. Gundy and Aaronson further suggest it may be better to

ask proxies to make their own assessment rather than attempt to predict the patient’s 

self‐assessment.

 The instructions to the patients should normally ask them to complete the forms

on their own, that is, without conferring with others. The study forms should collect 

details of any assistance or use of proxies.

   The patient should complete the questionnaire without conferring with friends
or relatives, and all questions should be answered even if the patient feels
them to be irrelevant. Assistance should be offered only when the patient is
unable to complete the questions by him/herself.

 Will QoL forms infl uence therapy?

 There are differing opinions as to the value of having QoL forms available for use by

the treating clinician, or whether they should be confi dential. For example, those pa-

tients who are keen for their therapy to be continued may be reticent about revealing

deterioration in QoL or side effects of treatment if they believe that their responses

might cause treatment reduction. Also, some patients try to please their clinician and

nursing staff, and may respond overly positively. Although evidence for this remains

scant, there is support from studies showing differences between QoL assessments

completed by self‐administered questionnaire versus interview‐administered ques-

tionnaire, in which interview‐assisted completion resulted in a reduced reporting of 

impairments. A tendency for yea‐saying, or response acquiescence , when fi lling in
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 Patient information leafl ets

 An initial leafl et may be provided prior to requesting informed consent from the pa-

tient. This can either be combined with the general information leafl et that the patient 

receives when completing QoL questionnaires, or may be a separate brief document 

that is specifi cally given out during the consent process. In addition to describing the

nature of randomised trials and discussing issues of relevance to consent, it should ex-

plain the reasons for evaluating QoL and indicate what this involves. It should mention

the frequency and timing of assessments.

 If QoL is the primary endpoint in a trial, it may be included as a condition on the

patient consent form. Patients who are unwilling to contribute towards the primary

endpoint of a trial should be ineligible for randomisation.  

QoL questionnaires has also been noted (Moum, 1988). Thus it can be an advantage to

assure patients that the QoL information is confi dential and will not be seen by the cli-

nician; some trials supply pre‐paid envelopes addressed to the Trials Offi ce, in which

the questionnaires may be returned.

 On the other hand, in some hospitals the clinicians and nurses use the QoL forms to

assist with patient management – which is of advantage to the trial organisation in that 

it may increase compliance with form completion. In addition, there are considerations

of individual and collective ethics. From the point of view of guaranteeing bias‐free

interpretation, there are arguably grounds to maintain – and assure the patient of –

confi dentiality. Thus there are both advantages and disadvantages to keeping the forms 

confi dential and not using them to infl uence therapy, but in either case the procedures 

should be standardised and specifi ed.   

   You will be given a folder of questionnaires and some pre‐paid envelopes in
which to return them. We would like you to complete one of these question-
naires just before you go to the hospital for the start of each course of chemo-
therapy, for other treatment or at a routine check‐up.

 (Pre‐paid envelopes are addressed to the Trials Offi ce.)

   We will also ask you to fi ll in a form, which assesses your quality of life,
before you receive treatment and at 3, 6, 12 and 24 months after your t reat-
ment starts. The quality of life questionnaire is a standard form that is used for 
other patients and allows us to compare quality of life across various diseases.
Because of this, there are some questions that may not seem relevant to your 
disease and its treatment. However, please try to answer them all.
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 The Patient QoL information leafl et is a detailed document that the patient may take

away for reference. It should introduce the reasons for using questionnaires, explain

aspects of the QoL assessment, and attempt to answer queries that patients commonly

ask. Figure   10.2    shows an example.

 Randomisation checklist

 Completion of the initial QoL assessment is often made a prerequisite for randomisa-

tion. This not only provides baseline QoL data for all patients but also ensures that 

patients understand the procedure and, by implication, agree to participate in the study

of QoL.

Figure   10.2      Patient QoL Information Leafl et. 

QUALITY OF LIFE QUESTIONNAIRE

About your questionnaires

We are concerned to fi nd out more about how patients feel, both physically and
emotionally, during and after different treatments. In order to collect this information,
brief questionnaires have been designed that can be completed by patients themselves. We 
would like you to complete questionnaires before, during and after your treatment at this
hospital.

The questionnaires refer to how you have been feeling during the past week  and are 
designed to assess your day‐to‐day well‐being, as well as to monitor any side‐effects you 
may be experiencing. Your questionnaires will be sent to the Medical Research Council 
where they will be treated in confi dence and analysed together with those from patients in 
other hospitals to help plan future treatments.

We enquire about a wide range of symptoms as the questionnaires are designed for use in 
many different areas of research, but please feel free to discuss any symptoms or concerns 
with your doctor.

Completing the questionnaires

If possible, complete the questionnaires on your own. Please try to answer all the 
questions but do not spend too much time thinking about each answer as your fi rst 
response is likely to be most accurate. If a question is not applicable to you, please write 
alongside ‘not applicable’ or ‘N/A’, but do not leave any question blank.

When you attend the hospital for the fi rst time, you will be asked to complete a 
questionnaire. We would like you to complete further questionnaires each time you come 
into the hospital for an assessment. If you are not given a questionnaire to complete, 
please remind your doctor. You can, of course, decline to complete a questionnaire at any 
time without affecting your relationship with your doctor. The questionnaire will help us to 
acquire the knowledge to improve the treatment of patients with your condition.

Thank you for your help
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    Randomisation checklist  

 ELIGIBILITY (please tick to confi rm)

Patient consents to participate in the trial, and patient is willing and able to
complete QoL questionnaires.
Patient has completed the fi rst QoL questionnaire.

  (TO RANDOMISE, TELEPHONE THE TRIALS OFFICE.)

 Clinical follow‐up forms 

 The question ‘Has patient completed QoL forms?’ serves as a reminder to the clinician

and should protect against patients leaving the hospital before completing the question-

naire. Furthermore, in the event of refusal or other non‐compliance, for example if the

patient feels too ill to complete the questionnaire, it is important to obtain details regard-

ing the reasons. There should be a question ‘If no, give reasons’. This information helps

decide how to report and interpret results from patients for whom QoL data are missing.

 The follow‐up forms should also document whether signifi cant help was required in

order to complete the questions, or whether a proxy completed them.      

    Follow‐up form

Has patient completed Quality of Life form?      Yes   No 
If NO , please state reason:
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . .
If  YES , indicate whether the patient required help completing the form, and if SS
so please give details:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . .

 10.6 Standard operating procedures 

 Although not usually part of the main clinical trial protocol sent to participating clinicians,

there is also a need for documentation of the standard operating procedures (SOPs) at the

Trials Offi ce, and an outline of the intended analysis plan. This should be specifi ed at the

inception of the trial and covers all aspects of the clinical trial. In particular, for QoL it 
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should detail the statistical analysis and interpretation of the clinical trial results when there

are missing data. Nowadays, the SOP is a standard part of Good Clinical Practice (GCP).  

10.7  Summary and checklist 

 There are many considerations when incorporating QoL assessment into clinical trials.

The most readily apparent of these is compliance. However, compliance is but one of the

issues that need to be addressed in a protocol and it remains far too easy to omit other 

necessary details. Hence the use of checklists is important. By ensuring that all the details

are covered, and provided there are adequate resources and training, it should be possible

to optimise the quality of the information collected and the level of compliance achieved.

   1.  During the design stage of a study, suffi cient fi nancial resources should be avail-

able to provide an adequate infrastructure to manage the study and to integrate the

QoL assessment into the normal daily practices of a clinic.

   2.  Objectives of the study should be presented clearly in the protocol, including the

rationale for QoL (and particularly if it is a main study endpoint).

   3.  It is preferred that QoL not be an optional evaluation.

   4.  Based on the objectives of the study, an appropriate valid instrument should be

selected and if necessary additional treatment‐specifi c questions should be devel-

oped, tested and added as appropriate. However, the number of items should be

kept to a minimum.

   5.  The QoL questionnaire should be available in the appropriate languages in rela-

tion to potential participants in the clinical trial. If additional translations are re-

quired, they should be developed using tried and tested translation procedures. 

   6.  The schedule of assessments should not be too much of a burden for the patient,

yet at the same time it should be frequent enough and at appropriate time points to

provide a relevant picture of the patient’s QoL over the study period. For practical

reasons, the schedule of QoL assessments should coincide with the routine clinical

follow‐up visits for the trial.

   7.  Statistical considerations in the protocol, including anticipated effect size, sample

size and analysis plan, should be clear and precise.

   8.  Protocols should include guidelines on QoL data‐collection procedures for clini-

cians, research nurses and data managers.

   9.  There should be a policy of education for all those involved, from training for staff 

through to information documents for patients.

   10.  A cover form should be attached to the questionnaire. This should be completed if the

patient did not complete the questionnaire, providing reasons for non‐completion.  

 Figure   10.3    summarises the issues discussed in this chapter. A protocol for a clinical

trial should normally address all of the points enumerated here.
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10.8 Further reading 

The drug regulatory bodies provide useful guidelines about the implication of collect-

ing PROs in clinical trials (European Medicines Agency, 2005b; United States Food

and Drug Administration, 2009). These cover various aspects of the design of trials, 

such as protocol considerations and the frequency of assessment, as well as the han-

dling of missing data and the analysis of multiple endpoints.

 The Center for Medical Technology Policy (CMTP) has produced a guidance docu-

ment with recommendations for the appropriate inclusion of patient‐reported outcome

(PRO) measures in the design and implementation of effectiveness studies and clinical

research in adult oncology; much of their recommendations are equally applicable to

other disease areas (Basch et al ., 2011).l

    Figure   10.3  Checklist for writing clinical trials protocols.

CHECKLIST

Are the following points addressed in the protocol?

 Is rationale given for inclusion of QoL assessment?

 Is importance of good compliance emphasized?

 Is a named contact‐person identifi ed as responsible in each participating centre?
 Are there written guidelines for the person administering the questionnaires?
 Are all forms checked for completion whilst patient still present?

Timing of assessments: 
   a. Are baseline assessments specifi ed to be pre‐randomisation?
   b. Is timing of follow‐up assessments specifi ed (valid window)?
   c. Is timing of follow‐up assessments specifi ed (before/whilst/after seeing clinician)?

 Is it specifi ed whether help and/or proxy assessment are permitted?
 Will QoL forms be used to infl uence therapy or patient management?

Are the following forms and leafl ets available?
PATIENT CONSENT INFORMATION LEAFLET (Pre‐Consent Form):
  Is QoL assessment explained?

PATIENT QOL INFORMATION LEAFLET:
  Is there a leafl et for the patient to take home? (See specimen in Figure 10.2)

RANDOMISATION CHECKLIST:
  Is QoL completion a pre‐randomisation eligibility condition?

 CLINICAL FOLLOW‐UP FORMS:
   a. Do follow‐up forms ask whether QoL assessment has been completed? 
   b. Do follow‐up forms ask about reasons for any missing QoL data?
   c. Do follow‐up forms ask whether help was needed? 
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11
Sample sizes  

Summary

This chapter describes how sample sizes may be estimated for QoL studies. To obtain 
such sample sizes it is necessary to specify, at the planning stage of the study, the size 
of effect that is expected. The type of statistical test to be used with the subsequent 
data needs to be stipulated, as do the significance level and power. Situations in which 
means, proportions, ordered categorical and time‐to‐event outcomes are relevant are 
described. Sample size considerations are included for the difference between groups, 
comparison with a reference population and non‐inferiority studies, as well as unpaired 
and paired situations. The consequences of comparing more than two groups or simul-
taneously investigating several endpoints are discussed.

11.1  Introduction

In principle, there are no major differences in planning studies using QoL assessment 
compared with using, for example, a comparison of blood pressure levels between 
different groups. The determination of an appropriate design and study size remains 
as fundamentally important in this context as in others. A number of medical journals, 
including those specialising in QoL, subscribe to the CONSORT statement and stipu-
late in their statistical guidelines that a justification of sample size is required (Schultz 
et al., 2010). A formal calculation of the sample size is an essential prerequisite for 
any clinical trial, and, for example, guidelines from the Committee for Proprietary 
Medicinal Products (CPMP, 1995) have made it mandatory for all studies in the Euro-
pean Union since 1995. However, it must be recognised that one is usually designing a 
study in the presence of considerable uncertainty – the greater this uncertainty, the less 
precise will be our estimate of the appropriate study size.

This chapter focuses on clinical trials and observational studies. However, the meth-
ods described are general and applicable to other situations, including questionnaire 
validation.
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11.2  Significance tests, p‐values and power

Later chapters refer extensively to statistical significance tests and p‐values, for exam-
ple when comparing two or more forms of therapy. Since patients vary both in their 
baseline characteristics and in their response to therapy, an apparent difference in treat-
ments might be observed due to chance alone, and this need not necessarily indicate a 
true difference due to a treatment effect. Therefore it is customary to use a significance 
test to assess the weight of evidence and to estimate the probability that the observed 
data could in fact have arisen purely by chance. The results of the significance test will 
be expressed as a p‐value. For example, p < 0.05 indicates that so extreme an observed 
difference could only be expected to have arisen by chance alone less than 5% of the 
time, and so it is quite likely that a treatment difference really is present. Although 
results of a significance test are expressed in terms of p‐values, when designing a study 
the equivalent value is instead referred to as α, the risk of a false positive or type 1 error. 
If we decide that p < 0.05 will suffice to denote statistical significance, we set α = 0.05.

If few patients were entered into the trial, then even if there really is a true treatment 
difference, the results are likely to be less convincing than if a much larger number of 
patients had been assessed. Thus the weight of evidence in favour of concluding that 
there is a treatment effect will be less in a small trial than in a large one. In particular, 
if a clinical trial is too small, it will be unlikely that one will obtain sufficiently con-
vincing evidence of a treatment difference, even when there really is a difference in 
efficacy of the treatments. Small trials frequently conclude ‘there was no significant 
difference’, irrespective of whether there really is a treatment effect or not. In statistical 
terms, we would say that the sample size is too small, and that the ‘power of the test’ 
is very low. The power, 1 − β, of a significance test is a measure of how likely a test is 
to produce a statistically significant result, on the assumption that there really is a true 
difference of a certain magnitude. Thus β is the probability of failing to obtain a sig-
nificant test result when there really is a true treatment effect as large as the specified 
target; β is the false negative rate, or type 2 error. The larger the study, the more likely 
it is to detect treatment effects that may exist, and so the higher its power.

Suppose the results of a treatment difference in a clinical trial are declared ‘not 
statistically significant’. Such a statement indicates only that there was an insufficient 
weight of evidence to be able to declare that the observed data are unlikely to have 
arisen by chance. It does not mean that there is no clinically important difference 
between the treatments. If the sample size was too small, the study might be very 
unlikely to obtain a significant p‐value even when a clinically relevant difference is 
present. Hence it is of crucial importance to consider sample size and power both when 
planning studies and when interpreting statements about ‘non‐significance’.

11.3  Estimating sample size

To estimate the required sample size it is necessary to specify the significance level 
α (also, perhaps confusingly, called the test size), the power 1  −  β, and the antici-
pated difference (effect size) in QoL that may be expected between alternative groups. 
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The effect size, which we write as Δ, is the target value that we hope to be able to 
detect expressed in units of standard deviation; that is, if we wish to detect a dif-
ference (μT  −  μC) between two means μT and μC and if the standard deviations of 
these two PROs is assumed equal and written as σ, then the standardised difference 
is Δ = (μT − μC)/σ. Ideally we would like to be able to detect a small value of Δ with 
low rates of false positives (α small) and with high power (β small). Unfortunately, the 
smaller the values of α, β and Δ, the larger the necessary sample size.

Choosing the type 1 error

Convention often dictates that tests are two‐sided and of at least 5% significance level, 
represented by a type 1 error of α = 0.05. Clearly it would be preferable to aim for a 
more convincing 1% level if possible, with α = 0.01. In most settings, values higher 
than α = 0.05 are unacceptable.

Choosing the power

Usually the power is set to a minimum of 80%. However, assuming there really is a 
true difference as large as the anticipated target, Δ, this represents a one‐in‐five risk 
of failing to obtain statistical significance. It is time consuming, expensive and hard 
work to write a protocol, obtain funding and execute a clinical study. Are you willing 
to accept a 20% risk of failure? We recommend wherever possible aiming for 90% 
power, with β = 0.10. If α = 0.05, aiming for β = 0.10 instead of 0.20 typically results 
in an increase of 34% in total sample size, as shown in Table 11.3.

Choosing the target effect size

The target effect size should be both realistic and clinically relevant. It should be real-
istic in the sense that it would be futile to design a study comparing two very similar 
treatments on the assumption that there will be a huge treatment effect; there is no 
point in designing a small trial that does not have the power to detect differences that 
are plausible. Thus the target difference should be a realistic difference based on cur-
rent knowledge. The target effect should also be large enough to be deemed clinically 
relevant, that is, noticeable by the patient and considered an important change; again, 
there is no point in designing an extremely large study to have the power to detect 
trivial and unimportant differences in PROs. Hence in addition to being a realistic dif-
ference, the target should also be an important difference as judged by the stakeholder 
– usually the patient. Chapter 18 on clinical interpretation discusses various methods 
for determining clinical relevance and minimally important differences.

Frequently there is insufficient prior experience to quantify the anticipated differences 
with much precision. In addition, QoL is often summarised in terms of more than one out-
come variable; for example, the EORTC QLQ‐C30 has 30 questions that are combined to 
produce essentially 15 different outcomes. Not only are there 15 different outcomes, but 
also they will often all be assessed on different occasions throughout the study thereby 
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generating a longitudinal profile for each patient. Typically, in a clinical trial setting, 
assessments start immediately before randomisation, are at relatively frequent intervals 
during active therapy, and perhaps extend less frequently thereafter until death.

As already indicated, in order to estimate the appropriate sample size the anticipated 
effect size must be determined for each study based on experience, published data or pilot 
studies. First, the PRO variables (scales or items) should be identified and ranked in order 
of importance for the specific study under consideration. For instance, the investigators 
may know, from previous observation of patients with the specific disease and receiving 
standard therapy for the condition, that patients experience considerable fatigue. If one 
objective of the new therapy is to alleviate symptoms, fatigue might be regarded as the 
most important aspect of QoL and, in the context of a clinical trial, could be used for sam-
ple size determination purposes. The remaining PROs would then play a secondary role.

Once the principal endpoint variable has been established, it is necessary to identify 
how this is to be utilised to assess the outcome on a patient‐by‐patient basis. This may 
not be easy. There are likely to be several (perhaps many) assessment times for each 
patient. One possible approach is to create a summary of each patient’s profile. Thus 
Matthews et al. (1990) recommend that a series of observations be analysed through 
summary measures obtained from each patient, for example the change from baseline 
QoL assessment to that at the end of active therapy, the time above a certain level, or 
the area under the curve (AUC).

After this summary is determined, an average of this for each of the study therapies 
needs to be estimated. In the context of planning a randomised trial of two alterna-
tive therapies, these might be a standard or control treatment (C) and a test treatment 
(T). The control average can be obtained from previous experience of other or similar 
patients; for some instruments, such as the EORTC QLQ‐C30, published reference data 
are available (Scott et al., 2008). It is then necessary to specify the benefit in QoL that 
is anticipated by use of the test therapy in place of the control. This too may be obtained 
from previous experience or may have to be elicited in some way using clinical opinion.

This benefit or effect size, Δ, has been variously defined as the ‘minimum value worth 
detecting’ or a ‘clinically important effect’ or ‘quantitatively significant’ (see the Chap-
ter 18 on clinical interpretation). Sometimes there may be neither the experience of nor 
agreement on what constitutes a meaningful benefit to the patient. Cohen (1988) sug-
gests that, when there is an absence of other information about relevant sizes for effects, 
a small effect usually corresponds to Δ = 0.2, a moderate effect to Δ = 0.5 and a large 
effect to Δ = 0.8 (see also Chapter 18). The smaller the effect, the larger the study. Fig-
ure 11.1 illustrates this for the two‐sample t‐test used to compare two unpaired means 
(details are given in Section 11.4). The figure shows the total sample size required when 
applying a two‐sided test with significance level α = 0.05, for powers 1 − β = 80% and 
90%. An effect size of 0.2 calls for a large study of between 800 (80% power) and over 
1000 (90% power). In contrast, if the effect size is above 0.8, relatively small sample 
sizes are sufficient. In practice, one rarely has a precise effect size in mind, and the 
degree of variation in sample size shown in Figure 11.1 makes it clear that it is foolish 
to regard sample size estimations as exact requirements; statisticians routinely round the 
estimates upwards to a convenient higher number, as is done in Table 11.3.
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Figure 11.1  The total sample size required to detect an effect of a specified size, using a two‐
sample t‐test to compare two unpaired means with α of 0.05 and powers of 80% and 90%.

Example from the literature

Julious et al. (1997) describe HADS anxiety and depression data generated 
from 154 patients with small‐cell lung cancer in a randomised trial conducted 
by MRC Lung Cancer Working Party (1996). The data for the anxiety scores are 
given in Table 11.1.

A practical advantage of the HADS instrument is that an estimate of clinically 
important levels of distress can be made using recommended cut‐off scores for 
each subscale. Thus a score of 15 or more is regarded as a potential clinical 
case, perhaps signalling more detailed clinical examination and possibly treat-
ment; a score between 8 and 10 is borderline, and one of ≤7 is regarded as 
normal. As a consequence, sometimes the actual score may be ignored and the 
analysis may be based upon comparison of the proportions in these three cat-
egories for the different treatment groups.

Suppose we assume that the HADS domain for anxiety is the more important 
of the two domains and that the summary measure of most relevance is the 
HADS assessment two months post‐randomisation. Then the endpoint of inter-
est becomes one of the simplest possible.
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Sample size formulae

There are several possible approaches to calculating the sample size required for data such 
as those of Table 11.1. One is to assume the data have (at least approximately) a Normal 
distribution. The second is to categorise the data into binary form, for example ‘case’ or 
‘not case’. A third is to categorise into more than two categories, for example ‘case’, ‘bor-
derline’ or ‘normal’ – or to consider the full form of the data as an ordered categorical 

Table 11.1  Frequency of responses to the HADS anxiety scale, for patients with 
small‐cell lung cancer two months post‐randomisation

Category Anxiety score Number of patients

Normal   0 7
(0–7)   1 5

  2 20
  3 11
  4 11
  5 11
  6 11
  7 17

Borderline   8 13
(8–10)   9 7

10 13

Case 11 7
(11–21) 12 2

13 6
14 4
15 5
16 2
17 1
18 0
19 1
20 0
21 0

Total 154

Normal 0–7 93 (60.39%)

Borderline 8–10 33 (21.43%)
Case 11–21 28 (18.18%)

Median anxiety score 6
Mean anxiety score 6.73
SD 4.28

Source: Julious et al., 1997, Table 2. Reproduced with kind permission of Springer Science 
and Business Media.
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variable with, in our example, κ = 22 levels. Each statistical significance test or method of 
analysis has an associated formula for sample size and power calculations. We provide for-
mulae and example calculations for the most common statistical tests used in QoL studies.

In the formulae given below, we give the total number of subjects required for a 
clinical study for a two‐sided test with significance level α and power 1 − β. In these 
formulae, z1−α/2 and z1−β are the appropriate values from the standard Normal distribu-
tion for the 100(1 − α/2) and 100(1 − β) percentiles, obtained from Appendix Table T1. 
Since many of the equations involved the term (z1−α/2 + z1−β)2, Table 11.2 gives its value 
for some of the most commonly used combinations of significance level and power. 
For example, the illustrative calculations mostly use a two‐sided significance level of 
5% and a power of 80% or 90%. From the Appendix Table T1, z1−α/2 = 1.96 and for 
80% power z1−β = 0.8416, or for 90% z1−β = 1.2816, so the term (z1−α/2 + z1−β)2 equals 
7.849 and 10.507 respectively.

11.4  Comparing two groups

Means – unpaired

In a two‐group comparative study where the outcome measure has a Normal distribu-
tion form, a two‐sample t‐test would be used in the final analysis (see Campbell et al., 
2007). In this case the (standardised) anticipated effect size is ΔNormal = (μT − μC)/σ, 
where μT and μC are the anticipated means of the two treatments and σ is the SD of 
the PRO measures and which is assumed the same for both treatment groups. On this 
basis, the total number of patients to be recruited to the clinical trial, is

	 N
z z z
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Normal
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2
1 2 1

2

2
1 2
2

α β α/ / .
∆

	 (11.1)

Figure 11.1 uses this equation to show the sample size requirements when α = 0.05, 
for powers 1 − β = 80% and 90%. Table 11.3 also shows some commonly used effect 
sizes, and the resultant study size for these values of α and 1 − β. The final term of 
equation (11.1) is important only in small samples and usually may be omitted. For 
example, in the case of z1−α/2 = 1.96 the final term is 1.962/2 ≈ 2.

Table 11.2  The values of (z1−α/2 + z1−β)2 for commonly encountered values of α and β

Significance level α Power 1 − β

2‐sided 1‐sided 0.80 0.90

0.01 0.005 11.679 14.879
0.02 0.010 10.036 13.017
0.05 0.025 7.849 10.507
0.10 0.050 6.183 8.564
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Example

The mean HADS anxiety score is x  = 6.73 with a large SD = 4.28, indicat-
ing a rather skew distribution far from the Normal form, as does the full  
anxiety distribution in Table 11.1. Consequently, it may not be advisable to use  
equation (11.1) directly to calculate sample size.

However, if the data are transformed using a logarithmic transformation, 
the transformed variable may have a distribution that approximates better to 
the Normal form. To avoid the difficulty of a logarithm of a zero score, each 
item can be coded 1–4 rather than 0–3. Each scale is the sum of seven items, 
giving sum scores from 7 to 28, so this is equivalent to using y = loge(x + 7) 
where x is the HADS anxiety score on the original scale. In this case, the data 
of Table 11.1 lead to y  = 2.5712 and SD(y) = 0.3157.

Unfortunately, there is no simple clinical interpretation for the y‐scale, and 
so the inverse transformation is used to obtain scores corresponding to the 
HADS scale. Thus, the value corresponding to y  is x = exp( y ) − 7 = 6.0815, 
and this is closer to the median anxiety score of 6 than the original x of 6.73. 
Importantly, the distribution has a more Normal form on this transformed scale 
and equation (11.1) can be applied once the effect size ΔNormal is specified.

The therapy aims to reduce anxiety in the patients, that is, to increase the 
proportion classified as ‘normal’ – and this corresponds to a desired reduction in 
HADS. We may postulate that the minimum clinically important difference to detect 
is a decrease in this equivalent to 1 unit on the HADS, that is, from 6.0815 to 
5.0815. This is then expressed as an anticipated effect on the logarithmic y‐scale 
as ΔNormal = (μT − μC)/σ = [loge (5.0815 + 7) − loge (6.0815 + 7)]/0.3157 = (2.4917 
− 2.5712)/0.3157 = −0.25. This would be regarded as a small effect size, using the 
guidelines proposed by Cohen (1988). Using equation (11.1) with ΔNormal = −0.25 
gives NNormal = 504 patients or approximately 250 patients in each group.

The sample size depends only on the absolute value of the anticipated differ-
ence between treatments. It is independent of the direction of this difference. 
Thus, the same sample size would be obtained if ΔNormal = +0.25, for example 
if a new but potentially more toxic therapy was being investigated and an 
increase in anxiety is likely.

Table 11.3  The total sample size* required to detect an effect of a specified size, using a two‐sample 
t‐test to compare two unpaired means with a significance level of 5% and powers of 80% and 90%

Effect size Δ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Power
1 − β = 80% 790 360 200 130 90 66 52 42 34
1 − β = 90% 1060 470 270 180 120 88 68 54 44

*Sample sizes of 100 and above have been rounded upwards to a multiple of 10.
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Means – paired

Some QoL studies may be designed in a matched case–control format. In this situation, 
patients with a particular condition may be of interest and we may wish to compare 
their QoL with a comparative control (non‐diseased) group. This could be a comparison 
of elderly females with rheumatism against those without the disease. Thus, for every 
patient identified, a control subject (female of the same age) is chosen and their QoL 
determined. The paired or matched difference between these two measures then gives an 
indication of their relative difference in QoL. These differences are then averaged over all 
NPairs of the case–control pairs, to provide the estimate of group differences.

On this basis, the number of patient‐control pairs to be recruited to the clinical trial is
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This expression is of a similar form to equation (11.1), but here there is a major difference 
in how Δ = δ/σDifference is specified. Thus σDifference here is the anticipated SD of the N differ-
ences between the case‐control pairs. It is neither the SD of the case values themselves nor 
the SD of the corresponding control values (which are often of similar magnitude).

Machin et al. (2008) point out that there is a relationship between the SD for each 
subject group, σ, and the SD of the difference, σDifference. Thus:

	 σ σ ρ( )= −2 1 ,Difference 	 (11.3)

where ρ is the correlation coefficient between the values for the cases and their con-
trols. An exploratory approach is to try out various values of ρ to see what influence 
this may have on the proposed sample size. It should be noted that when the values are 
weakly correlated, with ρ less than 0.5, equation (11.3) implies that a larger sample 
size will be required than if an unpaired test were used. Paired matching is only ben-
eficial when the outcomes have a correlation greater than 0.5.

Example

Regidor et al. (1999) give the mean physical functioning (PF) measured by the 
SF‐36 Health Questionnaire in a reference group of 1,063 women aged 65 years 
and older as 55.8 with SD ≈ 30. The SD is large relative to the size of the mean, 
which suggests that the distribution of the PF score may be rather skewed.

Suppose we are planning a case–control study in women 65 years or older who 
have rheumatism. It is anticipated that these women will have a lower PF by as 
much as five points. How many case–control pairs should the investigators recruit?

It is first worth noting that even if the distribution of PF scores is not itself 
of the Normal distribution form, the differences observed between cases and 
controls may approximate to this pattern. This is what is assumed.
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Proportions – unpaired

The statistical test used to compare two groups when the outcome is a binary variable 
is the Pearson 2χ  test for a 2 × 2 contingency table (see Campbell et al., 2007). In 
this situation the anticipated effect size is δBinary = (πT − πC), where πT and πC are the 
proportions of ‘normals’, however defined, with respect to depression in the two treat-
ment groups. On this basis, the number of patients to be recruited to the clinical trial, is

	 N
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Alternatively, the same difference between treatments may be expressed through the 
odds ratio (OR), which is defined as

	 OR
/ (1 )

/(1 )
.Binary

C C

T T

π π
π π

=
−
−

	 (11.5)

This formulation leads to an alternative to equation (11.4) for the sample size. 
Thus
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In this example δ  =  5, and in order to determine the anticipated effect 
size Δ = δ/σDifference we need a value for σDifference itself, although we can first 
assume σ = 30. Table 11.4 shows the different values for σDifference depending 
on the value of ρ. For each of these values there is an effect size Δ and finally 
the number of case‐control pairs required is calculated from equation (11.2). 
Various options are summarised in Table 11.4, which show that there is a wide 
range of potential study size that depends rather critically on how ρ effects 
σDifference and hence Δ and ultimately NPairs. The numbers in this table have 
been rounded upwards to the nearest 10 subjects to acknowledge the inherent 
uncertainty in the sample estimation process.

Table 11.4  Variation in the size of a case–control study (two‐sided α = 0.05 and power 
1 − β = 0.8), assuming δ = 5 and σ = 30

ρ   0.0 0.2 0.4 0.6 0.8 0.9 0.95
σDifference 42.4 37.9 32.9 26.8 19.0 13.4 9.5
Δ 0.12 0.13 0.15 0.19 0.26 0.37 0.53
NPairs   570 460 350 230 120 60 30
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where π π π( )= + / 2.C T Equations (11.4) and (11.6) are quite dissimilar in form, 
but Julious and Campbell (1996) show that they give, for all practical purposes, very 
similar sample sizes, with divergent results occurring only for relatively large (or 
small) ORBinary.

Example

Table 11.1 indicates that there are approximately 60% of patients classified 
as ‘normal’ with respect to anxiety. Suppose it is anticipated that this may 
improve to 70% in the ‘normal’ category with an alternative treatment. The 
anticipated treatment effect is thus δBinary = (πT − πC) = (70 − 60)% = 10%. This 
equates to a total sample size of NBinary = 706 from equation (11.4).

Alternatively, this anticipated treatment effect can be expressed as  
ORBinary = (60/40)/(70/30) = 0.6428. Using this in equation (11.6), if α = 0.05 
and 1 − β = 0.8, with π  = (0.70 + 0.60)/2 = 0.65, also gives a total sample 
size of NOdds‐Ratio = 706 patients. As noted, the difference between the calcula-
tions from the alternative formulae is usually small and inconsequential.

Proportions – paired

In the matched case–control format discussed above, the comparison of elderly females 
with rheumatism to those without the disease may be summarised as ‘Good’ or ‘Poor’ 
QoL. Thus the possible pairs of responses are (Good, Good); (Good, Poor); (Poor, Good) 
and (Poor, Poor). The McNemar test for such paired data (see Campbell et al., 2007) 
counts the number of the NPairs which are either (Good, Poor) or (Poor, Good). If these 
are s and t respectively, the odds ratio for comparing cases and controls is estimated by 
ψ = s/t, and the proportion of discordant pairs by πDiscordant = (s + t)/NPairs. To estimate 
the corresponding study size, anticipated values for ψ and πDiscordant need to be specified. 
Then
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Just as we saw for paired means, it is often difficult to anticipate the impact of pairing 
upon sample size estimates because the calculations require more information than 
for unpaired designs. Usually, the purpose of pairing or matching is to obtain a more 
sensitive comparison; that is, to reduce sample size requirements. Thus the sample size 
needed for a paired design should usually be less than for an unpaired one, and may 
often be appreciably less.
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Ordered categorical data

The transformation of data when dealing with a variable that does not have a Normal 
distribution leads to difficulties in interpretation on the transformed scale and, in par-
ticular, the provision of an anticipated effect size. It would be easier if the original scale 
could be preserved for this purpose. In fact the data of Table 11.1 are from an ordered 
categorical variable and the statistical test used when the outcome is ordered categorical 
is the Mann–Whitney U‐test with allowance for ties (see Sprent and Smeeton, 2007). 
Thus it would be more natural to extend from the comparison of two proportions, which 
is a special case of an ordered categorical variable of κ = 2 levels, to κ = 22 levels for the 
HADS data. Formulating the effect size in terms of ORBinary rather than δBinary enables 
this extension to be made. The estimated sample size is given by Whitehead (1993) as
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where the mean proportion expected in category i (i = 0 to κ − 1) is iπ  = (πCi + πTi)/2, and 
πCi and πTi are the proportions expected in category i for the treatment groups C and T.

The categories are labelled as 0 to κ − 1, rather than 1 to κ, so that they correspond 
directly to the actual HADS category scores of Table 11.1. Here, the ORCategorical is an 
extension of the definition of ORBinary given in equation (11.5) and is now the odds of 

Example

Suppose in the previously discussed case‐control study of women who have 
rheumatism that their overall QoL is to be summarised as ‘good’ or ‘poor’ and 
so is that of their controls. It is anticipated that a major difference in the odds 
ratio will be observed; so a value of ψ = 4 is specified. It is further anticipated 
that the discordance rate will probably be somewhere between 0.5 and 0.8. 
How many case‐control pairs should be recruited?

In this example ψ = 4, which is itself the anticipated effect size, we also 
need to specify πDiscordant. Table 11.5 shows some options for the study size for 
differing values of πDiscordant calculated using equation (11.7).

The numbers in this table have been rounded upwards to the nearest 
10 subjects in recognition of the inherent imprecision in the sample estima-
tion process.

Table 11.5  Variation in the size of a matched case–control study, 
assuming ψ = 4 (two‐sided α = 0.05 and power 1 − β = 0.8)

πDiscordant 0.5 0.6 0.7 0.8

NPairs 50 40 30 30
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a subject being in category i or below in one treatment group compared with the other. 
It is calculated from the cumulative proportion of subjects for each category 0, 1, 2,…, 
(κ − 1) and is assumed to be constant through the scale.

The effect size in equation (11.8), as summarised through ORCategorical, implies an 
assumption of proportional odds. This means that each adjacent pair of categories for 
which an OR can be calculated, that is OR1, OR2,…, OR21 for the HADS, all have 
the same true or underlying value ORCategorical. Thus the odds of falling into a given 
category or below is the same, irrespective of where the HADS scale is dichotomised. 
This appears to be a very restrictive assumption but, for planning purposes, what is of 
greatest practical importance is that, although the ORs may vary along the scale, the 
underlying treatment effect should be in the same direction throughout the scale. Thus 
all ORs are anticipated to be greater than 1 or all are anticipated to be less than 1.

When using an ordered categorical scale, the ORs are a measure of the chance of a 
subject being in each given category or less in one group compared with the other. For 
the HADS data there are 21 distinct ORs. However, the problem is simplified because 
the OR anticipated for the binary case, that is the proportions either side of the ‘case-
ness’ cut off, can be used as an average estimate of the OR in the ordered categorical 
situation (Campbell et al., 1995). Thus, if the trial size is to be determined with a 
Mann–Whitney U‐test in mind rather than the χ2 test for a 2 × 2 table, the anticipated 
treatment effect is still taken to be ORBinary.

Julious et al. (1997) illustrate the evaluation of equation (11.8). First QCi, the cumu-
lative proportions in category i for treatment C, are calculated using, for example, 
tables of reference values. Then, for a given (constant) ORCategorical, the anticipated 
cumulative proportions for each category of treatment T are given by

	 Q
OR Q

OR Q Qi
Categorical Ci

Categorical Ci Ci
T =

+ −( )1
. 	 (11.9)

After calculating the cumulative proportions, the anticipated proportions falling in 
each treatment category, iTπ , can be determined from the difference of successive QTi. 
Finally, the combined mean of the proportions of treatments C and T for each category 
is calculated.

We have assumed here that the alternative to the binary case (κ = 2) is the full cat-
egorical scale (κ = 22). In practice, however, it may be more appropriate to group some 
of the categories but not others to give κ categories, where 3 ≤ κ < 22. For example, 
merging the HADS scores into the caseness groups defined earlier would give κ = 3, 
while κ = 5 if the caseness categories are extended in the manner described below.

Although there are 22 possible categories for the full HADS scales, it is reasonable 
to ask whether the full distribution needs to be specified for planning purposes. In many 
situations it may not be possible to specify the whole distribution precisely, whereas it 
may be easier to anticipate the proportions when there are fewer categories. The HADS 
scale is often divided into three categories for clinical use: ‘normal’ (≤ 7), ‘borderline’ 
(8–10) and ‘clinical case’ (≥ 11). For illustration purposes only, we define two additional 
categories: ‘very normal’ (≤ 3) and ‘severe case’ (≥ 16). Thus HADS scores 0–3 are ‘very 
normal’, 4–7 ‘normal’, 8–10 ‘borderline’, 11–15 ‘case’ and finally 16–22 ‘severe case’.
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Example

Table 11.6 gives, for the data of Table 11.1, the number of cases and cumula-
tive proportions anticipated in each category for the anxiety dimension if we 
re‐categorised the HADS anxiety scale into five categories as above.

Assuming ORCategorical = ORBinary = 1.5556 as we calculated above, then, for 
example, the anticipated proportion for category 2 of treatment T is from equa-
tion (11.9):

QT2 = ORCategorical QC2/[ORCategorical QC2 + (1 − QC2)]

= 1.5556 × 0.6039/[1.5556 × 0.6039 + (1 − 0.6039)] = 0.7034.

The remaining values are summarised in Table 11.6. Values of π Ti  are 
calculated from the difference of successive QTi. For example, πT2 = 0.7034 −  
0.3760  =  0.3274. The final column of the table gives the corresponding 
values of π π π( )= + / 2.i i iC t  The denominator of equation (11.5) is therefore

1 − [0.32763 + 0.32603 + 0.19293 + 0.13203 + 0.02143]  
= 1 − 0.0793 = 0.9207,

and finally from equation (11.8), if α = 0.05 and 1 − β = 0.8, NCategorical = 524.
Repeating the calculations with the three categories for HADS (‘normal’, 

‘borderline’, ‘case’), the corresponding sample size is NCategorical = 680. Finally, 
reducing the categories to normal versus the remainder (borderline and cases), 
NBinary = 712. The increasing sample size suggests that the less we can assume 
about the form of the data, the larger the study must be.

Table  11.6  Patients with small‐cell lung cancer two months post‐randomisation, 
categorised for anxiety ‘caseness’ following assessment using HADS. Cumulative proportions 
observed on standard therapy C and anticipated with test therapy T

Cumulative proportion

Category
Anxiety 
score

Number of 
C patients iCπ QC QT itπ π i

Very normal 0–3 43 0.2792 0.2792 0.3760 0.3760 0.3276
Normal 4–7 50 0.3246 0.6039 0.7034 0.3274 0.3260
Borderline 8–10 33 0.2143 0.8182 0.8750 0.1716 0.1929
Case 11–15 24 0.1558 0.9740 0.9831 0.1081 0.1320
Severe case 16–22 4 0.0260 1 1 0.0169 0.0214
Total 154

Source: Data from Medical Research Council Lung Cancer Working Party, 1996.
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Time‐to‐event data

Sometimes the endpoint of interest can be the time from randomisation until a patient 
achieves a particular value of their QoL or PRO. For example, suppose patients with 
a HADS of 10 or less (normal and borderline) will be recruited into a trial, and that 
it is also known that many of these patients will experience deterioration (increas-
ing HADS) while receiving active therapy, but may then achieve improvement over 
their admission values. If a clinically important improvement is regarded as a HADS 
decrease of two points, then, with repeat assessments, one can observe if and when 
this first occurs. For those patients who experience the defined improvement, the time 
in days from baseline assessment to this outcome can be determined. For those who 
do not improve sufficiently, perhaps deteriorating rather than improving, their time 
to improvement will be censored at their most recent QoL assessment. The eventual 
analysis will involve Kaplan–Meier estimates of the corresponding cumulative sur-
vival curves, where here ‘survival’ is ‘time to improvement’, and comparisons between 
treatments can be made using the logrank test (Machin et al., 2006).

To estimate the size of a trial, one can utilise the anticipated proportion of patients 
who have improved at, say, 12 weeks in the C and T groups respectively. However, in 
the actual study we will be determining as precisely as possible the exact time that the 
patient shows the QoL improvement specified.

In this situation the size of the anticipated effect is determined by the hazard ratio, 
Δ, the value of which can be obtained from

	 log

log
,e

e

C

T

π
π

∆ = 	 (11.10)

where, in this case, πC and πT are the anticipated proportions improving (here by 
12 weeks) with C and T therapy respectively. Once the anticipated effect size Δ is 
obtained, the number of patients that are required for the study is given by
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Example

Suppose for the HADS πC = 0.65 but it is anticipated that the test treatment 
will be effective in improving this to πT  =  0.75 at 12 weeks. In this case, 
Δ = loge 0.65/loge 0.75 ≈ 1.50. Substituting these values in equation (11.11) 
with α = 0.05 and 1 − β = 0.8 gives NSurvival = 660.
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One aspect of a trial, which can affect the number of patients recruited, is the propor-
tion of patients who are lost to follow‐up during the trial. Such patients have censored 
observations determined by the date last observed, as do those for whom the event of 
interest (here decreasing HADS anxiety score of 2 points) has not occurred at the end 
of the trial. If the anticipated proportion of censored patients is w, the sample sizes 
given in equation (11.11) should be increased to compensate by dividing by 1 − w.

11.5  Comparison with a reference population

If a study is comparing a group of patients with a reference population value for the 
corresponding PRO, effectively one is assuming that the reference population value is 
known. As a consequence, this is not estimated from within the study and so subjects 
are not needed for this component. Hence fewer subjects will be required overall.

Means

In this case, when the population or reference mean QoL is known, the sample size 
necessary is given by equation (11.1), but with the 4 removed from the numerator in the 
first term, giving equation (11.12). This effectively reduces the sample size required, 
compared with a two‐group comparison, by one‐quarter:

	 N
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Proportions

If a study is comparing the proportion of patients with, say, good QoL with a reference 
population value for the same QoL measure, effectively one is assuming that the refer-
ence population proportion is known and is not estimated from within the study. In this 
case, provided the proportions are close, the sample size necessary is approximately 
one‐quarter that given by either equation (11.4) or (11.6).

11.6  Non‐inferiority studies

Sometimes, in a clinical trial of a new treatment for patients with, say, a life‐threaten-
ing disease such as cancer, it may be anticipated that the new treatment (Test) will at 
best bring only modest survival advantage over the current (Standard). Or, perhaps a 
new treatment is more convenient or cheaper. However, in such circumstances, any 
gain in efficacy might be offset by a loss of QoL. If there is a loss, then we may regard 
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the Test as an acceptable replacement for the Standard provided any loss is no greater 
than η units of QoL. The quantity η is termed the level of non‐inferiority between the 
QoL measure in the two treatment groups, and is the maximum allowable difference 
between the QoL measure in the two groups. If we ultimately observe an actual differ-
ence no greater than η, we accept that the two groups are essentially equivalent.

Earlier, when comparing two means or two proportions, we implied a null hypoth-
esis of the form θStandard = θTest, where θStandard and θTest are the parameters we wish to 
estimate with our study. Thus in the conventional test of significance we seek to test 
δ = θStandard − θTest = 0. In testing for non‐inferiority this is modified to testing θStandard − 
η = θTest against the alternative one‐sided hypothesis θStandard − η < θTest or alternatively 
expressed as δ = θStandard − θTest < η.

These considerations lead to a 100(1 − α)% CI for δ = θStandard − θTest of

	 LL z SEato Difference Difference[ ( )].+ ×−1 	 (11.13)

Here the value of LL (the lower confidence limit) depends on the context but not on 
the data (see below). Note that this is a so‐called one‐sided CI and uses z1−α not z1−α/2.

At the design stage, we need to specify the non‐inferiority limit, η (> 0), and also 
the significance level α and the power, 1 − β, such that the upper confidence limit (UL) 
for δ, calculated once the study is completed, will not exceed this pre‐specified value η.

In the formulae given previously, we gave the total number of subjects required in 
a clinical study for a two‐sided test with significance level α and power 1 − β. In this 
section all calculations use a one‐sided significance level.

In most applications, θTest is assumed to equal θStandard. Further since η is likely to 
be small, such that a difference of η or less is clinically unimportant, the sample size 
required for a non‐inferiority trial may be substantially larger than for the more usual 
superiority trial. The choice of η is critical, and the drug regulatory bodies empha-
sise this in documents about non‐inferiority trials (European Medicines Agency, 2000, 
2005a; United States Food and Drug Administration, 2010). Similarly, as in the two 
examples below, when a one‐sided confidence limit is used the coverage probability 
should be 97.5%, that is, α = 0.025.

Means

When two means are compared, the lower limit for the CI of equation (11.13) is 
LL = −∞, that is negative infinity. The total sample size, NNon‐inferiority, required for a 
comparison of means from two groups of equal size and anticipated to have the same 
population mean and SD, σ, is
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where η σ∆ = /  can be thought of as the effect size.
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Example from the literature

A non‐inferiority study was used by Lee et al. (2011) to compare two methods of 
pain relief during labour. The primary outcome was decrease in pain measured by 
a VAS at 30 minutes post intervention. The authors specified 90% power with a 
one‐sided α of 0.025. The non‐inferiority margin was set at 1.0, and the true dif-
ference was assumed to be zero. Citing results from a meta analysis, the authors 
assumed a standard deviation of 2.5 on the VAS. From equation (11.14), this 
leads to a sample size of 132 patients per group, or 264 in total. The authors also 
assumed a 20% attrition rate, and estimated approximately 54 patients might be 
lost from the study; although they suggested increasing the sample size by 54 
patients accordingly, this ignores the fact that the additional patients will also 
themselves be subject to attrition at the same rate. Equation (11.17), below, 
implies that the correct total should be approximately 330 patients.

Proportions

We assume that the outcome of the trial can be expressed as the proportion of patients 
with good QoL. After testing for non‐inferiority of the treatment, we would wish to 
assume the probabilities of ‘good’ QoL are for all practicable purposes equal, although 
we might have evidence that they do in fact differ by a small amount. For this com-
parison LL = −1 in equation (11.13), as that is the maximum possible difference in the 
proportion of responses in the two groups.

The total sample size, NNon‐inferiority, required for a comparison of proportions from 
two groups of equal size and anticipated to have response proportions πStandard and πTest 
with mean π  is
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Example from the literature

Urodynamic studies (UDS) are routinely obtained prior to surgery for stress uri-
nary incontinence in women, despite a lack of evidence that this has an actual 
impact on outcome. Nager et al. (2009) carried out a non‐inferiority trial to 
ascertain whether preoperative UDS is of any value. The primary outcome was 
twelve‐month patient reported response to the Urogenital Distress Inventory 
(UDI) and the Patient Global Index‐Improvement (PGI‐I), with the women clas-
sified into success if UDI decreased by 70% and PGI‐I was rated ‘much better’ 
or higher. One‐sided α = 0.025 and power = 80% were used. The true proportion 
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of successes was assumed to be equal in the two groups, and from previous 
reports this was estimated to be 70% giving πStandard = πTest =  π  = 0.70. The 
equivalence margin ‘was chosen based on the belief that 11% was the largest 
amount that we would allow the success rate to differ and still deem the no UDS 
group non‐inferior, while still producing a realistic sample size’. Thus η = 0.11. 
Using these assumptions, equation (11.15) indicates that a total 544 patients 
are required. Allowing for a 10% dropout rate, 608 women should be recruited.

11.7  Choice of sample size method

It is important when designing any study to obtain a relevant sample size. In so doing 
it is important to make maximal use of any background information available. Such 
information may come from other related studies and may be quite detailed and pre-
cise, or it may come from a reasonable extrapolation of observations from unrelated 
studies, in which case it may be regarded as very imprecise. It is clear that the more we 
know, or realistically assume, of the final outcome of our trial at the planning stage, the 
better we can design the trial. In our example, we have detailed knowledge of HADS 
outcome at two months, based on more than 150 patients. We may be fairly confident, 
therefore, that provided the treatment C in a planned new trial remains unaltered and 
the patient mix remains the same, we can use this distribution for planning purposes. 
If the trial is to test a new therapy T then, possibly apart from some very preliminary 
data, we may have little information about the effect of T on QoL. In this case, we 
suggest that the investigator has to decide if he or she wishes to detect, say, a one‐, 
two‐ or three‐point change in the average HADS score. This change has then to be 
expressed as an anticipated effect size before the sample size equations given here can 
be applied. The smaller the anticipated benefit, the larger the subsequent trial. If an 
investigator is uncomfortable about the assumptions, it is good practice to calculate 
sample size under a variety of scenarios so that the sensitivity to assumptions can be 
assessed.

In general, when designing a clinical trial, there will often be other variables 
(covariates), apart from allocated treatment itself, such as gender, age, centre or 
stage of disease. These may or may not affect the clinical outcome. Such variables 
may be utilised to create different strata for treatment‐allocation purposes, and can 
also be used in the final analysis. If the QoL variable itself can be assumed to have 
a Normal distribution, the final analysis may adjust for these variables using a mul-
tiple regression approach. If a binary type of measure of QoL has been used, the 
covariates can be assessed by means of a logistic regression model (Campbell et al., 
2007). Similarly, if a time‐to‐event measure of QoL is being used, the covariates can 
be assessed by means of a Cox proportional hazards model as described by Machin 
et al. (2006).



302	 Sample sizes  

11.8  Non‐Normal distributions

Several of the formulae that we have presented assume that the target effect (such as 
the difference in means of two groups) follows a Normal distribution, and that t‐tests 
can be used. We used a transformation approach for non‐Normal data, illustrated by 
the logarithmic transformation, and made sample size calculations accordingly. Loga-
rithms are typically suitable whenever we are more interested in percentage changes 
rather than absolute changes, because they convert multiplicative effects into linear 
effects; thus log(x × y) = log(x) + log(y). Thus for depression scored 0–100, we might 
decide that a change from 10 to 20 (doubling of the score, or 100% increase) is a more 
noticeable change than going from 80 to 90, which is also a 10‐point absolute change 
but only a 12.5% increase. More generally, whenever the data distribution is skewed 
with a tail extending to the right, a logarithmic transformation may well be beneficial 
in converting the numbers into a more Normal shape. The inverse transformation of 
the logarithm is the exponential function, and so we can readily convert back to the 
original scale after calculating confidence intervals or mean scores. Logarithms only 
apply to numbers greater than zero and so the example using the HADS also illustrated 
that the HADS items were coded 1–4 instead of 0–3 and corresponding changes made 
to the thresholds. Other common transformations for the purpose of converting con-
tinuous data with a skew distribution to a symmetrical Normal shape are the reciprocal 
and the square root. In addition, for other types of data (such as the number of events 
observed to occur in a given time) there are many other transformations available.

As we have indicated, it is not uncommon that, when designing a trial where a PRO 
is the primary measure of interest, there is little prior knowledge of the full distribution 
of the scores. Thus the very detailed information provided by Table 11.1 might not 
be available. However, this need not necessarily present a major problem for the full 
ordered categorical approach to sample size calculation. Whitehead (1993) indicates 
that knowledge of the anticipated distribution within four or five broad categories is 
often sufficient. This information, which may be solicited from experience gained by 
the clinical team, can then be used to aid the design of studies using HADS and other 
QoL instruments.

Both t‐tests and analysis of variance are remarkably robust against violations of 
Normality. Walters and Campbell (2005) observed that QoL data tends to have dis-
crete, bounded and skewed distributions. Using ‘bootstrap’ computer simulations, 
they found that despite this conventional methods of sample size estimation per-
formed well. Norman (2010) argued that analyses “examining differences between 
means, for sample sizes greater than 5, do not require the assumption of Normality 
and will yield nearly correct answers even for manifestly non‐normal and asymmet-
ric distributions like exponentials”, although Fayers (2011) responded that claims 
for robustness of significance tests refer to type I errors and that non‐Normality can 
greatly affect the estimation of the standard error, resulting in a serious loss of power 
and this will also be associated with misleading sample size estimation. Thus we 
conclude overall that substantial deviations from Normal distribution should not be 
ignored.
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11.9  Multiple testing

The p‐value of a significance test is the probability of observing such extreme data 
purely by chance alone. However, if one carries out a large number of significance tests 
the p‐value becomes distorted as there is a greatly increased risk that at least one test 
will be associated with an extreme p‐value, purely by chance. As we discuss in later 
chapters about analysis, this multiple testing can present problems for the analysis of 
PROs. Three situations can be identified: repeated assessments leading to multiple 
testing at different time points, comparisons of several groups of patients resulting in 
multiple pairwise comparisons, and the analysis of multiple PROs.

Repeated QoL assessments over time

In Chapter 14 we illustrate the use of generalised estimating equations and multilevel 
models, as two methods for analysing repeated measures data. When QoL assessments 
are repeated, the within‐patient measurement values will be correlated most highly for 
assessments that are closest in time. In theory, if the correlation structure is known, it 
would be possible to make a formal sample size calculation. In practice, this is rarely 
feasible. For sample size purposes, when repeated measures of the same QoL item are 
involved, one recommended approach to design is to choose either a key observation 
time as the endpoint observation or to use a summary statistic such as the AUC. A 
summary of these basic observations will then provide the values for the groups being 
compared and the basis for the sample size determination.

Comparing multiple groups of patients

In circumstances where three or more groups are being compared, we recommend cal-
culating the sample size appropriate for each possible comparison. This will provide 
a range of possible sample sizes per treatment group. It is then a matter of judgement 
as to which should be used for the final study – the largest of these will be the safest 
option but may result in too large a study for the resources available. If the number of 
groups is large, some note may have to be taken of the resulting numbers of signifi-
cance tests. One possibility is to use a Bonferroni adjustment (see the next section) for 
the sample size. In some circumstances, the different groups may themselves form an 
ordered categorical variable; for example, intervention may be graded as ‘none’, ‘lim-
ited’ or ‘intensive’. In this case there is a structure across the intervention groups, and a 
test‐for‐trend may be appropriate. Then no Bonferroni adjustment need be considered.

Multiple endpoints

Earlier in this chapter we indicated that it is very important to identify a single PRO as the 
principal QoL endpoint. If there are additional endpoints, it is advisable to rank these in 
order of importance. We recognise that in many situations there may be a very long list 
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of QoL variables but would urge that those which are to be included in a formal analysis 
should be confined to at most four or five. The remainder should be consigned to explora-
tory hypothesis‐generating analyses or descriptive purposes only. However, if analyses 
of the four or five outcomes are to be made, some recognition of the multiple statistical 
hypothesis testing that will occur should be taken into account during the planning process.

In practice, it is very unlikely that the associated anticipated effect sizes would be of 
the same magnitude or direction. Thus, for example, k = 4 endpoints denoted (in rank 
order of importance) by Ω(1), Ω(2), Ω(3) and Ω(4) might be used separately in four sample 
size calculations, and four different estimates are likely to result. The final study size is 
then likely to be a compromise between the sizes so obtained. Whatever the final size, 
it should be large enough to satisfy the requirements for the endpoint corresponding to 
Ω(1) as this is the most important endpoint and hence the primary objective of the trial.

To guard against false statistical significance as a consequence of multiple testing, 
it is a sensible precaution to consider replacing the significance level α in the various 
sample size equations by an adjusted test size using the Bonferroni correction, which is

	 α α= k/ .Bonferroni 	 (11.16)

Thus αBonferroni is substituted instead of α in the equations given above. For k  =  4 
and α = 0.05, αBonferroni = 0.05/4 = 0.0125. Such a change will clearly lead to larger 
sample sizes; for example, from Table T1, z  =  1.96 when α  =  0.05, whereas for 
α = 0.0125 the value of z is approximately 2.50 and the numerators of, for example,  
equation (11.1) will both be larger. In this case, the overall sample size must be  
increased by a multiplication factor of about 1.36. Figure 11.2 shows the multiplication 

Figure  11.2  Sample size multiplication factors to compensate for multiple comparisons when 
applying a Bonferroni correction.
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factors that are required so as to compensate for multiple comparisons when using the 
Bonferroni correction, for α = 0.05 and power of 80% or 90%.

Use of the Bonferroni correction remains controversial. It assumes that the tests 
are independent of each other, which is equivalent to the unrealistic assumption that 
the outcomes are uncorrelated; consequently it is a conservative, or over extreme, cor-
rection of the p‐values. As we discuss in the Chapter 16 on practical and reporting 
issues, another compromise is to report unadjusted p‐values while adopting a cautious 
approach of, say, p < 0.01 when making claims of statistical significance.

11.10  Specifying the target difference

Figure 11.1 makes it clear that one of the most important determinants of sample 
size is the magnitude of the effect size. When planning a study, we might be tempted 
to aim for a modest effect size, since experience indicates that investigators tend to 
be over‐enthusiastic and optimistic about the benefits of new therapies. But a small‐
to‐modest effect size will necessitate a large study – and, frequently, a study that is 
totally unrealistic. This leads to a re‐examination of the target difference: is it realis-
tic to anticipate a larger effect size? There is no point in setting unrealistically large 
targets, as this would merely mean that the true effect, if there is one, is likely to be 
smaller than planned for, and so the study becomes unlikely to obtain a statistically 
significant result. At the other extreme, it is equally futile to specify a target effect 
that is so small that patients and clinicians would fail to discern any benefit. Thus it 
is important to consider the range of effect sizes that would be scientifically realistic 
as well as clinically worthwhile. There will be an element of iteration, exploring 
the impact of different effect sizes on the required sample size, and – one hopes – 
eventually obtaining a compromise that results in a potential study design. The chosen 
target effect size, and the consequent sample size, will then have to be justified to the 
funding body, to the ethical review panel and eventually to the journal in which one 
aspires to publish.

11.11  Sample size estimation is pre‐study

It must be emphasised that it is only meaningful to make a sample size or power cal-
culation when designing a study, before recruiting patients. Thus medical journals 
specifically demand to know whether the sample size estimations were pre‐study. 
Post hoc power calculations are of little value; if an observed effect is not statisti-
cally significant, we know that the power of detecting such a difference is less than 
50%. Conversely, if an effect is found to be very highly significant, we know that 
the power is high enough to have detected that effect. If power calculations were 
not carried out pre‐study, the only meaningful way to present the results is using 
confidence intervals to reflect the implications of the sample size on the estimated 
parameters.
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11.12  Attrition

As discussed in the Chapter 10 on clinical trials and subsequently Chapter 15 on miss-
ing data, QoL studies frequently have major problems regarding compliance and miss-
ing data. It is rare that a study will have 100% of forms completed and returned. In 
some clinical trials there may also be severe attrition due to deaths. The effective sam-
ple size may be markedly less than the number of patients recruited. When planning 
a study, adequate allowance must be made for all forms of attrition – and, we find 
through experience, there is a strong tendency to underestimate the levels of attrition. 
Estimated sample sizes should be inflated by an appropriate compensatory factor. If 
the calculated sample size was n and it is anticipated that the proportion of patients lost 
might be ω, the appropriate sample size is nAdjusted where

	
ω

=
−

n
n

1
.Adjusted 	 (11.17)

11.13  Circumspection

We have emphasised the importance of making the best possible estimate of sample 
size when designing a study. However, it must also be apparent that there are lots 
of choices that must be made and that many of these are very arbitrary or based on 
parameters that are unknown or uncertain. As Senn (2003) comments: “There is a con-
siderable disparity between the mathematical sophistication involved in a sample‐size 
determination and the practical basis from which it must proceed, namely the choice 
of a ‘clinically relevant difference’ (or some other treatment difference) and a ‘guess-
timate’ of the variability in the experiment to be performed.” We have great sympathy 
with his suggestion that: “In many cases it is a more sensible approach to sample‐size 
determination to have a look at what sort of trial has been run in the past in a particular 
area and see what sort of inferences were possible rather than going through some 
complicated power calculation: often this is no more than a ritual.” A similar view is 
expressed by Norman (2012).

11.14  Conclusion

When designing any study, there is usually a whole range of possible options to discuss 
at the early design stage. We would therefore recommend that various anticipated ben-
efits be considered, ranging from the optimistic to the more realistic, with sample sizes 
being calculated for several scenarios within that range. It is a matter of judgement, 
rather than an exact science, as to which of the options is chosen for the final study size.

In QoL studies, there are many potential endpoints. As we have stressed, it is impor-
tant that a clear focus be directed to identifying the major ones (at most five). This is 
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clearly important for sample size purposes, but it is also necessary to state these end-
points clearly in the associated study protocol and to ensure that they are indeed the 
main focus of the subsequent report of the completed study.

We would recommend, when an ordered categorical variable such as HADS is the 
QoL outcome measure, that equation (11.6) is utilised directly. This is preferable to 
seeking a transformation that enables the formula for a Normal variable (equation 
11.1) to be used. The major reason is that this retains any treatment benefit on the 
original QoL scale and therefore will be more readily interpreted. Although the asso-
ciated methods of analysis are less familiar, statistical software is available for these 
calculations.

Finally, it should be noted that if time‐to‐event endpoints are to be determined with 
any precision, there must be careful choice of the timing of QoL assessments. This is 
to ensure that for each patient the date when the event occurs can be determined rea-
sonably precisely. Time‐to‐event techniques are unlikely to be useful if the assessment 
intervals are lengthy.

11.15  Further reading

There is extensive literature about sample size estimation, and many books on the sub-
ject. Machin et al. (2008) provide detailed consideration of sample size issues in the 
context of clinical studies and also provide a PC‐based program for the calculations. 
For less common tests, it may be necessary to make bibliographic searches. Computer‐
intensive simulations or ‘bootstrap methods’ are useful alternatives that may be used 
to generate sample size estimates when formulae are unavailable; these are described 
by Walters and Campbell (2005).

Drug regulatory agencies have taken the lead in setting standards in this area, and 
the documents about non‐inferiority testing (European Medicines Agency, 2000 and 
2005a; United States Food and Drug Administration, 2010) and multiplicity issues 
(European Medicines Agency, 2002) make interesting reading. These documents also 
cover other study designs such as equivalence testing which, while in some ways simi-
lar to non‐inferiority testing, raises additional issues not covered in this chapter.
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12
Cross‐sectional analysis

Summary

This chapter describes the types of analysis and graphical methods appropriate to 
the comparison of groups of patients with QoL assessment at a common time point. 
The methods described are thus cross‐sectional in nature. We describe some basic 
ideas for assessing statistical significance when comparing two groups, such as z‐ and 
t‐tests, and the associated confidence intervals (CIs) and the extension of these to 
the comparison of several groups using analysis of variance (ANOVA). These ideas 
are then generalised to enable differences to be adjusted for covariates, such as base-
line patient characteristics (for example age and gender), using regression techniques. 
The relationship between ANOVA and linear regression is illustrated. Modifications to  
the methods for binary and ordered categorical variables are included, as well as  
methods for continuous data that do not have the Normal distribution form. Finally, 
some graphical methods of displaying cross‐sectional data are introduced.

12.1  Types of data

As we have seen, QoL data are usually collected using a self‐assessment instrument con-
taining a series of questions. The answers to some of these questions may be analysed 
directly or be first combined into a number of scales or domains, such as physical, emo-
tional or cognitive, for the subsequent analysis. The variables from these questionnaires 
are of various types: they include binary, categorical, ordered categorical, numerical dis-
crete or, less frequently, continuous variables. The statistical methods required for sum-
marising and comparing groups of patients depend on the type of variable of concern.

Nominal data

Nominal data are data that one can name. They are not measured but simply counted. 
They often consist of ‘either/or’ type observations, for example dead or alive. At the 
end of the study, the proportion or percentage of subjects falling into these two binary 
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categories can be calculated. In the SF‐36, question 4c asks subjects to answer ‘Yes’ or 
‘No’ to: ‘Were [you] limited in the kind of work or other activities?’

However, nominal data may have more than two categories – for example ethnic 
group or marital status – and the percentages falling into these categories can be cal-
culated. The categories for nominal data are regarded as unordered since, for example, 
there is no implication that Chinese, Indian and Malayan ethnicity are ranked in order 
on some underlying scale.

Example from the literature

Scott et al. (2009a), in investigating the impact of cultural differences on PROs, 
explored the impact of language on responses to items on the EORTC QLQ‐C30. 
Since the questionnaire was developed in English and translated into other lan-
guages, English was the reference group. In the absence of any meaningful order-
ing, results for the other languages were presented in alphabetical sequence.

Nominal data with more than two categories are rarely used as PROs, but are more 
frequently encountered for covariates such as marital status, place of treatment, living 
conditions and (for cancer patients) histology.

Ordered categorical or ranked data

In the case of more than two categories, there are many situations when they can 
be ordered in some way. For example, the SF‐36 question 1 asks: ‘In general, 
would you say your health is: Excellent, Very good, Good, Fair, Poor?’ In this case 
there are five ordered categories ranging from ‘Excellent’ to ‘Poor’. The propor-
tion or percentage of subjects falling into these five categories can be calculated, 
and in some situations these categories may be given a corresponding ranking 1, 
2, 3, 4 and 5, which may then be used for analysis purposes. An example is the 
test‐for‐trend as alluded to in Table 12.2. However, although numerical values are 
assigned to each response, one cannot always treat them as though they had a 
strict numerical interpretation, as the magnitude of the differences between, for 
example, Excellent (Rank 1) and Very good (2) may not necessarily be the same as 
between Fair (3) and Poor (4).

The majority of questions on QoL instruments seek responses of the ordered cat-
egorical type. Unless item response theory (IRT) scoring is used, these items are com-
monly described as Likert scales and scored by assigning sequential integers starting 
from either 0 or 1. Other variables, in addition to PROs, may also be scored using ranks.

Numerical discrete/numerical continuous

Numerical discrete data consist of counts; for example, a patient may be asked how 
many times they vomited on a particular day, or the number of pain relief tablets taken. 
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On the other hand, numerical continuous data are measurements that can, in theory 
at least, take any value within a given range. Thus a patient completing the EuroQol 
questionnaire is asked to indicate: ‘Your own health today’ on a 10‐cm vertical scale 
whose ends are defined by ‘Worse imaginable health state’ with value 0 cm and ‘Best 
imaginable health state’ with value 10 cm.

In certain circumstances, and especially if there are many categories, numerically 
discrete data may be regarded as effectively continuous for analytical purposes.

Continuous data: normal and non‐normal distributions

A special case of numerical continuous data is that which has a Normal distribu-
tion – see, for example, Campbell et al. (2007). In this case special statistical 
methods such as the t‐test are available, as we shall describe. Frequently, however, 
QoL data do not have even approximately a Normal distribution. For example, 
many items and scales, especially when applied to healthy subjects or extremely ill 
patients, may result in data with a large number of maximum ceiling or minimum 
floor scores, which is clearly not of a Normal distribution form. Then alternative 
statistical methods, not based upon the assumption of a Normal distribution, must 
be used.

Aggregating continuous data

The usual method of analysing continuous data involves calculating averages or 
means, or possibly mean changes or mean differences. This is the standard approach to 
aggregating continuous data into summary statistics, and is applied to continuous data 
of nearly all sources, from weights and heights through to blood pressures. However, 
as has been stressed in earlier chapters, many regard this as being questionable when 
applied to QoL data because it assumes inherently that the scores are on equal‐interval 
scales. In other words, it assumes that since the mean of two patients both scoring 50 
on a scale from 0 to 100 equals the mean of two patients scoring 25 and 75, these pairs 
of patients have, on average, equivalent QoL.

Clearly, the data should be analysed and reported in a manner that allows for the 
distribution of patient responses. If there is concern that low scores are particularly 
important, overall means may be inadequate to reflect this and, for example, it may 
be appropriate in addition to consider percentages of patients below a threshold 
value. When data follow a Normal distribution, the means, SDs and CIs provide an 
informative way to describe and compare groups of patients, and usually suffice to 
reflect any overall shift in response levels due to treatment differences. However, 
when the distributions are non‐Normal, and especially when the shape of the dis-
tributions is not the same in all treatment groups, care must be taken to describe 
these distributions in detail as the reporting of a simple mean or median may not 
be adequate.
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12.2  Comparing two groups

The essence of statistical analysis is to estimate the value of some feature of the patient 
population, derived from the data that have been collected. This may be the sample 
mean, the sample proportion, the slope of a linear regression relationship, or the dif-
ference between two such quantities calculated from distinct groups. In all these cir-
cumstances, what we observe is regarded as only an estimate of the true or underlying 
population value. The precision associated with each estimate is provided by the cor-
responding standard error (SE).

In very broad terms, the majority of statistical significance tests reduce to compar-
ing the estimated value of the quantity of interest with its SE by use of an expression 
of the form

	 z
SE

Estimate

(Estimate)
.= 	 (12.1)

The value of z so obtained is sometimes called a z‐statistic, and the corresponding 
p‐value can be read from tables of the Normal distribution (Appendix Table T1). Large 
values lead one to reject the relevant null hypothesis with a certain level of statistical 
significance or p‐value. Statistical significance and the null hypothesis are discussed 
in detail in basic statistics books but, in brief, the p‐value is the probability of the data, 
or some more extreme data, arising by chance if the null hypothesis of no difference 
were true.

The associated (95%) CI takes the general form of

	 − × ×SE SEEstimate 1.96 (Estimate) to Estimate + 1.96 (Estimate).	 (12.2)

The general expressions (12.1) and (12.2) will change depending on circumstances, 
and may have to be amended radically in some situations. Precise details are to be 
found in general textbooks of medical statistics, including Campbell et al. (2007) and 
Altman (1991). Altman et al. (2000) focus on CIs in particular.

Binomial proportions

If there are two groups of patients, the proportions responding to, for example, the 
SF‐36 question 4a, relating to the ‘… kind of work or other activities’ can be com-
pared. Thus if there are m and n patients respectively in the two groups, and the corre-
sponding number of subjects responding ‘Yes’ are a and b, the data can be summarised 
as in Table 12.1.

Here the estimate that we are focusing on is a difference in the proportion answering 
‘Yes’ in the two treatment groups. This estimate is

	 d p p
a

m

b

n
,I II= − = − 	 (12.3)
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and the standard error (SE) is

	 SE d
p p

m

p p

n
( )

(1 ) (1 )
.I I II II= − + −
	 (12.4)

The null hypothesis here is that there is truly no difference between the treatments 
being compared, and that therefore we expect d and hence z to be close to 0.

Categorical data

In Table 12.1 there are R = 2 rows and C = 2 columns, giving the G = 4 cells of a 2 × 2 
contingency table. An analysis of such a table can also be conducted by means of a χ2 
test. The general expression is

	
O E

E

( )
,i i

ii

G

Homogeneity
2

2

1

∑χ = −

=

	 (12.5)

where Oi and Ei are the observed and expected number of observations. For the G = 4 cells 
of Table 12.1, the observed values are O1 = a, O2 = b, O3 = c and O4 = d with expected 
values E1 = mp = rm/N, E2 = np = rn/N, E3 = m(1 – p) = ms/N and E4 = n(1 – p) = ns/N.

This test has now moved away from the format described by equation (12.1) but 
gives exactly the same results. Although in common use, a disadvantage of the χ2 
approach is that it does not provide a statistic that describes the magnitude of the effect, 
and so a CI cannot be calculated in any obvious way.

In more technical language, the quantity z2 follows a χ2 distribution with df = 1. In 
general, a χ2 test has df = (R – 1) × (C – 1), where R and C are the numbers of rows 
and columns of the corresponding R × C contingency table. Fisher’s exact test, referred 
to by Temel et al. (2010), is another approach that is appropriate whenever the total 
sample size is small. This makes a slight difference here, especially for the PHQ‐9 
comparison in which only two of the early palliative care patients showed signs of 
major depressive disorder; whereas the χ2 value of 5.41 implies p = 0.02, Fisher’s more 

Table 12.1  Proportion of patients in two treatment groups responding ‘Yes’ to 
SF‐36 question 4a

Treatment group

Category I II Total

‘Yes’ a b r
‘No’ c d s

Total m n N
Proportion ‘Yes’ pI = a/m pII = b/n p = r/N
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precise exact test indicates p = 0.04. This is the value quoted by Temel et al. In broad 
terms, Fisher’s test would be appropriate if any of the four shaded cells of Table 12.1 
has an expected value of less than 5.

For a categorical variable of k (> 2) categories, there will be a 2 × k table. The cor-
responding test is χ2 of the form of equation (12.5), but now there are G = 2k cells, and 
the calculated value is referred to Table T4 with df = k – 1.

This test for homogeneity asks a general question as to whether there are any differ-
ences between the two treatments – it is very non‐specific. However, in the situation 
of an ordered categorical variable as is common with QoL data, a test‐for‐trend with 
df = 1 can supplement the homogeneity χ2 test of equation (12.5). This makes use 
of the category ordering by assigning numerical values to the respective ranks, as in 

Example from the literature

Temel et al. (2010) compared early palliative care with standard oncologic care, 
and carried out a randomised trial in 151 patients with metastatic non‐small‐
cell lung cancer. Mood was assessed using the Hospital Anxiety and Depression 
Scale (HADS) and the Patient Health Questionnaire 9 (PHQ‐9). For the HADS, 
which has two subscales (anxiety and depression) with values ranging from 0, 
indicating no distress, to 21, indicating maximum distress, the authors defined 
a score higher than 7 on either HADS subscale to be clinically significant. The 
PHQ‐9 is a 9‐item measure that evaluates symptoms of major depressive disor-
der, which was diagnosed if a patient reported at least five of the nine symp-
toms of depression on the PHQ‐9, with one of the five symptoms being either 
anhedonia or depressed mood.

The authors reported the percentages of patients with mood symptoms, 
assessed on the basis of each of these three measures, in the group assigned 
to standard treatment and the group assigned to early palliative care, were 
as follows: HADS‐depression, 38% (18 of 47 patients) versus 16% (9 of 57), 
p = 0.01; HADS‐anxiety, 30% (14 of 47 patients) and 25% (14 of 57), respec-
tively; p = 0.66; and PHQ‐9, 17% (8 of 47 patients) versus 4% (2 of 57); 
p = 0.04. The analyses were performed with the use of a two‐sided Fisher’s 
exact test.

Replicating the calculations using equation 12.5, we obtain χ2 values of 
6.7895, 0.3576 and 5.4119. Considering the first of these, use of Table T4 with 
df = 1 and χ2 = 6.79 leads to a p‐value < 0.01. However, since the values in 
Table T4 with df = 1 are in fact equivalent to those of Table T1 squared, a more 
precise p‐value can be obtained. Thus Table T1 with z = √6.79 = 2.61 gives the 
p‐value = 0.0091. Since a small p‐value is taken as an indication that the null 
hypothesis may not hold, we conclude that there is a difference between the 
two groups with respect to depression.
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Example from the literature

Islam et al. (2010) carried out a comparative cross‐sectional study in a cohort of 
adult patients to assess the association between traumatic facial injury and the 
presence of anxiety and depressive disorders. Fifty consecutive adult patients 
attending the maxillofacial outpatient clinic following facial trauma were com-
pared to 50 adult control subjects who were under follow‐up following elective 
oral and maxillofacial surgery. Table 12.2 shows the HADS depression assess-
ments, categorised as normal (no depression), borderline or case (probable 
depression). These three categories are ordered and given the ranks labelled i = 
1, 2 and 3. Thus 10/50 (20.0%) are regarded as cases of depression with facial 
trauma, while the corresponding figure for the control group is 0/50 (0%).

Ignoring first the fact that depression is an ordered categorical variable, direct 
calculation of equation (12.5) is possible. Here, k = 3, O1 = 36, O2 = 4, . . . ,  
and O6 = 0 and the corresponding expected values (in italics in Table 12.2) are 
E1 = 40.0, E2 = 5.0, . . . , and E6 = 5.0. If all these values are substituted in 
equation (12.5), then 11.20Homogeneity

2χ =  with two degrees of freedom. The cor-
responding entry in Table T4 for α = 0.01 is 9.21, and so this result is statisti-
cally significant; the actual p‐value is approximately 0.004. This test indicates 
that there is no evidence of real differences in the proportion of normal, bor-
derline and cases within the two treatment groups.

Table 12.2  HADS depression score for 50 patients with facial trauma and 50 matched 
controls at the first follow‐up after oral and maxillofacial surgery. The table shows observed 
(Obs) and expected frequencies. Because the depression states of no, borderline and prob-
able are increasingly severe grades, a test for trend is suitable

Patient group

Depression* Rank (i)
Facial trauma

Obs (Expected)
Control

Obs (Expected)
Total

N q%

No depression 1 36 (40.0) 44 (40.0) 80 45.0
Borderline 2 4 (5.0) 6 (5.0) 10 40.0
Probable depression 3 10 (5.0) 0 (5.0) 10 100.0

Total 50 50 100

*No depression = score 0–7, borderline = score 8–10, probable >11.
Obs; Number observed.
Source: Adapted from Islam et al., 2010. Reproduced with permission of Elsevier.

Table 12.2, and checks if there is any evidence of increasing or decreasing changes 
over the categories. In terms of Table 12.2, this test checks for trend in the values of 
q, the proportion of patients within each trauma group for each of the three levels of 
HADS depression.
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Following the necessary calculations (see Altman, 1991), 7.90Trend
2χ = . In this case 

direct use of Table T4 with df = 1 gives the p‐value < 0.01 rather than the more precise 
0.005 if one had referred z = √7.90 = 2.81 to Table T1.

One can also check to see whether the assumption that the proportion q changes 
in a linear way with x is a reasonable assumption. This test for departure from trend 
compares Trend

2χ , which will always be the smaller of the two, with Homogeneity
2χ . The dif-

ference between them 11.20 7.90 3.30Homogeneity Trend
2 2χ χ− = − =  has df = k – 2 = 3 – 2 = 

1, and from Table T4 the p‐value < 0.1. More precisely, since df = 1, z = √3.30 = 1.82 
and the p‐value is 0.069.

In summary, albeit not statistically significant, in this dataset there was fairly strong 
evidence of more depression in the trauma group, and this could be explained by a 
linear trend.

Normally distributed data

If the data can reasonably be assumed to have an approximately Normal distribu-
tion, an appropriate summary statistic is the mean. This may be the case for data that 
are continuous, numerically discrete or ordered categorical. However, before analy-
sis, checks should be made to verify that the assumption of a Normal distribution is 
reasonable.

Examples from the literature

Islam et al. (2010) also show a table comparing the mean HADS scores in the 
facial trauma and control groups (Table 12.3). The authors write “The distribu-
tion of data was deemed to be relatively normal overall. A two‐sample t‐test 
was used to evaluate difference in anxiety and depression scores between facial 
trauma and control groups.”

However, assuming the data are indeed Normal, then the distribution should 
be symmetrical and the mean plus‐and‐minus twice the SD would cover most of 
the ‘normal range’ of the data (more precisely, this should be 1.96 × SD for a 
large sample or, in this example, the value from the t‐distribution with N − 1 =  
49 degrees of freedom; and in theory approximately 95% of the observations 
should lie within the normal range, with 2.5% outside the upper and lower lim-
its). Here, the respective lower limits for the normal range of the HADS scores 
are for the control group 3.92 – (2 × 2.8) = – 1.7 and 4.33 – (2 × 3.5) = – 2.7, 
and for the facial trauma patients 5.94 – (2 × 3.1) = – 0.3, and 5.91 – (2 × 4.5) =  
–3.1. These values are well below the lowest possible HADS sores of 0. Thus, 
based on this rough and simple calculation, one might question the assump-
tion of a Normal distribution.
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Assuming the QoL data have an approximately Normal form, the two treatments are 
compared by calculating the difference between the two respective means x xandI II. 
Thus the true difference, δ, is estimated by

	 d x x ,I II= − 	 (12.6)

where

	 SE d
SD

n

SD

n
( ) ,I

I

II

II

2 2

= + 	 (12.7)

and SDI and SDII are the standard deviations within each group. Provided SDI and SDII 
are not too dissimilar, an approximate test of significance for the comparison of two 
means is then provided by equation (12.1), as before. However, a better estimate of 
the SE is obtained by assuming that, although the means may differ, the SDs of each 
group are both estimating a common value, denoted by σ. Therefore the two estimates 
SDI and SDII can first be combined to obtain a pooled estimate of σ. This is given by

	 SD
n SD n SD

n n

( 1) ( 1)

( 1) ( 1)
.Pooled

I I II II

I II

2 2

= − + −
− + −

	 (12.8)

The corresponding SE is then

	 SE d SD
n n

( )
1 1

.Pooled Pooled

I II

= + 	 (12.9)

It is usually prudent to check whether the mean ± 2 × SD has this property 
of corresponding roughly to the normal range. In this example there are pre-
sumably quite a few patients with very low or zero anxiety and depression, 
indicating that the data might be skewed and not of the Normal distribution 
form; this would lead to an inflated SD and to the absurd lower limits that lie 
outside the valid range of HADS scores. Fortunately, as noted below, the t‐test 
is remarkably robust against deviation of the assumptions.

Table 12.3  Comparison of mean HADS scores in 50 patients with facial trauma and 50 
matched controls

Variable

Facial trauma 
group (N = 50)

Mean (SD)

Control group 
(N = 50)

Mean (SD)
Mean difference

(95% CI) p‐Value
Effect 
size

HADS depression 5.94 (3.1) 3.92 (2.8) −2.0 (−3.4 to −0.6) 0.006 0.68
HADS anxiety 5.91 (4.5) 4.33 (3.5) −1.6 (−3.5 to 0.2) 0.07 0.39

Source: Adapted from Islam et al., 2010. Reproduced with permission of Elsevier.
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There will usually be very little difference in the numerical values calculated here from 
those by equation (12.7).

Then the test of significance for the comparison of two means is provided by the t‐test:

	 t
d

SE d( )
.

Pooled

= 	 (12.10)

This is referred to Table T1 of the standard Normal distribution to obtain the corre-
sponding significance level, or p‐value.

In order to ascertain the p‐value in small samples, however, t of equation (12.10) 
is referred to Table T3 of the t‐distribution with df = (nI – 1) + (nII – 1) = (nI + nII) – 2 
rather than Table T1. Similarly, the expression for the 100(1 – α)% CI of equation 
(12.2) replaces z1 /2α−  by t1 /2α−  where the particular value of t to use will depend on 
the degrees of freedom. From Table T1 for α = 0.05 we had z0.975 = 1.96 and this value 
remains fixed whereas, in small sample situations, t0.975 will change with differing df. 
One recommendation is always to use Table T3 in preference to Table T1 since the 
final row of the former contains the entries of Table T1. As a rule if the degrees of 
freedom are less than 60 Table T3 should be used.

Example from the literature

Table 12.3 from Islam et al. (2010) shows the mean differences due to treat-
ment effects, with their 95% CIs and p‐values. Their calculations can readily 
be replicated by using equation 12.8 which provides the pooled SD, followed 
by equations 12.9 and 12.10 to obtain the value of the t‐statistic and hence 
the p‐value. The effect size is given by the mean difference divided by SDPooled.

The authors concluded that there was substantially more depression in 
the facial trauma group, but although the higher levels of anxiety were also 
observed the result was not statistically significant.

Non‐normally distributed data

In many situations, QoL data do not have even approximately the Normal distribution 
form. As noted in Chapter 11on sample size estimation, t‐tests and many other statistical 
tests are remarkably robust – to the extent that some authors suggest that for most PROs 
one can with impunity ignore even quite severe violations of the Normality assumption 
(Norman, 2010). However, as noted by Fayers (2011), ‘robustness’ implicitly refers 
only to α, the type I error; the power of the test can remain severely compromised.

When assessing the distribution of data and the applicability of the Normal distribution, 
the most important aspect is symmetry. If the distribution is asymmetric, and especially 
if there is a long tail to the right‐hand side (‘skewed to the right’), the estimates of the SD 
can become very inflated. This is manifested by unreasonable results when the normal 
range is calculated: for a Normal distribution, the mean value ± (2 × SD) should include 
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approximately 95% of the observed data. In extreme cases either the upper value of the 
normal range will exceed the maximum possible value for the scale or, more frequently, 
the lower value for the range may be negative even when minus values are impossible. In 
such cases, alternative significance tests may be more reliable and more sensitive.

Examples from the literature

The use of the normal range as a rough check for the plausibility of a Normal dis-
tribution was illustrated in the previous example for Table 12.3. However, in that 
example we did not have access to the raw data. The departure from Normal may 
well be small and, as we note, the t‐test has robust properties. A more extreme 
illustration of departure from a Normal distribution is seen in the HADS data from 
Julious et al. (1997), where Table 12.4 has 22 categories that are formed from 
the summed responses of seven items on the HADS depression scale. The data are 
numerically discrete, with a far from Normal distribution form. Consequently, the 
median rather than the mean provides a better summary, and ‘non‐parametric’ sta-
tistical tests such as the Wilcoxon or Mann–Whitney test may be more appropriate.

Table 12.4  Frequency of responses on the HADS for depression

Category Depression score Number of patients

Normal 0 4
1 16
2 12
3 13
4 12
5 10
6 19
7 13

Borderline 8 11
9 9

10 4

Case 11 5
12 11
13 4
14 2
15 3
16 4
17 0
18 0
19 1
20 0
21 1

Total 154

Source: Julious et al., 1997, Table 2. Reproduced with permission of Springer Science and Business Media.
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In situations where the data are clearly non‐Normal the usual procedure is to replace 
individual data values, which are first ordered or ranked from smallest to largest, by 
the corresponding rank. Thus each value now has one of the values 1 to N, where N is 
the total number of observations. If there are two groups of exactly equal size, N/2, and 
the null hypothesis of no difference between the groups is valid, the sums of the sets 
of ranks for each group separately would be approximately equal. Otherwise, the sums 
would differ. This test is termed the Mann–Whitney test and is often denoted by U. Full 
details are provided by Altman (1991).

In contrast, the test‐for‐trend of the Table 12.2 data from Islam et al. (2010) com-
pares the mean values of the variable x, which can take only the values 1, 2 and 3, in 
the two treatment groups. Here:

x

x

(36 1) (4 2) (10 3)

50
1.48 and

(44 1) (6 2) (0 3)

50
1.12,

Trauma

Control

= × + × + × =

= × + × + × =

where the smaller mean from the control group indicates lower depression levels in 
this group. Note that the median of each group is 1, demonstrating that here the medi-
ans provide too coarse a summary to distinguish the two groups.

Although the standard method for comparing two means is the two‐sample z‐ or 
t‐test, this is strictly only appropriate if the variable (here x, the rank) has an approxi-
mately Normal distribution. This is clearly not the case here. As a consequence, the 
Mann–Whitney distribution free test may be preferable for these categorical responses.

Example from the literature

Glaser et al. (1997) compare the school behaviour and health status of 27 children 
after treatment for central nervous system tumours with school‐age controls using, 
amongst others, teacher assessment by the Health Utilities Index (Mark III).

The authors used the Mann–Whitney U‐test and state that the children “were 
perceived to have impaired emotion (z = 2.64, p = 0.01).” In their report they 
have used the notation z in place of U, but the latter would usually be pref-
erable as it is then clear exactly which test procedure has been used in the 
calculation.

Morton and Dobson (1990) show how the differences in the response patterns can be 
summarised using the average ranks R RandI II  for groups I and II. Thus

	
R R

N

( )
,I IIθ = −
	 (12.11)

where N  is the average number of observations per group.
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One possible approach if data do not have a Normal distribution is to use a transfor-
mation, for example using the logarithm of the data for analysis rather than the actual 
data. However, as we have pointed out, this may complicate the interpretation of the 
results. Bland and Altman (1996) provide further details.

Computer‐intensive bootstrap methods provide a general approach to estimat-
ing confidence intervals when there is uncertainty about the distribution of the data  
(Altman et al., 2000). An increasing number of statistical packages offer bootstrap 
estimation. The principle is that a large number of repeated samples with replacement 
are taken from the original dataset, enabling the sampling variability to be reflected in 
the calculation of the confidence limits.

Example

We illustrate the calculation of θ using the data of Table 12.2. All observations 
from both groups of 50 are first numbered from 1 to 100, so that observations 
in category x = 1 have the numbers from 1 to (36 + 44 =) 80, those in category 
x = 2 from 81 to 90 and those in category x = 3 from 91 to 100 (Table 12.5). 
The median rank for category 1 is the mean of the smallest and largest numbers 
for the category, which is 40.5. Similarly, the median rank for category 2 is 85.5 
and for category 3 is 95.5.

Then, making use of Table 12.2, the rank total for the trauma group is (36 × 
40.5) + (4 × 85.5) + (10 × 95.5) = 2755.0 and its average is 2755.0/50 = 55.1. 
The rank total for the control group is (44 × 40.5) + (6 × 85.5) + (0 × 95.5) = 
2295.0 and its average is 2295.0/50 = 45.91. The average number of subjects in 
the groups is (50 + 50)/2 = 50.0. Therefore using equation (12.11), θ = (55.1 –  
45.9)/50.0 = 0.184.

This estimator is a measure of the difference between the two groups. If 
all the observations in the control are larger than any in the trauma group, 
θ = –1; conversely, if all of the trauma group observations are larger than 
the control group observations, θ = +1; and if they have similar total rank-
ings, θ = 0.

Table 12.5  Ranked observations of HADS depression from the facial trauma study of  
Table 12.2, deriving a median for each of the three categories

Category Ranked observation number Category median rank

1 (No depression) 1–80 40.5
2 (Borderline) 81–90 85.5
3 (Probable depression) 91–100 95.5
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Time‐to‐event

We will see in Chapter 13 that, in certain circumstances, it may be appropriate to 
summarise longitudinal QoL data such that the repeated values from each subject are 
reduced to a single measure, such as the area under the curve (AUC). Once sum-
marised in this manner, the analysis then proceeds in a cross‐sectional manner. An 
alternative approach that also converts longitudinal data to a single summary for each 
patient is time‐to‐event analysis. Examples are the time until deterioration in health, or 
the time until improvement or relief; in these cases the ‘event’ is the deterioration or 
the attainment of relief. Sometimes the event can be easily defined, but care must be 
taken when, for example, an endpoint is time until pain relief and some patients may 
report a brief period of no pain followed by worse pain: should we use time until, first 
reported relief, no matter how brief that may be? Clear definitions should be indicated 
in the study protocol.

Often, time‐to‐event data do not have a Normal distribution and are much skewed, 
and so the methods described in this chapter are not immediately applicable. Although 
a logarithmic transformation of the data may improve the situation, it does not provide 
the solution because time‐to‐event studies may have censored observations: censor-
ing occurs when patients discontinue providing information after a certain time. This 
may happen for various reasons, including patient withdrawal and patient death. Thus 
time‐to‐event studies generate times (often termed survival times since the statistical 
techniques were developed in studies measuring times to death), some of which are 
censored. It is beyond the scope of this text to describe the associated statistical tech-
niques for summarising such data, but they can be found in Machin et al. (2006).

Example from the literature

Cicardi et al. (2010) describe two trials assessing the use of a bradykinin‐
receptor antagonist in hereditary angiodema. Based on preliminary investiga-
tion, one of the three main symptoms (cutaneous swelling, cutaneous pain, or 
abdominal pain) was defined in each patient as the index symptom. The pri-
mary end point was the median time to clinically significant relief of the index 
symptom, where clinically significant symptom relief was defined as a decrease 
in the score on a visual‐analogue scale (VAS) of at least 20–30 mm, depending 
on the initial symptom severity. Therefore, the decrease in severity necessary 
to achieve the primary end point was at least 30% (i.e. 30‐mm decrease from 
a baseline score of 100 mm). This decrease had to have been sustained for 
three consecutive measurements on the VAS, with the first measurement being 
the time point at which clinically significant relief was achieved. Groups were 
compared using the log‐rank test. The antagonist made an appreciable and sta-
tistically significant reduction in the median time until pain relief, particularly 
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Cumulative distribution functions

The results from time‐to‐event analyses can be summarised in a few numbers, as in the 
example of the angiodema trial above, where the medians are given. Frequently such 
data is also illustrated by survival curves, which are appropriate for both censored and 
(as here) uncensored data. The paper by Han and Kim (2010), with censored data, did 
display survival curves. These show the entire profile of the results, supplementing the 
summary values provided in the text.

A similar approach can be used for other data, showing the cumulative distribution 
functions of the responses for groups being compared. This has the advantage that it 
avoids any suspicion that the authors might have selected a favourable threshold for 
judging patient changes. It is a potentially preferable method to depict the effect of 
treatment across the entire study population by showing all magnitudes of change and 
the proportion of individuals within a trial achieving each level.

in the second trial where median time to relief was two hours with antagonist 
versus 12 hours on the other arm (p < 0.001).

In this study, pain relief was rapid and within hours. In other settings, such 
as the treatment of trigeminal neuralgia, we may be concerned with pain relief 
lasting several years. Then, some patients may die and there will be censoring 
due to death. In particular, if the death rates differ in the randomised groups, 
the comparison could become biased. A solution is to define the endpoint not 
simply as duration of pain relief, but ‘pain‐free survival’. Han and Kim (2010) 
used this approach in an observational study when assessing the role of alcohol 
nerve blocks. Pain recurrence was defined as the return of any pain, regardless 
of whether it was controlled by medication or required another procedure. ‘Sur-
vival curves’ were constructed for the censored pain‐free survival observations, 
and the log‐rank test was used to compare these curves. The probabilities of 
remaining pain free at one, two, three and seven years after a successful alco-
hol block were 90.4, 69.0, 53.5 and 33.0%, respectively.

Example from the literature

Figure 12.1 is an example provided by Wyrwich et al. (2013), and shows sepa-
rate curves for the two treatment groups and the placebo in a trial of treatment 
for Alzheimer’s disease. The Alzheimer’s Disease Assessment Scale‐Cognitive 
subscale (ADAS‐Cog) was used as the outcome measure. The horizontal axis 
shows the change in ADAS‐Cog score from baseline, and the vertical axis shows 
the cumulative percentage of patients achieving that level of change; a nega-
tive change indicates improvement. Although the frequently used thresholds 
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of 0, 4 and 7 change reductions are tabulated and marked, the advantage of 
this figure is that percentages of patients can be viewed over the full range of 
possible changes.

12.3  Adjusting for covariates

Normally distributed data

In most circumstances the QoL measure of primary interest will be affected by charac-
teristics of the subjects under study. In a clinical trial, these could include the treatment 
under study and the age of the patient. We can relate the value of the QoL observed to 
one of these variables (e.g. age) by the following linear regression model:

	 AgeQoL= ,Age0β β+ 	 (12.12)

where the constants β0 and βAge are termed the regression coefficients. In particular, 
βAge is the slope of the regression line that relates QoL to age.

If bAge, the estimate of βAge that is obtained by fitting this model, is close to 0, we 
conclude that QoL does not change with age. The mean QoL then provides an estimate 
b0 of β0.
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Figure 12.1  Cumulative distribution function of responses for Aricept® 5 and 10 mg doses 
compared to placebo. Important change thresholds considered for ADAS‐cog score decreases 
over 24 weeks are 7, 4 and 0 points. Source: Reproduced from ARICEPT® Oral Solution (Do-
nepezil Hydrochloride) [approval label, Figure 2]. Available at: http://www.accessdata.fda.
gov/drugsatfda_docs/label/2004/21719lbl.pdf.

http://www.accessdata.fda.gov/drugsatfda_docs/label/2004/21719lbl.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/label/2004/21719lbl.pdf
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The analysis for comparing the means of two treatments by the z‐ or t‐tests can also 
be formulated using a linear regression model of the form

	 vQoL= + ,0 Treatmentβ β 	 (12.13)

where v is coded 0 for the first treatment group and 1 for the second. Then if v = 0 in this 
equation, QoL = β0, and this can be thought of as the true, or population, mean value of 
the QoL score for the first treatment group. Similarly, when v = 1, QoL = β0 + βTreatment 
represents the population value of the QoL score for the second treatment group. Hence 
the difference between the groups is (β0 + βTreatment) – β0 = βTreatment. This was estimated 

Example from the literature

Greimel et al. (1997) use a linear regression model to relate activities‐of‐daily‐
living (ADL) scores to various characteristics of 227 cancer patients who had 
been discharged from hospital. In particular, they regressed ADL on patient age 
and estimated the slope of the regression line as bAge = −0.006. They do not 
give the estimate of β0.

The negative value of bAge here suggests, as one might anticipate, that the 
ADL scores decline slowly with age. The decline over the age range in the study 
of 21 to 88 years is estimated by –0.006 × (88 – 21) = –0.402. This is less than 
half a point on the ADL scale.

However, such a linear regression model implies that the rate of decline is 
constant over the more than 60‐year age span, which is very unlikely so that 
the model of equation (12.12) would be unsuitable to describe these data. A 
sensible precaution, before embarking on a regression analysis in this and any 
situation, is to make a scatter plot of QoL against the variable in question. In 
this example, we would examine how ADL changes with age to verify whether 
the relationship is, approximately at least, linear.

Example

The data of Islam et al. (2010) in Table 12.2 can also be used to estimate the 
slope of the relationship. This gives b = 0.2195 with SE(b) = 0.0757. From 
these, z = b/SE(b) = 0.2195/0.0757 = 2.90 and, using Table T1, the p‐value is 
0.004 which is a similar result to the Trend

2χ  test.
The positive slope, b = 0.1010, indicates that the relative proportion of patients 

with trauma tends to increase as the category changes from normal through bor-
derline to case. This trend suggests that controls have less depression. The cor-
responding 95% CI for the slope using equation (12.2) is 0.069–0.370.
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by d of equation (12.6). The equivalent null hypothesis of no difference between treat-
ments can be expressed as βTreatment = 0. This leads to z = bTreatment/SE(bTreatment) where 
bTreatment is the corresponding estimate derived from the data.

The test‐for‐trend described earlier is equivalent to fitting the linear regression line 
of QoL on the variable v.

Suppose a study were investigating the relative merits of two types of intervention 
on QoL and the outcome measure was ADL. Since it is known that ADL declines with 
increasing age, one might ask whether a difference in mean ADL observed between the 
two intervention groups at the end of the study is explained by a different spectrum of 
subject ages within each intervention group. This can be assessed by combining equa-
tions (12.12) and (12.13) into the multiple regression equation

	 v AgeADL = .0 Treatment Ageβ β β+ + 	 (12.14)

This equation can then be fitted to the data using standard computer packages. The 
process is best done in two stages.

First we can fit the model ADL = β0 + βTreatmentv, to obtain estimates of β0 and 
βTreatment. Then we fit the full model, equation (12.14), to obtain new estimates of 
β0 and βTreatment together with an estimate of βAge. If the second value corresponding 
to βTreatment remains effectively unchanged from the first obtained, then, despite any 
imbalance of age within the two groups, the estimate of the difference between treat-
ments remains unaffected. However, if the value corresponding to βTreatment is markedly 
different, the imbalance of age within the two groups does affect the estimated differ-
ence between the interventions. This adjusted‐for‐age estimate is then a better measure 
of the treatment difference.

If other variables, such as age and gender, also influence QoL, the regression equa-
tion (12.14) can be extended to include them:

	 v v vQoL .u u0 1 1 2 2β β β β= + + +…+ 	 (12.15)

These regression models can all be fitted using standard statistical packages. A careful 
description of multiple regression is given by Tai and Machin (2014).

In randomised controlled trials, through the randomisation process, variables such 
as age and gender are usually fairly balanced between the treatment groups. It is often 
more critical to adjust for these factors in non‐randomised studies.

Example from the literature

Al‐Ruthia et al. (2015) evaluated the impact of adjuvant atypical antipsychotics 
(AAPs) on HRQoL among patients who had been using of antidepressants for at 
least a year. Patients were classified into users of antidepressants plus adjunctive 
AAPs (N = 306) and users of antidepressants only (N = 3,332). Multivariate linear 
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regression analyses were conducted to examine the association between the utili-
sation of AAPs and HRQoL measured using the SF‐12v2 physical and mental sum-
maries. Al‐Ruthia et al. suggested that the following factors were likely to impact 
on HRQoL, and showed that their frequency distributions differed across the AAP 
users and non‐users: age, sex, race, annual total personal income, marital status, 
employment status, insurance status, years of education, Charlson Comorbidity 
Index (CCI) score after being dichotomised into (0 and ≥ 1), number of prescrip-
tion medications associated with the depression diagnosis, patients’ satisfaction 
with their health care quality and a measure of depression, the Patient Health 
Questionnaire‐2 (PHQ‐2 scores being dichotomised into ≥ 3 versus < 3). Therefore 
they used multiple linear regression to control for these 12 covariates.

Table 12.6 shows the regression‐adjusted comparisons of AAPs versus no 
AAPs, for the SF‐122v2 Mental Component Summary (MCS) scores. AAP utilisa-
tion was associated with lower MCS scores (b = –1.55, 95% CI = –3.0247 to 
–0.0827, p = 0.0385), suggesting that use of adjunctive AAPs is associated 
with a worse mental quality of life than use of antidepressants alone. However, 
we observe that the result is not very highly significant (p = 0.038) and these 
authors made no allowance for multiple testing (mental and physical compo-
nents were reported, each with 12 covariates).

Table 12.6  Multiple regression analysis of results from the Mental Component Summary 
scores of the SF‐12v2, in patients taking antidepressants with or without adjuvant atypical 
antipsychotics. The main comparison is adjusted to allow for twelve covariates

Variable (reference group) b‐Coefficient 95% CI p‐value

Main comparison:
 A typical antipsychotics (AAPs) −1.55 −3.02 to −0.08 0.038*
Covariates:
Race (non‐Hispanic White) −0.0539 −1.270 to 1.162 0.93
Marital status (married) 0.895 0.187 to 1.603 0.014*
Educational status (education years) 0.0637 −0.058 to 0.185 0.30
Age (years) 0.110 0.0839 to 0.1358 < 0.0001**
Sex (female) 0.0749 −0.643 to 0.792 0.84
Employment status (employed) 1.084 0.186 to 1.981 0.018*
Income (total personal income) 0.000012 −0.000001 to 0.000024 0.064
Insurance status (uninsured) −0.558 −1.964 to 0.849 0.44
Quality of Health Care Rating  
(high rating of health care ≥7)

0.514 −0.486 to 1.514 0.31

Patient Health Questionnaire‐2 
(PHQ2‐score ≥3)

−16.12 −16.98 to −15.27 < 0.0001**

Charlson Comorbidity Index (CCI ≥1) 0.327 −0.363 to 1.017 0.35
Prescription medications associated 
with depression

−0.282 −0.481 to −0.083 0.0057**

*p <0.05; **p <0.01.
Source: Adapted from Al‐Ruthia et al., 2015. Reproduced with permission of Elsevier.
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Non‐normally distributed data

If the data have a binary form, for example if the responses are ‘Yes’ or ‘No’, the 
regression methods described require modification. Previously we assumed that the 
QoL scale was a categorical variable that for practical purposes has a Normal dis-
tribution form. This is clearly not the case if the variable is binary. For technical 
reasons, because the proportion, denoted p, has a restricted range from 0 to 1 and not 
from –∞ to +∞ as is the case for a variable with a Normal distribution, log[p/(1 – p)] 
is used on the left‐hand side of the corresponding regression model such as equation 
(12.12). The right‐hand side remains unchanged. The expression log[p/(1 – p)] is 
usually abbreviated as logit(p) – hence the terms logit transformation and logistic 
regression.

The logit transformation of p leads to summarising the relative merits of two treat-
ments by the odds ratio (OR) rather than by the difference between two proportions. 
Thus from Table 12.1, where pI is the probability of a response ‘Yes’ with treatment I, 
then (1 – pI) is the probability of responding ‘No’. This gives the odds of the responses 
as pI to (1 – pI), or pI/(1 – pI). For example, if pI = 0.5 then the odds are 1 since the ‘Yes’ 
and ‘No’ responses are equally likely. Similarly, for treatment II, the corresponding 
odds are pII/(1 – pII). The ratio of these two odds is termed the OR, that is

	 OR
p p

p p

/ (1 )

/ (1 )
.II II

I I

= −
− 	 (12.16)

The value under the null hypothesis of no treatment difference corresponds to OR = 1 
since the odds will then be the same in both treatment groups. It is estimated, using the 
notation of Table 12.1, by OR = (a/c)/(b/d) = ad/bc.

Example from the literature

In randomised clinical trials, if properly conducted, the randomisation process 
should ensure that all pre‐treatment characteristics are more‐or‐less balanced 
out and any differences can be ascribed to chance alone. It can still be impor-
tant to adjust for prognostic factors, and especially so for any factors used to 
stratify the randomisation. However, the word‐count restrictions of many jour-
nals can make it difficult to present full details of the analyses and often only 
scant summary details are provided.

For example, Knols et al. (2011) report an RCT the effects of an outpatient 
physical exercise program on the HRQoL of hematopoietic stem‐cell transplanta-
tion recipients. The authors comment that “The covariates used in the models 
are indicated in the footnotes of Tables 4–6”, and a typical footnote is “The 
covariates used in the model for knee extension, grip strength, walking speed 
and 6‐MWT were age, gender, type of SCT and body mass index.”
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If we are investigating differences between two treatments in this context, an equa-
tion of the form (12.13) is replaced by the logistic regression equation

	 p vlogit( ) .0 Treatmentβ β= + 	 (12.17)

Again, if the treatment group is I, v = 0 and logit (p) = β0, whereas if the treatment 
group is II, v = 1 and logit (p) = β0 + βTreatment. The difference between these two is 
(β0 + βTreatment) – β0 = βTreatment. From this the OR is estimated by OR = exp(βTreatment). 
As indicated earlier, the null hypothesis of no treatment difference is expressed through 
βTreatment = 0, since ORNull = e0 = 1.

Example

Suppose the principal interest in the trial described by Islam et al. (2010) is 
the proportion of patients without depression as indicated by HADS in the two 
groups, then Table 12.2 can be reduced to Table 12.7.

Using the z‐test for the difference in proportions with no depression levels, 
here 0.72 for trauma and 0.88 for control, gives z = 2.041 (p = 0.041). The 
estimate of OR = (36 × 6)/(44 × 14) = 0.3506.

The corresponding logistic regression model fitted to these data using STATA 
(StataCorp, 2013) is logit(p) = 0.1035 − 1.0480v, so that bTreatment = –1.0480 
and OR = exp(–1.0480) = 0.3506, which is the same as the value we calculated 
before.

For this example, there is no advantage to the more complex logistic 
approach. However, in addition to the HADS score itself and the treatment 
received, patient‐specific variables such as age, gender, severity of trauma and 
so on are routinely recorded in such studies. Without the use of logistic regres-
sion, their influence on the observed treatment differences would be difficult 
to assess.

Table 12.7  HADS depression score for 50 patients with facial trauma and 50 
matched controls at the first follow‐up after oral and maxillofacial surgery, de-
rived by combining the borderline and probable depression categories of Table 
12.2. The table shows observed frequencies

Patient group

Depression* Facial trauma Control Total

No depression 36 (72.0%) 44 (88.0%) 80
Borderline/case 14   6 20

Total 50 50 100

*No depression = score 0–7. Borderline or probable case = score >8.
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Choosing covariates

Factors that are strongly prognostic of outcome should normally be considered as 
potential covariates in a clinical trial, irrespective of whether the means of these 
factors are statistically different in the treatment arms. Thus the baseline (i.e. at 
randomisation) QoL assessment is frequently a candidate – as discussed in the next 
section. It is also recommended that factors used for stratifying the randomisation 
or minimising the allocation imbalance should be used as covariates (Kahan and 
Morris, 2012).

12.4  Changes from baseline

Many clinical trial protocols specify a baseline (time 0) QoL assessment, Q0, followed 
by at least one further assessment at a fixed time point following treatment (time 1) to 
obtain Q1. Pre‐treatment QoL may influence later values, and this study design allows 
an estimation of both the treatment effect upon Q1 and the association of Q1 with Q0. 
By analogy with equation (12.14), the regression model to describe this situation for 
two treatment groups is

	 Q v Q .1 0 Treatment QoL 0β β β= + + 	 (12.18)

In this model, the effect of treatment on QoL can be assessed while adjusting for Q0. 
This approach is also equivalent to analysis of covariance, with the baseline assess-
ment being regarded as an explanatory covariate.

An alternative method of analysis is to first calculate for each subject the change 
score, DQoL = Q1 – Q0. Then the following regression equation could be fitted:

	 D v.TreatmentQoL 0β β= + 	 (12.19)

This will not give the same values for β0 and βTreatment as equation (12.18) unless 
βQoL = 1 exactly, but the p‐values are often similar. Frequently the baseline value Q0 is 
added to model (12.19) as a covariate, in which case the p‐values will be identical to 
those of equation (12.18) and the choice of method comes down to a preference in the 
style of reporting (European Medicines Agency, 2003).

The use of change scores provides a simple and intuitive analysis – although a num-
ber of cautions should be noted if Q0 is not added as a covariate. First of all, it is not 
always advisable to make use of baseline measurements. Frequently, Q1 and Q0 will 
have similar variances, and both these variances will contribute to the overall variance 
of DQoL. It can be shown that if the correlation of Q1 with Q0 is less than 0.5 (partial 
correlation, after allowing for other factors), DQoL will have larger variance, and thus 
also larger SD, than Q1. In effect, subtracting the baseline measurement has added 
noise.
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In a clinical trial, the baseline characteristics will tend to be balanced across the 
treatment groups, the principal reason for adjusting for Q0 is to reduce the unexplained 
variance, which implies that Q0 is only useful if its correlation with Q1 is appreciably 
greater than 0.5.

Another problem with change scores is that many QoL scales consist of discrete 
categorical data with unknown scale intervals. The validity of change scores makes 
a strong assumption of linearity. For example, on a typical short scale, that a change 
from, say, a score of 0 (representing ‘not at all’) to a score of 2 (‘a little’) is equivalent 
to a change from 2 (‘a little’) to 3 (‘quite a bit’). Arguably, change scores should only 
be used for categorical data if IRT or similar techniques have been used to ensure 
linearity.

An analysis of covariance (ANCOVA) models the actual values of QoL at follow‐
up, while an analysis of DQoL models the change from baseline. Clinicians instinctively 
tend to prefer the second approach because of its apparent simplicity and because it 
reflects more directly the changes in each patient. Whichever approach is used, for 
group comparisons, statisticians recommend regarding the baseline measurement as 
a covariate because (i) the regression coefficient βTreatment estimates the difference 
between groups, and (ii) the value of βQoL is allowed to vary from 1 and is chosen so 
as to minimize the unexplained variance.

12.5  Analysis of variance

We have described the test for the comparison of two means in two equivalent ways: 
the z‐ or t‐test (depending on the sample size), and a regression analysis approach. A 
third equivalent way is by means of analysis of variance (ANOVA). Thus calculations 
summarised by equations (12.9) and (12.10) can be cast into an ANOVA format as in 
Table 12.8. Here the variance, V, is merely the SD squared.

In this table, g = 2 is the number of treatment groups, TI is the sum of all the nI 
observations of treatment I, TII is the sum of all the nII observations of treatment II 
and T = TI + TII is the sum of all the N = nI + nII observations. It should also be noted 
that VWithin is the square of SDPooled used in equation (12.8), while VBetween is propor-
tional to d2. The final column gives the value of Fisher’s F‐test; this requires two sets 
of degrees of freedom, one for the Between groups with dfBetween = g – 1, and one 
for Within groups with dfWithin = N – g. This is often expressed using the notation 
F(dfBetween, dfWithin). It can be shown in this situation when we are comparing two 
groups that F = t2, the square of equation (12.10), so that the two procedures lead to 
exactly the same test.

The ANOVA of Table 12.8 refers only to a single QoL observation per patient, with 
no repeats. It can readily be extended to g > 2 groups. For example, if there are g = 3 
groups, then an extra term T n/III III

2
 will be added to SBetween, and nIII – 1 added to the 

degrees of freedom for SWithin. However, in this case F is not simply t2 and Table T5 is 
required to obtain the corresponding p‐value.
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Doubtless the results do indicate such a conclusion, but ANOVA is not the best 
approach for an analysis of these data. ANOVA is more appropriate when compar-
ing three or more treatment groups, or perhaps several categorical groups, rather than 
groups defined arbitrarily from what is a continuous variable such as age. Thus ANOVA 
is may be used when comparing more than two treatment arms in a clinical trial.

Example from the literature

Greimel et al. (1997) used ANOVA to compare comorbidity (total score) between 
three age groups among cancer patients who had been discharged. Table 12.9 
gives the mean comorbidity score for each age group. The resulting significance 
test, calculated using ANOVA, gave F = 13.7.

Here N = 227 patients and there are g = 3 groups; thus dfBetween = g – 1 = 2 
and dfWithin = N – g = 224. This latter figure is large and one therefore uses the 
entries corresponding to df = ∞ in Table T5. Thus, with dfBetween = 2 and dfWithin 
= ∞ in Table T5, the critical value for α = 0.05 is F(2, ∞) = 3.00; for α = 0.01 
it is F(2, ∞) = 4.61. The observed F is considerably larger than this, giving a 
p‐value < 0.01 (the actual value is p = 0.0001)

The authors conclude: “The results showed that patients older than 65 years 
of age have a significantly higher level of comorbidity than patients 65 years 
of age and younger …”

Table 12.9  Age differences in co‐morbidity in patients who have been discharged following 
treatment for cancer

Age (years)

Total comorbidity score <45 45–65 >65 F p‐value

N 37 106 84
Mean 3.0 4.3 5.2 13.7 < 0.0001
SD 0.9 2.2 2.1

Source: Greimel et al., 1997, Table 3. Reprinted with permission of Macmillan Publishers Ltd on behalf 
of Cancer Research UK.

Example from the literature

Sharp et al. (2010) randomised 183 women with early breast cancer to three 
groups: self‐initiated support (SIS), SIS plus reflexology, or SIS plus scalp mas-
sage. The primary endpoint was the Trial Outcome Index (TOI) of the Func-
tional Assessment of Cancer Therapy (FACT‐B) – breast cancer version, at 18 
weeks post surgery. ANOVA was used to compare the three groups, and paired 
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Grouping age as in Table 12.9 implies that there is a jump in comorbidity score at 
each age group boundary, whereas there is if anything more likely to be a gradual and 
smooth change with age. A scatter plot of comorbidity against age would reveal the 
shape of this change. Since age is continuous, a regression approach to the analysis 
would be more statistically efficient. ANOVA is more suitable for factors such as mari-
tal status, which have no natural ranking of categories.

Example from the literature

Smets et al. (1998, Table 3) investigated the influence of gender and educa-
tional level on levels of mental fatigue in 154 disease‐free cancer patients 
treated with radiotherapy. The F‐tests following ANOVA are F(1, 150) = 8.08 for 
gender differences and F(3,148) = 2.11 for educational level.

From Table T5, the corresponding p‐values are < 0.01 and approximately 0.1, 
suggesting a gender difference in mental fatigue score, but not one by educa-
tional level.

When comparing two groups, we can use either an ANOVA or a regression approach 
to the analysis. However, in the case of more than two treatment groups ANOVA is eas-
ily extended, whereas some care has to be taken with equation (12.13). Thus we cannot 
merely regard treatment as variable v in equation (12.13) and give it values of, say, 0, 1 and 
2, as this would imply that the three treatments (I, II and III) were of an ordered nature – 
although this is precisely what we should do if they were. Instead, when comparing three 
(unordered) treatments, we have to express the regression model in the following way:

	 v vQoL .0 1 1 2 2β γ γ= + + 	 (12.20)

The variables v1 and v2 are termed dummy variables. In this model, v1 = 1 if the 
treatment group is I but v1 = 0 if the treatment group is not I, and v2 = 1 if the treatment 

comparisons between groups were only carried out when the three‐group com-
parison achieved the critical p value of 0.05.

The TOI scores differed significantly across the three groups (p = 0.02). In the 
ensuing paired comparisons, massage patients had significantly higher scores on 
the TOI (indicating a better quality of life) than those receiving SIS (p = 0.03), 
but the differences between reflexology and SIS, and massage and reflexology, 
were not statistically significant. However, the authors noted that the mean dif-
ference between massage and self‐initiated support was 4.01 points, which falls 
short of the suggested minimally important difference of between 5 and 6.
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group is II but v2 = 0 if the treatment group is not II. In this way, the three treatment 
groups correspond to different pairs of values of (v1, v2) in the following way. The pair 
(v1 = 1, v2 = 0) defines treatment I patients. Similarly the pair (v1 = 0, v2 = 1) defines 
treatment II patients. Finally, the pair (v1 = 0, v2 = 0) defines treatment III since the 
values of v indicate neither a treatment I patient nor a treatment II patient.

In this model there are therefore two regression coefficients, γ1 and γ2, to be esti-
mated for the treatment effects. The null hypothesis of no treatment differences corre-
sponds to testing whether the regression coefficients are simultaneously zero, that is, if 
γ1 = γ2 = 0. Extending this approach, if there are g treatment groups then g – 1 dummy 
variables will need to be created.

The advantage of the regression model approach of equation (12.20) over the 
ANOVA of Table 12.8 is that covariates can be more readily added to the model so that 
the final treatment comparisons can be adjusted for the (possible) influence of these 
variables. In some studies ANOVA can also be adjusted for covariates (ANCOVA), but 
this is not as flexible as the regression approach. Therefore we recommend the use of 
regression techniques for QoL analysis.

Checking for Normality

When analysing data from PROs, it is often advantageous to be able to assume that 
they have an approximately Normal distribution shape. We have suggested that com-
paring the magnitudes of the mean and SD may lead one to suspect a rather skew 
distribution, which can be confirmed by a histogram of the data. For small samples, it 
may be difficult to judge the degree of non‐Normality of the data, and Altman (1991) 
describes how a Normal plot aids this process. When data are clearly not from a Nor-
mal distribution, statistical procedures based on the ranks are available.

Non‐Normally distributed data

Although the ANOVA described earlier relates to a PRO that can be assumed to have a Nor-
mal distribution form, the method of analysis can be extended to continuous data that are 
skewed. In this case, the individual values of the PRO are replaced by their ranked values. 
For example, if five patients recorded pain on a visual analogue scale (VAS) as 2.2, 2.3, 2.4, 
3.6 and 7.8 cm, these indicate a rather skew distribution. These are then replaced by their 
ranks 1, 2, 3, 4 and 5 respectively. The ANOVA, termed Kruskal–Wallis, then proceeds as 
we have previously described but now utilising the rank values rather than the individual 
observed values. It should be emphasised that the ranking is made by first combining all the 
N observations from the three or more (treatment) groups. The ranks are then summed for 
each of the g different groups separately; the corresponding test statistic is
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where there are ni observations and Ri  is the mean of the ranks in the ith group. If the 
null hypothesis is true, the test statistic KW follows the χ2 distribution of Table T4 with 
df = (g – 1).

This method can also be applied to ordered categorical data, but difficulties arise if 
there are (and there usually will be) many tied observations – as is the case with HADS 
depression scores of Table 12.4.

12.6  Analysis of variance models

Relationship with regression

In equation (12.12) we described the linear regression equation of QoL on age, and 
we repeat this equation here with one adjustment; we add the so‐called error term, ε:

	 Q Age .Age0β β ε= + + 	 (12.22)

With this equation we are stating that a particular observed value of QoL for a subject 
with a certain age will be equal to [β0 + βAgeAge]. However, at the same time, we rec-
ognize that there may be other factors associated with QoL, which we are not consider-
ing here. For example, there may be additional variation owing to differences between 
subjects, such as gender, ethnic origin or stage of disease, as well as more random dif-
ferences for which there is no obvious explanation. As a consequence, the model will 
not be perfect and so there may be (and usually will be) some departure in the observed 
QoL value from that predicted by the model were we to know β0 and βAge precisely. 
This departure is termed the error component in the model that we have denoted by ε 
in equation (12.22). Once the model is fitted to the data, it can be estimated as:

	 e Q b b Age .Age0= − +  	 (12.23)

Here b0 and bAge again represent the estimates of β0 and βAge respectively; and e, the 
estimate of ε, is often termed the residual (from the fitted model). The true value ε 
may be positive, zero or negative. It is usually taken to be random and to average out 
to zero over all the subjects in a particular study. It is also assumed that the particular 
value of ε for one subject will not be influenced by the value in any other subject, and 
that the ε values are therefore uncorrelated. In technical terms, ε is often assumed to 
have a Normal distribution with mean zero and a constant standard deviation σ across 
all age groups.

For notational convenience and since in general we will not be confined to age as the 
covariate, we rewrite equation (12.22) as

	 Q x ,j j jα β ε= + + 	 (12.24)
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where α replaces β0, β replaces βAge and xj replaces Age. The j refers to the individual 
subjects in the study. If there were two treatment groups, xj takes the value of 0 or 1 
depending on which treatment the patient is given.

We have also pointed out that the approach to the analysis for comparing groups can 
be made either by ANOVA or by linear regression techniques. Regression methods are 
(statistical) model‐based approaches and so, since the methods are equivalent, ANOVA 
too is model‐based. However, the model is usually formulated in a slightly different way.

The object of the ANOVA is to ascribe some of the variation in QoL observed 
amongst the N subjects to specific factors, for example treatments. The remaining 
(unexplained) proportion of the variation in QoL is then described as random varia-
tion. The ANOVA model takes the following form:

	 Q ( ) .ij i ijµ π ε= + + 	 (12.25)

Here i corresponds to the different treatment groups and j to the different patients. 
Those of treatment 1 will take the value π1 in the above model and those of treatment 2 
take the value π2. Thus μ + π1 corresponds to α of the regression model (12.24), when 
xi = 0. Similarly, μ + π2 corresponds to α + β in the same model, when xi = 1. If we take 
π1 + π2 = 0, this implies π1 = –π2, which we can label simply π. This is equivalent to 
stating that treatment 1 is above the mean μ by +π and treatment 2 is below the mean 
by –π, implying β = 2π and α = μ – π. Thus there is a direct relationship between μ 
and π, and between α and β. Consequently, the ANOVA model of equation (12.25) is 
equivalent to the linear regression equation (12.24), although it is written in a some-
what different format.

In the situation of no differences between treatments, π = 0 while μ is estimated by 
the overall mean of the data, Q . The term in brackets on the right‐hand side of equa-
tion (12.25) is that part of the variation in Q explained by the model. In contrast, εij 
is the remaining, or residual, variation in Q that we have not been able to explain. As 
already noted, for the purposes of brevity we did not include this term with the cor-
responding regression equations, but it is there just the same. It implies that the models 
we are discussing are not perfect descriptors of how the PRO behaves for a patient. 
Here in the ANOVA model format, as well as the regression format, this residual vari-
ation is assumed to follow a Normal distribution with a mean of zero and a constant 
standard deviation, σ, which is estimated by VWithin  of Table 12.8.

12.7  Graphical summaries

Analysis of QoL data from clinical trials and other studies can be classified into two 
broad categories: confirmatory data analysis, and descriptive or exploratory data 
analysis.

Confirmatory data analysis is used when a number of hypotheses are to be tested. 
These should have been formulated before the study was commenced and should be 
specified in the clinical trial protocol. The testing of hypotheses can be based largely 
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upon standard statistical significance testing, although there may be practical problems 
arising from the multidimensional nature of QoL assessments, the ‘longitudinal’ nature 
of the repeated measurements over time and the occurrence of missing data for indi-
vidual patients.

Exploratory and descriptive data analyses, as their names suggest, are used to 
explore, clarify, describe and interpret the QoL data. Frequently these analyses will 
reveal unexpected patterns in the data, for example suggesting differences in QoL with 
respect to treatment or other factors. However, exploratory analyses often consist of a 
large number of individual comparisons and significance tests, and some apparently 
strong effects may in fact arise out of chance fluctuations in the data. Thus exploratory 
analyses may result in the generation of new hypotheses that should then be explored 
in subsequent studies.

Because exploratory analyses are less concerned with significance testing, graphical 
methods may be especially suitable. These largely visual methods have a number of 
advantages over purely numerical techniques. In particular, a judicious use of graph-
ics can succinctly summarise complex data that would otherwise require extensive 
tabulations. At the same time, graphics can be used to emphasize the high degree of 
variability in QoL data. Graphical techniques can highlight changes in PROs that are 
large and clinically significant, while making it clearer to readers which changes are 
unimportant even though some clinically unimportant changes may represent statisti-
cally significant departures from zero.

Histograms and bar charts

The simplest summaries are histograms and bar charts, which show the frequency dis-
tribution of the data. These are often used to establish basic characteristics of the data. 
For example, prior to using a t‐test one ought to check whether the data are distributed 
symmetrically and whether they appear to have a Normal distribution.

Most clinical trials compare two or more treatments, and many other investigations 
and analyses are also of a comparative nature. Thus graphs comparing two groups are 
particularly common in publications. One useful way of displaying the differences 
between groups of patients is a bar chart.

Example

Wisløff et al. (1996) evaluated QoL in 524 multiple myeloma patients from a 
randomised clinical trial that compared the use of melphalan–prednisone alone 
(MP) against MP + α‐interferon (MP+IFN). They report EORTC QLQ‐C30 scores at 
baseline, and then at 1, 6, 12, 24, 36 and 48 months.

Figure 12.2 shows the histogram of baseline emotional functioning (EF) 
scores of patients with multiple myeloma. In this case the data are concen-
trated at the higher levels with a clear ceiling effect, and the shape does not 
conform to that of the Normal distribution.
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Figure 12.2  Histogram of baseline emotional functioning (EF) in patients with multiple 
myeloma. Source: Data from Wisløff et al., 1996.

0

20

40

60

80

100

N
um

be
r 

of
 p

at
ie

nt
s

0 20 40 60 80 100

Emotional functioning

Example

Figure 12.3 displays the mean EF scores for males and females, according to age 
group. The reported EF is consistently higher (better) in males than in females, 
although the magnitude of the difference appears quite small. There seems to 
be a slight increase with age.

Figure 12.3  Bar chart illustrating the baseline EF scores from multiple myeloma patients, 
by gender and age group. Source: Data from Wisløff et al., 1996.
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Association of variables

When showing the association between two variables, the simplest and most informa-
tive graphic is the scatter plot. However, this may be of limited use for those PROs 
that have fewer than, say, 10 categorical levels, because many points will overlap. To 
reduce this limitation, some graphics programs have an option to increase the magni-
tude of the plotted symbols to reflect a number of overlapping observations, and others 
allow the addition of a small amount of random noise to ‘jitter’ overlapping points so 
that the individual points can be seen.

Example

Figure 12.4 shows the relationship of age with EF scores. Because the EF scale 
can only take 12 distinct values, a large proportion of the 524 patients have the 
same few values. A small amount of ‘jitter’ has been added to make the patterns 
clearer. In this example, there is only a weak relationship between age and EF 
– the correlation is r = 0.14.

Figure 12.4  Scatter plot of the baseline EF in patients with multiple myeloma at different 
ages. Source: Data from Wisløff et al., 1996.
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A convenient compromise between the use of the bar diagram of Figure 12.3, which 
gives no indication of the variability, and the scatter diagram of Figure 12.4 is to use a 
series of box‐and‐whisker plots. A box‐and‐whisker plot indicates the median value at 
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the centre of the box, and the 25th and 75th percentiles are indicated by the edges of 
the box. The whiskers each side of the box extend to the largest and smallest observed 
values within 1.5 box lengths. Outliers are indicated by open circles.

Example

Figure 12.5 shows the same data as Figure 12.3, using a series of box‐and‐
whisker plots. From this one can see that the median EF varies little with 
age, except perhaps in the youngest age group (which is also the smallest 
group of patients). There is, however, considerable variability within each 
age group.

Figure 12.5  Box‐and‐whisker plot of the baseline EF in patients with multiple myeloma, 
by gender and age group. Source: Data from Wisløff et al., 1996.
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Patient profiles

One form of presentation that is particularly useful in QoL analyses is the profile plot. 
This attempts to display many dimensions simultaneously, divided on the basis of a 
grouping variable. Profile plots are convenient ways to summarise changes in many 
dimensions, but can handle only a single, grouped explanatory variable. They may be 
particularly useful when a consistent and unambiguous pattern is seen across succes-
sive groups.
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One disadvantage of profile plots is that there may be a tendency to assume that 
the different dimensions can be compared. However, items on QoL questionnaires are 
rarely scaled uniformly, and so it is usually meaningless to describe whether one item 
or scale takes higher (or lower) values than other items and scales.

12.8  Endpoints

In this chapter we have not taken particular note of which of the often numerous QoL 
items or scales we have chosen for analysis. However, in practice it is important to 
identify the key components of the QoL instrument that are the most relevant for the 
study concerned. These components should be identified clearly as the main study end-
points. Their number should be few, preferably no more than two or three. In design-
ing a study and determining sample size it is imperative that the key endpoints are so 

Example

Figure 12.6 summarises the mean score profiles of patients after one month 
of treatment either with or without IFN. The bold line indicates the patients 
allocated to IFN and shows that, at one month, the IFN group tended to report 
worse functioning and more symptoms for nearly all scales of the EORTC QLQ‐
C30. Wisløff et al. (1996) report that many of these differences during the first 
year of treatment were statistically significant.

Figure 12.6  Profile of function and symptom values at one month after commencing 
treatment with α‐interferon (bold line) or without α‐interferon (thin line), in patients with 
myeloma. Source: Data from Wisløff et al., 1996.
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identified. The same is true at the analysis stage. In any event, it is not usually possible 
to explore in great detail all QoL items or scales on an instrument. It is better to select 
the important ones in advance of conducting the study, and these would also shape the 
form of the analysis, be it cross‐sectional, graphical or longitudinal in nature.

12.9  Conclusions

In any analysis attempting to summarise a QoL study there are many issues that need 
addressing. Fundamental to these is the choice of variables for analysis, the form the 
analysis will take, and whether the underlying (statistical) assumptions are satisfied by 
these data. It is often useful to commence with some initial graphical displays of the 
data. There are usually many QoL items and scales for examination, but the main focus 
should remain on the previously identified primary endpoints. In most circumstances, 
the final analysis may be best approached using regression techniques since these are 
generally the most flexible.
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13
Exploring longitudinal data

Summary

The majority of studies involving QoL assessment include repeat assessments over time. 
Thus in a randomised trial and other studies there may be a baseline assessment, fol-
lowed by a series of further assessments during the active treatment period, followed by 
(often less frequent) further assessments. QoL data are therefore longitudinal in form, 
the analysis and presentation of which is relatively straightforward if the number of 
observations per patient is equal. However, for QoL assessment this will seldom if ever 
be the case. The final dataset will usually be very ragged with the numbers of assess-
ments available for analysis differing from patient to patient. In this chapter we intro-
duce a summary of such data by means of the area under the curve (AUC). However, the 
main focus is on how such longitudinal data can be represented in a graphical format.

13.1  Area under the curve

In describing the cross‐sectional analyses in Chapter 12, we considered a single aspect of 
the QoL assessment for a particular instrument, measured at one particular time. For exam-
ple, if we had been describing an analysis from the HADS, we might have been referring 
to depression at a fixed time from the commencement of treatment, with no reference to 
depression levels at earlier or later assessment times. Such an analysis will rarely encapsu-
late all the features of the total data collected. Thus usually we will wish to examine the QoL 
profiles of patients over time, to summarise these for the individual patients, to describe col-
lectively all those receiving the same treatment, and finally to compare treatments.

Example

Figure 13.1 shows the pain profile of two patients assessed on a daily basis dur-
ing hospitalisation for severe burns. However, one missed two assessments and 
furthermore the duration of hospitalisation for the two patients differs. Hence 
the number of pain evaluations is not the same.
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Even when QoL data have a longitudinal format, it is often advisable to summarise 
them by extracting key elements from the patient profile. Examples are the patient’s 
QoL at a fixed time after the active treatment period has been completed or perhaps a 
measure such as the time from randomisation until QoL is improved by a prespecified 
amount. Another such measure, but one that uses all the QoL data of each available 
assessment, is the AUC. In Figure 13.1, the AUC is the area between the pain profile of 
each patient and the horizontal axis representing zero pain. Once calculated, the AUC 
for pain may be used as a summary value for each patient.

To calculate the AUC the data points are first joined by straight lines as in the com-
plete profile of Figure 13.1. These then describe the shape of the ‘curve’. The area is 
calculated by adding the areas under the curve between each pair of consecutive obser-
vations. For the first two QoL assessments, taking values QoL0 and QoL1 of one patient 
at consecutive times to and t1, the corresponding area is

A
QoL QoL t t

1
1 0 1 0

2
=

+ −( )( )
.

Similarly

A
QoL QoL t t

2
2 1 2 1

2
=

+ −( )( )
,

and if there are k + 1 assessments in all, then

A
QoL QoL t t

k
k k k k=

+ −− −( )( )
.1 1

2

Figure 13.1  Pain profiles of two patients with severe burns. Source: Data from Ang et al., 2003.
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After calculating the corresponding areas, we have

	 AUC A A A Tk= + +…+( ) / .1 2 	 (13.1)

The final divisor T is the duration of time from the first or baseline assessment (time 
0) until the final assessment (assessment k + 1). This takes into account the possible 
and usual different times and periods of assessment of each patient.

The AUC is calculated individually for each patient, providing for each a single sum-
mary score. These can then be averaged across all patients within each separate treatment 
group. A useful property is that although the original measurements may show floor and 
ceiling effects, the AUC is more likely to follow a Normal distribution (see Figure 13.9 and 
the associated example). Thus the corresponding treatment means may be compared using 
the appropriate z‐ or t‐tests, ANOVA or regression techniques, as outlined in Chapter 12.

We can calculate the AUC even when there are missing data. Thus patient 1, in 
Figure 13.1, does not complete assessments on days 8 and 9. The observations at days 
7 and 10 have not been joined to emphasise this loss of data. However, the calcula-
tion proceeds without these, as there is no requirement in equation (13.1) that the time 
intervals be equal between successive observations. Therefore, in situations where 
despite a fixed schedule being specified, there are some deviations from the observa-
tion schedule for virtually every patient, the calculation of AUC can still be made.

This type of calculation may not be appropriate if the final observation that is antici-
pated is missing. However, in studies in which patients with an ultimately fatal disease 
are assessed until as close to death as is reasonable, the last‐reported QoL observation 
may be assumed to be the worst possible QoL value for that item or scale. This then 
provides the final value and so an AUC can then be calculated using equation (13.1). In 
this situation T will correspond to the time from baseline assessment to patient death.

With the AUC we have summarised each patient’s longitudinal experience as a single 
quantity, and so the analysis once more becomes cross‐sectional in nature and the meth-
ods of Chapter 12 may again be applied. Lydick et al. (1995) discuss methodological 
problems associated with the use of AUC in the context of patients with episodic diseases.

Example from the literature

Kottschade et al. (2011) explored the use of vitamin E for the prevention of chem-
otherapy‐induced peripheral neuropathy in a randomised phase III clinical trial 
with 207 patients. The values over time of patient‐reported peripheral neuropathy 
scores on the 7‐item Symptom Experience Diary and a single‐item Neuropathy 
Specific Question were collapsed into AUC summary statistics for each patient (pro‐
rated for the number of time periods reported). All values for each question ranged 
from 0 to 10 (with 0 being no symptoms and 10 being as bad as it can be). For 
each of the eight outcomes, two‐sample t‐tests were used to compare the average 
AUC for each treatment arm. There were no differences in the patient‐reported AUC 
outcomes between treatment groups (p‐values ranging from 0.11 to 0.88).
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13.2  Graphical presentations

A fundamental decision to be made when graphing aggregated longitudinal data from 
QoL instruments is what measure to plot against time. The four principal choices are: 
the percentage of patients with values exceeding a certain level, median scores of 
items and scales, mean scores of items and scales, and individual data points. Which to 
choose may be determined by the context.

Percentages

Example from the literature

The Medical Research Council (MRC) Lung Cancer Working Party (1992) conducted a 
randomised trial of palliative radiotherapy with two fractions (F2) or a single frac-
tion (F1), in poor‐performance patients with inoperable non‐small‐cell lung cancer. 
Of particular concern was the distress caused by dysphagia with this disease.

The percentage of patients reporting dysphagia ‘mild soreness when swallow-
ing’ or worse on a daily basis is shown in Figure 13.2. This basic plot shows that 
there is a large difference in the percentage of patients reporting dysphagia 
between the F1 and F2 regimens. This is particularly noticeable in the second 
and third weeks post randomisation.
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Figure 13.2  A trial comparing two radiotherapy regimens for non‐small‐cell lung cancer, 
which used a daily diary card to assess QoL. Source: Bllehen et al. 1992, Table 3. Reprinted 
by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK.
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The difficulty with this form of presentation is that it does not indicate the reducing 
number of patients (and hence how precisely the associated percentages are estimated) 
in the plot as time progresses from diagnosis. A sensible addition to this (and many 
plots) is to include the number at risk by treatment group at various points beneath the 
time axis. In this example assessments are made daily so that patient numbers would 
be given only at convenient intervals. If there is a less frequent or irregular schedule it 
is important to give numbers observed on these occasions.

There may be more than two response possibilities (that is, more than ‘present’ or 
‘absent’ categories), and the concept of percentage plots can be extended to handle 
these. Thus, in the example of reported dysphagia levels, this might be done by super-
imposing plots corresponding to the cumulative percentage of patients in the succes-
sive categories. These categories could correspond to ‘no soreness when swallowing’, 
‘mild soreness when swallowing’, ‘quite a bit of soreness when swallowing’ and ‘very 
much soreness when swallowing’. The cumulative total of these is then 100% at each 
assessment time point. However, with such a plot it is not so easy to include two (or 
more) patient groups within the same panel as the likelihood of superimposed data 
points is high and any substantial overlap can obscure the underlying patterns.

Means versus medians

The EORTC QLQ‐C30 and the Hospital Anxiety and Depression Scale (HADS) are 
typical QoL instruments that, like many others, use raw items with four‐point catego-
ries, often with labels such as ‘not at all’, ‘a little’, ‘quite a bit’ and ‘very much’ for the 
respective categories that are then scored 1–4. Also, many QoL items have strongly 
skewed distributions in the associated responses. Thus for items representing rare symp-
toms and side effects or infrequent problems, the majority of patients may report ‘not at 
all’; that is, the minimal response for the QoL item. In contrast, with items concerning 
more common problems there may be a large proportion of patients reporting ‘very 
much’; that is, the maximum response for the item. As a consequence, it is not unusual 
for as many as half the patients to report the maximum for some items and the minimum 
for others. In these cases, the medians for the QoL items would be these floor or ceil-
ing values of either 1 or 4. Such medians carry limited information when presented in 
graphical format, and it becomes better to plot mean values rather than medians.

All available data

Since QoL measurements are usually collected repeatedly over time, it is almost inevi-
table that there will be a lot of incomplete data. In fact, if it weren’t for this the pres-
entation and analysis of QoL data would be greatly simplified and would not differ 
substantially from methods used in many other applications. One can rapidly assess 
the magnitude of the ‘missing problem’ by a plot of all available data at each time 
point. Such a plot is useful in examining simultaneously both attrition and departures 
from the assessment schedule. This plot is likely to be only useful for QoL scales, as 
individual items will usually have too few categories for the technique to be helpful.
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Example from the literature

Figure 13.3 shows a scatter diagram of Functional Assessment of Cancer – General 
version (FACT‐G) QoL assessments completed by 375 anaemic cancer patients 
receiving non‐platinum‐based chemotherapy (Fallowfield et al., 2002). The 
patients were included in a randomised trial comparing epoeitin alfa against pla-
cebo. Because patients could be enrolled with a variable number of expected 
chemotherapy cycles, and because those cycles could be of varying durations, the 
timing of QoL assessments could not be standardised to specific days or weeks in 
the study. The actual timing of the QoL assessments that resulted from this study 
design is illustrated in Figure 13.3, where the vertical axis represents patients 
(sorted by days in the study) and the horizontal axis represents study duration.
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Figure 13.3  Scatter plot showing the timing of FACT QoL assessments in a group of anae-
mic cancer patients. Each symbol represents a QoL assessment for a patient at the specified 
time in the study. The last assessment for a patient who withdrew early is represented by a 
star, the last assessment for a completer is a closed circle, and a continuing assessment is 
shown by an open circle. Source: Fallowfield et al., 2002, Figure 2. Reprinted with permis-
sion of Macmillan Publishers Ltd on behalf of Cancer Research UK.
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Example from the literature

Machin and Weeden (1998) examined the adherence of patients in a lung cancer 
trial to a schedule of planned assessments. They provide a multi‐panel plot of the 
data (Figure 13.4), from which it is clear that an increasing proportion of patients 
depart from the fixed schedule as time goes on. The increasing scatter of the QoL 
assessments relative to the scheduled assessment times indicates the increasing 
departures from the protocol schedule. Even the baseline QoL assessments were 
not all made immediately prior to randomisation and start of treatment (day 0).
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Figure 13.4  Scatter plot of the HADS depression score at each assessment against day 
of assessment for patients with small‐cell lung cancer. Source: Machin and Weeden 1998. 
Reproduced with permission of John Wiley & Sons, Ltd.
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Figure 13.4 takes up considerable space on the printed page. However, to illustrate 
the patterns within both treatment groups would require even more space, unless of 
course different plotting symbols or colour codes are used within each panel. This 
is not usually practicable as many points may be obscured due to coinciding values 
at some times. Nevertheless, the plots of Figure 13.3 and Figure 13.4 do indicate the 
attrition following the baseline QoL values since the number of observations in the 
successive clouds of points reduces as time progresses.

Individual profiles

Figure 13.3 does not indicate the behaviour of individual patients over time. If the 
number of patients was very small, individual plotting symbols or a different colour for 
each patient could be used. These would then identify the individuals and the respec-
tive patterns could be examined to give some idea of the variation between and within 
individual profiles. Usually the individual profiles will show a variety of patterns, with 
large fluctuations over time. The mean values, as commonly presented in published 
analyses, fail to reflect the considerable variation that is frequently observed in indi-
vidual patients.

Histograms and box plots

If the variation about the schedules is not regarded as serious, each QoL assessment can 
be taken as if it had occurred at the scheduled time. This effectively imposes acceptable 
windows of variation for this purpose. These windows are intervals surrounding the 
schedule dates, defining those assessments that can be included in the analysis. Assess-
ments lying outside the window will not be included in the summary or analysis. Once 
the windows are imposed, the data can be summarised as a series of histograms, one 
for each scheduled assessment point. Thus a compact presentation of the data shown 
in Figure 13.4 can be given by using box‐and‐whisker plots.

Example from the literature

Machin and Weeden (1998) give the successive box‐and‐whisker plots for each 
of 10 HADS depression assessments in patients with small‐cell lung cancer. This 
is reproduced in Figure 13.5, which includes the numbers of patients complet-
ing each assessment and the thresholds that classify patients into normal, 
borderline or case. The successive median values have been joined to form a 
summary profile. However, care needs to be taken with the interpretation of 
this profile as patient attrition may remove those patients with, say, the worst 
(highest) HAD scores. The data are plotted separately for the two randomised 
treatment regimens, a two‐drug (2D) and a four‐drug (4D) regimen as described 
by MRC Lung Cancer Working Party (1996).



	 13.2 G raphical presentations	 353

2D:
HADS

20

10

Case

Borderline

Normal

Number of patients

0

128 101 90 67 51 32 30 16 13 11

100 200

Days from randomisation

300 400

0

4D:
HADS

20

10

Case

Borderline

Normal

Number of patients

0

137 87 74 52 40 34 28 24 14 8

100 200

Days from randomisation

300 400

0

Figure 13.5  Box‐and‐whisker plots of HADS depression scores for the 10 scheduled assess-
ments of patients with small‐cell lung cancer recruited to the MRC Lung Cancer Working Party 
trial. Source: Machin and Weeden 1998. Reproduced with permission of John Wiley & Sons, Ltd.

In constraining the data into windows we are assuming that the variations in day‐to‐
day values over the short spans of time are regarded as minor. Nevertheless, there may 
be circumstances when this is clearly not the case. In these situations the windows need 
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to be selected with care. For example, if the study schedule defines QoL assessments 
immediately after receiving chemotherapy in patients with cancer, it would not be 
appropriate to include assessments before that cycle of treatment. In addition, the win-
dow should not go too far beyond the cycle as the immediate impact of treatment on 
QoL may have diminished by that time. A wide window could lead to a rather false 
impression of the true situation. It is better if windows are defined before the study 
begins, as later choices may be rather subjective and possibly introduce bias into the 
analytical procedures.

Any remaining data outside the selected windows could be added to the equivalent 
of Figure 13.5. Their clouds would occupy the gaps between the successive box‐and‐
whisker plots. In this way, all the information collected is summarised even though 
little analytical use may be made of the clouds of points between the box‐and‐whisker 
plots.

Summary profiles

Although it is not possible with large numbers of patients to examine all the individual 
patient profiles, it is nevertheless important to evaluate changes in QoL over time. 
However, it must be recognised that those patients with the fewest assessments avail-
able may be the most severely ill. This may be particularly so towards the end of the 
time course of a study, when patients may possibly be close to death, and this would 
almost certainly have affected their QoL were we able to assess it. These data ‘omis-
sions’ may result in the assessments that we are able to observe seriously misrepresent-
ing the ‘true’ patterns of the overall patient group.

One method of examining this situation in detail is to present, group‐by‐group, 
the summary profiles comprising all the patients in ‘duration of follow‐up groups’. 
To do this, separate mean profiles are plotted for those patients who were lost to 
follow‐up at 0, 1, 2, …, 9 months. For example, one of these summaries would 
be provided by data from those patients completing baseline plus four consecutive 
HADS. These data are then summarised at each scheduled assessment by the cor-
responding mean score.

If these profiles are similar in shape and have similar mean values over the compara-
ble assessment schedule times, it may be reasonable to summarise all the data at each 
schedule over all the available patients. This then provides a single summary profile. 
This profile, despite the absent data, may provide a reasonable description of QoL 
changes over time. On the other hand, if the shapes of the profiles are very different, 
it may be inadvisable to collapse the data further. This might also be the case if the 
profiles are similar in shape but parallel to each other rather than superimposed. In this 
case, treatment and follow‐up influence QoL in a similar way but initial values are a 
strong indicator for prognosis.

A final step in this graphical analysis will be to divide the data into treatment groups 
and plot the corresponding means at each assessment point for each treatment group 
separately.
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Example from the literature

Hopwood et al. (1994) utilised this approach with part of the data from the 
MRC Lung Cancer Working Party (1996) trial. They considered the HADS anxiety 
rather than depression assessments. They excluded all data from patients hav-
ing gaps in their assessment profiles as they were describing a methodology 
rather than the actual results of the clinical trial. Figure 13.6a shows the mean 
HADS for each follow‐up profile. Since the plots appeared fairly consistent, it 
was concluded that there were no major differences in these subgroups so that 
the combined (all‐patient) profile of Figure 13.6b could be calculated. This is 
divided by treatment group in Figure 13.6c.
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Figure 13.6  Profiles of HADS anxiety score for patients with small‐cell lung cancer (a) 
according to number of assessments completed, (b) by all patients and (c) by treatment 
group. Source: Hopwood et al., 1994, Figures 2, 3 and 4. Reproduced with permission of 
Springer Science and Business Media.
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The purpose of this step‐by‐step approach is to see, at least informally, whether or 
not it is justified to summarise all the available data as a single block. If one could, 
this is effectively concluding that the missing data (were we to know them) would not 
materially change the estimates of the corresponding means. Their absence, of course, 
means that the estimates we do have will have less precision, since they will be based 
on fewer observations than those that were potentially available. However, provided 
these estimates are not biased, between‐treatment comparisons may still reflect the true 
situation. A more formal approach to this can be made through statistical modelling, 
aspects of which are described in Chapter 15.

Reverse profiles

Sometimes different approaches to graphical summary may be preferable. For exam-
ple, the mean profiles like those of Figure 13.6a might have been similar but shifted 
along the time axis depending on the number of QoL assessments made. This could 
occur if the QoL profiles of patients tended to be similar at critical stages, for example 
similar for all patients close to death. In this case placing the origin as the date of last 
assessment and plotting backwards in time, rather than forwards from baseline, may 
result in similar profiles that could then be averaged.

Figure 13.6  (Continued)
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Variability

One advantage of the repeated box‐and‐whisker plots in Figure 13.5 is that they not 
only summarise the changing median QoL levels with time but also summarise and 
quantify the associated variability. This variability is described by both the interquar-
tile range and the whiskers themselves. The number of patients contributing to each 
point in this graph can be added beneath the time axis, displaying in a compact form 
all the principal features of the data.

It is unlikely that any approach to data presentation will be entirely appropriate or 
optimal for all situations. Indeed, what may seem the best for one QoL item or scale 
in a particular instrument may not be optimal for another. However, some compromise 
is needed. What we suggest is that the method of presentation should be that which 

Example

Figure 13.7 shows a reverse profile plot of HADS depression scores in patients 
with small‐cell lung cancer, calculated from date of last assessment as the 
reference point. In these patients, this time was usually when the patient was 
close to death. These data suggest that HADS depression levels rise as death 
approaches. The integers used as plotting symbols indicate the number of 
assessments completed by that particular group of patients.
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Figure 13.7  Mean HADS depression score in patients with small‐cell lung cancer, reverse 
plotted from date of last assessment, subdivided by the number of available assessments. 
Source: Machin and Weeden, 1998. Reproduced with permission of John Wiley & Sons, Ltd.
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satisfies best the needs of the most important QoL scale in the context of the particular 
study – once determined, this presentation would be carried throughout. It would be 
perplexing for the reader if each QoL variable were to be presented in its own unique 
way. If a comparison is to be made between the current study and work conducted 
previously by others, choosing the same style of presentation clearly facilitates the 
comparison even in situations where the method of presentation may not be optimal. 
However, one must avoid repeating poor methods of presentation.

For studies describing a single group of patients, it may be useful to add 95% confi-
dence intervals (CI) for the mean at each scheduled assessment point. These emphasize 
the increasing uncertainty attached to the values at later times with increasing patient attri-
tion. However, care should be taken not to clutter the graphical presentation. For example, 
it would be difficult to add CIs to the box‐and‐whisker plot of Figure 13.5 but would be 
quite feasible for the mean profile of Figure 13.6b. For graphical presentations intended to 
illustrate the comparison between groups, CIs for each mean would not be appropriate to 
add to the graphical presentation as it is the difference between groups that is if interest. 
Any CI should then be for the differences observed, and it may not be easy to include these 
into the graphical presentation. They may need to be provided in a separate tabular format.

Missing data

We have focused above on data that are incomplete through patient attrition. In many 
examples this attrition may be caused by the death of the patient, in which case there 
is no way that the absent data could ever have been collected. It is then often useful to 
include a summary of the survival experience of the patients in the study. This may be 
done by presenting the Kaplan–Meier survival curve (Machin et al., 2006). Survival 
curves give a ready appreciation of the reason for absent data through patient attrition.

It is also common for patients in QoL studies to have missing data at one or more 
scheduled times in an otherwise complete set of QoL reports. In this case, attempts are 
often made to impute their value (see Chapter 15). Such imputed values should not be 
added to the clouds of data points, such as those of Figure 13.4, even though they may 
be used to estimate the mean QoL at each scheduled assessment time.

13.3  Tabular presentations

Much of the information summarised in graphical form above could have been pre-
sented in tabular format, perhaps even in a more compact way. However, in reporting 
longitudinal QoL studies it is important to convey the extent of attrition (and hence 
absent data), and this can usually be best illustrated graphically. Such detail can really 
only be given for a limited number of scales from each QoL instrument used in the 
study; the remaining variables will have to be presented in tabular format. Such tables 
should indicate the numbers of subjects providing information for each item or scale, 
the proportion of missing as opposed to absent values, a summary statistic such as the 
mean or percentage, and a measure of the variability. The tables should also highlight 
the principal endpoints of the investigation in some way.
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Example from the literature

Wisløff et al. (1996) give a tabular summary of the symptom and toxicity 
aspects of their trial in the tabular format of Table 13.1, in which for each 
assessment the mean score is given for each treatment and this is repeated 
for each symptom. One way in which this table could be modified would be to 
rank the symptoms in terms of frequency of occurrence from month 0 onwards –  
starting with ‘muscle pain’, ‘joint pain’, ‘night sweats’ and so on until ‘hair loss’. 
The reason that ‘joint pain’ precedes ‘night sweats’ in this ranking, although 
they are numerically equal at month 0, is that there is more of the former at 
month 1. The rows of the table would then follow this ranking. In this way it 
would be a little easier to follow the patterns of the major symptoms as they 
would be grouped close together.

Table 13.1  Means of toxicity and symptom scores for patients with myeloma, by treatment 
received. Symptom scores range from 0 to 100, with higher scores representing higher levels 
of symptoms or toxicity

Month after start of therapy

0 1 6 12 24 36

Treatment MP MP+IFN MP MP+IFN MP MP+IFN MP MP+IFN MP MP+IFN MP MP+IFN

No. of patients 
who completed 
questionnaires 271 253 255 232 218 206 196 181 142 144 67 74
No. of  
drop‐outsa 24 33 5 8 6 4 4 4 3 5 0 0

Symptoms
Night sweats 21 23 19 20 15 14 14 13 15 12 17 16

Fever 5 11 6 12 3 8 4 6 3 5 5 6

Chills 6 10 11 17 8 13 8 12 8 11 9 14

Dizziness 15 14 14 18 13 17 11 16 9 17 14 15

Hair loss 4 4 6 7 11 22 10 13 8 9 12 12

Headache 12 14 12 15 13 12 13 11 12 13 14 12

Sore mouth 8 8 10 11 8 13 7 10 8 11 13 6

Muscle pain 28 31 26 31 25 27 24 26 25 24 30 29

Joint pain 21 23 21 24 21 20 23 23 25 21 26 24

Dry skin 17 20 20 27 16 28 17 23 21 22 20 22
Coughing 16 16 16 18 16 14 19 16 15 13 14 13

a Number of patients who are alive and who have completed all previous questionnaires, but not the one 
at this time point.
Source: Wisløff et al., 1996. Reproduced with permission of John Wiley & Sons, Ltd.
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One difficulty with a tabular format such as Table 13.1 is that the times of QoL 
assessment, although clearly indicated here, are often not equally spaced. As a con-
sequence, it is often difficult to appreciate the true shape of the changes with time by 
scanning entries in a table. This is also a difficulty with successive bar charts that are 
presented equally spaced on the printed page rather than at locations determined by 
their relative positions in time. Although this may be easy to rectify using other forms 
of plot, as we do in Figure 16.2b later, unequally spaced columns would not be a practi-
cal format for tabular display.

Although we recommend that some measure of variability should be included in 
a tabular display, it is difficult to see how this could be added to all the entries of  
Table 13.1 without making it unacceptably complicated. A compromise is to identify 
the major symptoms of concern at the protocol development stage and provide the 
variability measure for these only. This could be done by listing these major symptoms 
first in Table 13.1 and in the order of importance as specified by the protocol (not by 
the results). The measure of variability would then be added alongside or beneath the 
corresponding mean. Following a break in the table, the remainder of the symptoms 
could then be listed in rank order of observed importance at baseline assessment in the 
manner that we have previously indicated.

13.4  Reporting

From the previous sections it is clear that the process of examining longitudinal QoL 
data in detail may be a complex and lengthy one. Seldom will the patterns revealed 
be simple; indeed, they may be very intricate, and so their summary will usually be 
daunting. However, by first focusing on the few major questions posed by the study 
and reporting these in careful detail, it may not be so important to report with the same 
level of detail the other endpoints. The guidelines for reporting outlined in Section 16.6 
set out some vital aspects that we will concentrate upon. It is inevitable in reporting 
any study that compromises have to be made as journal editors and readers will wish 
for clear messages uncluttered by detail.

Compliance with schedule and attrition

As we have indicated, if the study involves repeated QoL assessments on patients 
whose ability to complete the questionnaire is likely to be compromised, for example 
by death itself, as time goes on it is useful to summarise the survival experience by a 
Kaplan–Meier survival curve. A single survival curve may suffice if there is no major 
difference in survival between the therapeutic groups, but only if there is also no major 
difference in compliance. If there is a marked difference in survival and/or if the pat-
tern or rate of non‐compliant patients differs substantially, treatment‐specific detail 
should be provided.
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One advantage of this plot is that it also enables the QoL assessment schedule to be 
indicated by marking the time axis in an appropriate way. It is customary in reporting 
survival curves that the numbers of patients at risk be indicated at key points beneath 
the time axis. These numbers can be supplemented by the compliance, possibly for 
each group, especially at key stages such as when important patient management 
events take place. Examples of critical events include the time that active (protocol) 
therapy ceases, the time of disease response assessment, or the anticipated time of 
discharge to community care. When the principal QoL endpoint under consideration is 
one that poses personal difficulties with respect to the ability or willingness to respond 
for many subjects, it may sometimes be appropriate to count these patients as non‐
compliant, even though they may have completed the other assessment items. It will 
be a matter of judgement which figures to report.

Example

Figure 13.8 shows the survival over 48 months of patients with myeloma treated 
in the randomised study of the Nordic Myeloma Study Group (1996), whose QoL 
data are described by Wisløff et al. (1996).

RR  1.08
95% CI 1.36 to 0.85
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Figure 13.8  Kaplan–Meier estimates of the survival curves for patients with myeloma, by 
treatment received. The apparent survival advantage to MP+IFN (relative risk, RR, = 1.08) is 
not statistically significant. Source: Data from Wisløff et al., 1996.
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The upper panel of Table 13.1 provides a tabular alternative to the graphical format 
of Figure 13.8. This shows the number of patients completing the QoL questionnaire 
at each scheduled assessment together with the number of patients who were alive at 
that time but who did not complete the questionnaire. The total of these two gives the 
numbers still alive at the respective assessment points and declines quite rapidly over 
the three years of the study. This tabular format is more compact than the correspond-
ing graphical alternative.

However, these methods of presentation may reflect not the compliant but the off‐
schedule patients. As we have indicated, a convenient method of dealing with these is 
to impose acceptable windows. If the returned QoL assessment falls within the respec-
tive window for that schedule, it is included; but otherwise it is excluded from analysis. 
Once again, if this is a minor proportion of the total anticipated QoL assessments, this 
causes no major problem. However, in other circumstances the departure from sched-
ule (being outside the windows) may be of major concern and also differ between the 
treatment groups. In this case, if the QoL variable is numeric with a reasonable range 
of values, we recommend that the format of Figure 13.3 be utilised. Separate pan-
els may or may not be required for each treatment group, depending on the context. 
If keeping to schedule slips as patients progress through the trial, as in Figure 13.4, 
it may be important to add a comment to this effect. For example, one might state: 
‘Although compliance with schedule is within the stipulated window for 98% of the 
patients at the baseline assessment, this reduces to 50% at the one‐year assessment and 
is only 25% at two years. There were no substantial differences in this trend between 
the treatment groups.’

Treatment comparisons

In randomised trials the main focus is to make comparisons between treatments, 
and it will often be useful to provide a graphical summary similar to Figure 13.6c 
(another example is given in Figure 16.2b) after going through the stages we have 
described. Whether such a plot provides an unbiased summary of the QoL changes 
over time and between treatments will depend to a large extent on the pattern and 
proportion of compliant patients. Again, it is a matter of judgement as to whether 
this is indeed the case in a particular situation. Any concerns in this respect should 
be included in the accompanying text. Indications of the associated variability can 
be added to this graph at each assessment point. If the summary measure plotted 
is a mean, a horizontal line spanning two standard deviations above and below the 
mean can be indicated. For the two treatments at each QoL assessment point, the 
two corresponding lines can be displaced slightly horizontally so as not to overlap 
directly. Judgement again will have to be made as to whether a single‐panel (Fig-
ure 13.6c) or a double‐panel format (Figure 13.5) is the more suitable. What is 
not recommended is to include the 95% CI for the difference between treatments 
at each assessment point, since these tend to encourage point‐by‐point compari-
sons that introduce problems similar to those of repeated statistical tests. However, 
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if the protocol had stipulated that a major endpoint was the QoL at a particular 
time point, it would be appropriate to give an indication of the 95% CI for that 
comparison only.

On the other hand, if longitudinal data have been summarised for each patient 
by a single quantity, the longitudinal component of the presentation disappears 
and one is left with a cross‐sectional analysis to report. Thus, if the AUC is used, 
each treatment group will have a corresponding mean, AUC , with a standard error 
of SE(AUC). The AUC data can then be presented graphically by either box‐and‐
whisker plots or histograms, one for each treatment group. However, it is essen-
tial that the difference in means be quoted and the corresponding 95% CI stated. 
Because this measure is derived from the original and multiple QoL responses it 
may less easily convey its own meaning to the reader. Thus it may be best to pro-
vide the combination of a tabular format to summarise the component data for this 
derived measure with a graphical display of the resulting distributions, such as the 
distributions of the AUCs.

Example

Figure 13.9 shows the histograms of the AUC, here denoted AUC36, calculated 
for the assessment of fatigue over the whole 36 months from the date of 
randomisation in the trial described by Wisløff et al. (1996). The correspond-
ing numbers of patients for the melphalan‐prednisone (MP) alone and with 
interferon (IFN) treatment groups are 238 and 213 with respective means 
43.5 (SD = 22.3) and 47.5 (SD = 16.0). The difference between these means 
of 4.0 (95% CI 0.02–8.02) is suggestive of more fatigue reported by those 
patients receiving IFN (p = 0.049).

Although histograms of data at each of the assessment points showed an ex-
cess of patients with low levels of fatigue, the Normal distribution curves that 
are superimposed in Figure 13.9 show that the AUC values are approximately 
Normal. However, such superimposed curves would not usually be added to a 
figure for the published report.

Just as for any other endpoint, it should have been indicated in the pro-
tocol that AUC36 is an important one that will be the focus of analysis. In 
fact, repeating the AUC calculations for this trial but using only the first 24 
months’ data (AUC24) and again using AUC12 produces p‐values of 0.003 and 
0.001 respectively. These indicate that the excess symptom levels reported 
with IFN are greater in the early part of the treatment period. Any investi-
gator, albeit pre‐specifying that AUC36 was the key variable, would be fool-
ish not to explore the data in detail and, once the phenomenon is noticed, 
should report it as an observation requiring confirmatory study on another 
occasion. Thus in future trials earlier endpoints, for example AUC6, might 
replace AUC36 as the major endpoint.
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Figure 13.9  Histograms of AUC36 for patients with myeloma, by treatment received. A 
Normal distribution is superimposed. Source: Data from Wisløff et al., 1996.
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13.5  Conclusions

Longitudinal data, especially when there is attrition due to missing data and death, 
presents a number of problems in analysis and interpretation. These difficulties are 
further compounded by unequally spaced scheduled assessment times and variability 
in the time of the actual assessment. For these reasons, the initial exploration of the 
data should place emphasis upon summary tabulations and graphical methods. Sum-
mary measures, such as the AUC or the percentage of time that a patient has QoL levels 
above a specific threshold, can reduce longitudinal data to a single summary score 
for each patient. This has the advantage that the methods of Chapter 12 can then be 
applied, for example to provide significance testing of treatment differences. AUC is 
one method of combining QoL values over time. An alternative method, using QALYs, 
is described in Chapter 17; this weights different health states according to patients’ 
values, or utilities. However, the modelling methods described in Chapter 14 may also 
be applied in order to explore the data in greater depth and in particular to estimate the 
magnitude of the treatment effect and test its significance.
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14
Modelling longitudinal data

Summary

In Chapter 13, emphasis was placed on describing in graphical form changes in out-
comes with time and their summary across groups of patients. However, these compar-
isons were not quantified to any extent. This chapter describes a modelling approach 
to the description of longitudinal data that permits both an estimation of effect sizes 
and statistical tests of hypotheses. These models are an extension of the linear regres-
sion and ANOVA techniques described in Chapter 12. In particular, they take account 
of the fact that successive PRO assessments by a particular patient are likely to be 
correlated. The alternative approaches are classified as repeated measures, general  
estimating equations and multilevel models. They all require the specification of an auto- 
correlation structure, and this is described. Some of the statistical assumptions under-
pinning the techniques for fitting these models to QoL data are complex; so we have 
focused more on interpretation than on technical aspects. Although the mathematical 
details of some models might appear complex, the aim is only to find a model that 
describes the data well and thereby enables a simple estimate of the treatment effect.

14.1  Preliminaries

In Chapter 13, we used graphical approaches for exploring PRO data to provide a 
visual summary that is relatively easy to interpret while taking account of the possible 
impact of missing data through attrition. However, such approaches do not permit 
formal statistical comparisons to be made. Tabular presentations, including confidence 
intervals (CIs) for between-group summary differences, can to some extent be useful 
for this purpose although these too may not necessarily give a complete or appropriate 
summary of the situation. Just as the use of a regression model was the more powerful 
analytic tool when investigating the role of age on PROs in Chapter 12, so modelling is 
also important here. However, modelling longitudinal data with missing observations 
is a relatively complex process, and it will usually benefit from a detailed examination 
of the data by the methods discussed in Chapter 13 before proceeding to this stage.
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One important aspect of longitudinal data is that the observations may not be inde-
pendent. This contrasts with cross-sectional data in which there is, for the particular PRO 
item under consideration, a single variable whose value in a subject will not depend on 
the magnitude of the corresponding value in other subjects. In longitudinal analysis we 
have repeated measures on the same subject, and so successive observations are unlikely 
to be independent. This is one reason why care in analysis and presentation are important.

14.2  Auto-correlation

Section 5.3 introduced the use of the correlation coefficient in several situations and 
defined the correlation coefficient with equation (5.1). We repeat that equation here, 
introducing some notational differences with x1 and x2 replacing the variables x and y 
respectively of the former equation. Thus:

	
r

x x x x

x x x x
(1,2)

( )( )

( ) ( )
.T

i i

i i

1 1 2 2

1 1
2

2 2
2

∑
∑ ∑

=
− −

− − 	
(14.1)

Here xi1 and xi2 represent the values of two successive assessments of the same PRO 
item or scale, from the same instrument, made by the ith patient. For example, these 
may be their emotional functioning (EF) values at the time of randomisation and one 
month later. Previously x and y had represented two different PROs from the same or 
different instruments, reported at a single time – for example, EF and performance 
status (PS) values immediately before treatment commences.

Equation (14.1) is termed the auto-, or serial-correlation, and measures the strength 
of the association between successive (longitudinal) measurements of a single PRO on 
the same patient.

This will be a Pearson correlation if x1 and x2 have the Normal distribution form, or 
the Spearman rank correlation if they do not. The expression is symmetric in terms of 
x1 and x2, and hence rT(1,2) = rT (2,1). The notation for correlation coefficients such as 
rT(1,2) is reduced to rT if the context is clear.

Auto-correlation matrix

Suppose QoL is assessed on numerous occasions and the values of one PRO at differ-
ent times are Qj0, Qj1, …, QjT for patient j in the study. Then equation (14.1) can be 
utilised, one pair of these observations at a time, with the respective Q replacing the 
x values. The resulting correlations are the auto-correlations that we denote by, for 
example, rT(0,3). We use T to emphasise the time element and the 0 and 3 indicating 
that we are correlating the baseline and third follow-up PRO assessments. If there are 
assessments at T + 1 time points, there will be (T + 1)T/2 pairs of assessments leading 
to separate auto-correlation coefficients. For example, for T = 5 there are (6 × 5)/2 = 15 
auto-correlation coefficients that may be calculated, from rT(0,1) through to rT(4,5).
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Example

Figure 14.1 shows the scatter plot of EORTC QLQ-C30 EF scores at the base-
line (pre-treatment) assessment (EF0) against the corresponding scores one 
month after starting treatment (EF1), for 457 patients with multiple myeloma. 
The Pearson auto-correlation coefficient between these two assessments (one 
month apart) is 0.61. The Spearman auto-correlation coefficient with the same 
data gives 0.58 – a very similar figure.

In fact, QoL assessment in this example was also carried out at 6, 12, 24, 
36 and 48 months during therapy. Thus Table 14.1 summarises the resulting 15 
auto-correlation pairs for the assessments until month 36, while Figure 14.2 
gives a panel of the corresponding scatter diagrams.

It can be seen from Table 14.1 that the auto-correlation coefficients are 
moderately large (between 0.39 and 0.65) and that once on-treatment (month 
one onwards) the auto-correlations are above 0.54 for all pairs of measure-
ments up to two years apart.

Figure  14.1  Scatter plot of emotional functioning (EF) for multiple myeloma patients, 
prior to treatment and one month after starting treatment. Source: Data from Wisløff  
et al., 1996.
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Table  14.1  Matrix of Pearson auto-correlation coefficients for EF of multiple myeloma 
patients immediately prior to and during the first 36 months of therapy

Emotional 
functioning 0 1 6 12 24 36

  0 1
  1 0.61 1
  6 0.44 0.54 1
12 0.46 0.57 0.65 1
24 0.39 0.54 0.55 0.60 1
36 0.47 0.47 0.49 0.57 0.54 1

Source: Data from Wisløff et al., 1996.
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Figure 14.2  Pairwise scatter diagrams for EF of multiple myeloma patients immediately 
prior to and during the first 36 months of therapy. Source: Data from Wisløff et al., 1996.

It should be noted from Figure 14.2 (and similarly for Table 14.1) that the scatter 
plots are only given beneath the leading diagonal since the plot of, for example, x1 
against x2 provides the same information as x2 against x1 and so has the same value for 
the correlation coefficient.
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Auto-correlation patterns

The pattern of an auto-correlation matrix, such as that of Table 14.1, gives a guide to 
the so-called error structure associated with the successive measurements.

Example from the literature

Cnaan et al. (1997, Table IV) give the correlation matrix after fitting a 
statistical model to patients assessed by the total score from the Brief 
Psychiatric Rating Scale (BPRS). One correlation matrix was calculated after 
fitting a statistical model that included the variables: baseline BPRS, treat-
ment, centre and week. These correlations are given in the lower left half 
of Table 14.2.

Examination of these values suggests an underlying pattern of decreasing 
correlation as the observations become further apart. For example rT(2,3) = 0.76 
whereas rT(2,6) = 0.60. The time difference or lag between the observations are 
3 – 2 = 1 week and 6 – 2 = 4 weeks respectively.

Table 14.2  Auto-correlation matrices derived from patients with schizophrenia assessed 
with the BPRS calculated after fitting two statistical models

Week 1 2 3 4 5 6

1 1 0.61 0.50 0.27 − 0.32
2 0.63 1 0.75 0.59 − 0.60
3 0.52 0.76 1 0.73 − 0.67
4 0.34 0.64 0.77 1 − 0.77
5 − − − − 1 −
6 0.35 0.60 0.72 0.85 − 1

Source: Adapted from Cnaan et al., 1997, Tables IV and V. Reproduced with permission of John Wiley & 
Sons, Ltd.

Although in this example no assessment was made at week 5, we have included the 
corresponding row and column in Table 14.2 to emphasise this gap in observations. In 
general QoL assessments will not be evenly spaced, and this may obscure the underly-
ing patterns somewhat. Thus it is more difficult to examine the patterns given in Table 
14.1 as the time intervals between successive assessments are mostly unequal and of 
quite different periods. A further problem arises if patients depart from the prescribed 
QoL assessment schedules, although this may be partially overcome by identifying 
acceptable windows as outlined in Chapter 13.

Several underlying patterns of the auto-correlation matrix are used in the modelling 
of longitudinal PRO data. These include independent, exchangeable, multiplicative, 
unstructured and user-fixed. Burton et al. (1998) give a detailed description.
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The error structure is independent (sometimes termed random) if the off-diagonal 
terms of the auto-correlation matrix are zero. The repeated observations of an outcome 
on the same subject are then independent of each other and can be regarded as though 
they were observations from different individuals.

On the other hand, if all the correlations are approximately equal the matrix of 
correlation coefficients is termed exchangeable, or compound symmetric. This means 
that we can re-order (exchange) the successive (timed) observations in any way we 
choose in our data file without affecting the pattern in the correlation matrix. It may 
be reasonable to suppose that this is the underlying pattern suggested by the correla-
tion matrix of Table 14.1 in which the values of the auto-correlations fluctuate around 
approximately rT = 0.5.

Frequently, as the time or lag between the successive observations increases, the 
auto-correlation between the observations decreases. Thus we would expect a higher 
auto-correlation between PRO assessments made only two days apart than between 
two PRO assessments made one month apart. In such a situation one may postulate that 
the relationship between the size of the correlation and the lag, that is the time between 
t1 and t2, may be of the form

	 t t( , ) .T
t t

1 2
2 1ρ ρ= ϕ −

	 (14.2)

The |t2 – t1| implies that if the difference between t2 and t1 is negative the sign should 
be ignored, and φ takes a constant value that is usually less than one. A correlation 
matrix of this form is called multiplicative, or time series.

Example

Suppose the true auto-correlation between the first two of many successive 
but equally spaced PRO assessments is ρT(0,1) = ρT = 0.546. Then, on the 
basis of equation (14.2) with φ  =  0.6, the auto-correlation between the 
baseline (t = 0) and the second follow-up assessments (t = 2) is anticipated 
to be (0,2) 0.546 0.484.T

0.6 2 0 0.6 2ρ ρ= = =× − ×   Further, that between baseline 
and third assessment, (0,3) 0.546 0.336t

0.6 3 0 0.6 3ρ ρ= = =× − ×  and is clearly 
smaller.

Finally, the unstructured auto-correlation matrix presumes no particular pattern or 
structure to the correlation matrix, while one that is user-fixed has, as the term indi-
cates, values that are specified by the user.

The auto-correlation pattern materially affects the way in which the computer pack-
age estimates the regression coefficients in the corresponding statistical model, and so 
it should be chosen with care.
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14.3  Repeated measures

ANOVA

In some situations, QoL assessment may be made over a limited period rather than 
over an extended time span. In this case it may be reasonable to assume that all sub-
jects complete all the assessments. Thus instead of having a ragged data file with the 
number of observations for each subject varying from subject to subject, the file has a 
rectangular shape. This enables an ANOVA approach to be considered.

The rationale for repeated-measures ANOVA is to regard time also as a factor in 
addition to, for example, treatment. In a two-treatment randomised clinical trial, the 
treatment factor has two levels and each patient is randomised to one of the treatment 
options, or factor levels. However, although time may also be considered a factor with 
T levels it is not randomised, as successive QoL assessments necessarily follow one 
after the other. As a consequence, the structure of the underlying statistical model has 
to be modified to take account of this.

This structure is a split-plot design, where the term plot arises as the particular 
design was first introduced in agricultural research and the plot referred to a small 
piece of ground. In our situation each ‘plot’ is a subject and the time of the QoL assess-
ment is a ‘sub-plot’.

For the case of g treatments being compared in a clinical trial having T QoL assess-
ments on each of m patients per treatment group, the ANOVA corresponding to 
Table 12.8 is extended to take the form of Table 14.3.

The sub-plot nature of this design results in two residual or error variance terms in Table 
14.3. One assesses the between-patient variability within treatment groups and is used to 
test the hypothesis of no differences between treatments using the F-ratio of Table T5 with 
(g – 1) and g(m – 1) degrees of freedom. The second is used to test the hypothesis of no 
change in a PRO measure over time using the F-ratio with (T – 1) and g(m – 1)(T – 1) 
degrees of freedom. The F-ratio is used also to test for the interaction between Treat-
ment and Time. If an interaction is present, this suggests that any differences in treatments 
observed do not remain constant over time. We discuss this in detail later.

Repeated-measures ANOVA is an attempt to provide a single analysis of a complete 
longitudinal dataset. In such studies, the patients are often termed Level 2 units and the 
repeated PRO assessments the Level 1 units. This terminology leads to the more general 
multilevel models that we return to later. The use of the repeated-measures ANOVA implies 
an exchangeable auto-correlation between any two observations on the same patient (Dig-
gle et al., 2002). This may not always be appropriate for PRO assessments.

Modelling

The main difficulty with repeated-measures ANOVA, in the context of QoL research, 
is that there are seldom equal numbers of QoL assessments recorded per patient or 
subject. Although ANOVA methodology can be extended to handle some unbalanced 
situations, in the standard format shown in Table 14.3 the number of assessments must 
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Example

Wisløff et al. (1996) describe a randomised clinical trial in which the fatigue 
(FA) of patients with myeloma receiving either melphalan-prednisone (MP) or 
melphalan–prednisone +  interferon (MP+IFN) was assessed on several occa-
sions over a four-year period. If we assume the exchangeable pattern for the 
correlation matrix, the bold entries of Table 14.4 give a summary of the results 
of fitting equation (14.3) to part of the data. The numbers in parentheses rep-
resent the respective standard errors (SEs).

Considering the on-treatment data from month 1 to month 36, the results of 
fitting this model are shown as model II of Table 14.4, in which:

	 FA x ti= + −41 41 5 26 0 30. . . .

From this model one deduces that as time goes by, that is as t increases, 
reported fatigue decreases while those patients also receiving IFN score approxi-
mately 5.3 units higher on each occasion. For example, at t = 1, the first assess-
ment post-commencement of treatment, those who received MP alone had FAMP =  
41.41 − 0.30 = 41.11, while those also receiving IFN had FAIFN = 41.41 + 5.26 − 
0.30 = 46.37. The contribution due to time, −0.30, is in both expressions, as is the 

Table 14.4  Analysis of fatigue (FA) levels in patients with myeloma receiving either MP or 
MP+IFN. Patients with complete information on assessments from month 1 up to and includ-
ing month 36. Cells contain estimates and SE.

Type of auto-correlation matrix

Model
Regression 
coefficient Exchangeable Independent Unstructured Multiplicative

I Constant, α 38.21 38.21 36.60 39.35
Treatment, τ 5.26 (2. 40) 5.26 (1.54) 5.30 (2.40) 5.10 (2.24)

II Constant, α 41.41 41.40 41.73 42.23
Treatment, τ 5.26 (2.40) 5.26 (1.53) 5.18 (2.40) 5.10 (2.23)
Time, β −0.30 (0.06) −0.30 (0.09) −0.30 (0.07) −0.25 (0.08)

III Constant, α 39.02 39.02 39.32 39.85
Treatment, τ 10.05 (2.76) 10.05 (2.45) 9.97 (2.82) 9.86 (2.92)
Time, β −0.07 (0.09) −0.07 (0.13) −0.09 (0.10) −0.04 (0.12)
Interaction, γ −0.45 (0.13) −0.45 (0.18) −0.43 (0.13) −0.42 (0.17)

IV Constant, α 22.36 22.36 21.43 22.36
Treatment, τ 9.25 (2.49) 9.25 (2.45) 9.07 (2.47) 9.05 (2.65)
Time, β −0.07 (0.09) −0.07 (0.12) −0.01 (0.12) −0.05 (0.11)
Interaction, γ −0.45 (0.13) −0.45 (0.16) −0.43 (0.13) −0.42 (0.16)
Baseline FA, ϕ 0.35 (0.04) 0.35 (0.03) 0.37 (0.04) 0.37 (0.04)

Source: Data from Wisløff et al., 1996.
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be equal for all patients. However, we mentioned in Chapter 12 that ANOVA is a 
model-based form of analysis and this remains so in the repeated-measures situation. 
It is therefore possible – and usually simpler – to use a regression-modelling approach 
rather than repeated-measures ANOVA. The regression model corresponding to the 
analysis of Table 14.3 can be written as

	 Q x t .jit i jitα τ β= + + + ω 	 (14.3)

Here Qjit is the assessment of a PRO for patient j at assessment time t and who is  
receiving treatment i, and xi = 0 corresponds to the patient receiving one of the treat-
ments whereas xi = 1 for the other treatment. The ωjit is the error or residual term 
similar to the ε introduced in equation (12.22). However, as shown in Table 14.3, there 
are two residual terms corresponding to ‘Patient Residual’ and ‘Time Residual’. This 
implies that each ωjit really has two parts, one a between-patients component and the 
other a within-patient component. We have been investigating the within-patient com-
ponent when examining the patterns in the auto-correlation matrices.

Use of the basic model in equation (14.3) implies that the outcome changes in a linear 
way with time. That is, the scatter diagrams of PRO profiles of patients against time should 
appear, at least approximately, as straight lines and have the same slope from patient to 
patient. A second assumption is that if the value if the outcome differs between patients on 
the two treatments, it is the same difference at each assessment time.

Once we specify the form of the model and the pattern of the auto-correlation, this 
model can be fitted using most standard statistical packages.

In the model indicated by bold numbers in Table 14.4, we have not considered the 
interaction component of Table 14.3, and so the comparison with repeated-measures 
ANOVA is not quite complete. However, before discussing the interaction we show the 
basic steps involved in constructing statistical models.

Model building

The major research question in the context of a clinical trial is the treatment effect, and 
so of primary interest is τ in the following model:

	 Q x .jit i jitα τ= + + ω 	 (14.4)

This is a simplified version of equation (14.3), setting β = 0 so that the time element is 
not included. Fitting this model, again using the exchangeable auto-correlation matrix, 

constant term 41.41, and so the difference FAIFN – FAMP = 5.26 remains the same 
at each assessment. Using equation (12.1) the ratios z = −0.30/0.06 = −5.0 and 
z = 5.26/2.40 = 2.2 imply, from Table T1, p-values of < 0.0001 and 0.026 for the 
time and treatment effects respectively. These suggest a statistically significant 
decline in fatigue with time, but higher levels of fatigue in those receiving IFN.
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gives (model I of Table 14.4) FA = 38.21 + 5.26xi. The treatment effect is significant 
since z = 5.26/2.40 = 2.2, p = 0.026. Although this is statistically significant, the model 
building process asks if there are other and additional variables that might also explain 
some of the variation in the outcome. In our context, the next model to consider is 
equation (14.3), which, once fitted, confirms the statistical significance of the treat-
ment effect but also suggests that time plays a role (z = –0.30/0.06 = –5.0, p < 0.0001). 
However the view of the effect of treatment remains unchanged.

Auto-regression

Although we have already introduced an auto-regression model in equation (14.3) as a 
means of effecting a repeated-measures ANOVA, we now examine a rather simpler model 
so as to explain the role of β. Since in longitudinal studies there are not only observations 

Example from the literature

Hart et al. (1997) investigated the value of homeopathic arnica C30 for pain in 
patients after total abdominal hysterectomy. They present individual plots to 
demonstrate the variety of pain score changes against time after operation. One 
of these profiles, for a patient receiving arnica as opposed to placebo, is repro-
duced in Figure 14.3. The profile chosen is approximately linear over the study 
period so that equation (14.5) may be a reasonable description in this case.

Figure 14.3  Pain score changes for a patient receiving arnica following total abdominal 
hysterectomy. Source: Adapted from Hart et al., 1997. Reproduced with permission of Sage 
Publications, Ltd.
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on many subjects but also repeating observations over time on the same subjects, we may 
wish to investigate changes in the outcomes over time, using a linear regression model. 
Thus we might propose that the outcome changes with time according to the expression

	 Q t .t tα β ω= + + 	 (14.5)

This has much the same form as equation (12.24) but t, denoting time, replaces xj and 
we write ωt in place of εj. With this expression we are saying that the outcome for an 
individual patient changes with time according to this linear model. Now, in contrast to 
equation (12.24), the observations are all made on the same subject and so the ω values 
cannot be assumed to be independent or uncorrelated.

In general we will have more than a single subject and so the more general form of 
equation (14.5) for subject j is

	 Q t .jt jtα β ω= + + 	 (14.6)

Interactions

A plot of the Wisløff et al. data is shown in Figure 14.4, and this suggests that it is 
unrealistic to assume that the mean difference between the values remains constant over 
time. The graph suggests there is a treatment difference at month 1, which has largely 
disappeared by month 36. This is a Treatment × Time interaction. The corresponding 
statistical test using the repeated-measures ANOVA of Table 14.3 compares FTreatment*Time 
against an F-ratio that has (g – 1)(T – 1) and g(m – 1)(T – 1) degrees of freedom.

Figure 14.4  Mean levels of fatigue in patients with multiple myeloma, before and during treatment 
with MP or MP+IFN. Source: Data from Wisløff et al., 1996.
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To model the interaction a further regression coefficient, γ, has to be added to equa-
tion (14.3). This is attached to the product of xi and t, giving

	 Q x t x t .jit i i jitα τ β γ ω= + + + + 	 (14.7)

Using the example data, this is shown as model III in Table 14.4. The correspond-
ing z is –0.45/0.13 = –3.5, which from Table T1 gives p = 0.0023 and is statistically 
significant.

It is important to note that there is a large change in the regression coefficient for 
treatment, from 5.26 with model II to 10.05 with model III. This arises because there is 
also a change in the interpretation of τ. In model II, τ represents the average treatment 
effect, averaged over the observations at 1, 6, 12 and 24 months. Inspecting Figure 
14.4, at month one the difference is of the order of 10 units of FA, while at month 24 it 
is close to zero, with intermediate values at months 6 and 12. These provide an average 
value of approximately 5 units of FA. In contrast, the τ of 10.05 in model III is inter-
preted as the estimated difference between treatments were observations to be made 
at t = 0, just after treatment commenced, rather than at baseline which is just before 
treatment commenced. At t = 0 the contribution of the interaction term of equation 
(14.7) is zero, whereas at later assessments the interaction term enters the model given 
by equation (14.7) and reduces the value of the estimated treatment effect. Thus for 
IFN at t = 1 (the first post-treatment assessment), xi = 1, γxit = –0.45 × 1 × 1 = –0.45. 
This reduces the estimated effect of treatment to 10.05 – 0.45 = 9.60 units of FA. By 12 
months, at t = 12, we have γxit = –0.45 × 1 × 12 = –5.40 and so the treatment effect is 
reduced to 10.05 – 5.40 = 4.65. The estimates that are provided by model III are close 
to those suggested by Figure 14.4.

Paired data

We have discussed a special case of equation (14.7) in Section 12.4 when the baseline 
outcome measure (at t = 0) is compared with a later value at some fixed time (which 
can be arbitrarily labelled t = 1). Using equation (14.7) at t = 0 and t = 1 we have for 
subject j, Qj0 = α + ωj0 and Qj1 = α + β + ωj1 respectively. Their difference is Dj = Qj1 – 
Qj0 = α + β + ωj1 – α – ωj0, giving

	 D ( ).j j j1 0β ω ω= + −

The null hypothesis of no difference between baseline and subsequent outcome assess-
ments corresponds to β = 0. Each subject has his or her own error term, here (ωj1 – ωj0), 
which comprises the residuals from both the time 0 (baseline) and time 1 observations. 
The value that this difference takes for a particular patient will be independent of the 
values taken by other subjects in the study. They are thus uncorrelated.

The data in this situation are termed paired. For a particular study with N subjects observed 
at baseline and at one further occasion, the estimate of β is b D=  with SE b SD N( ) /=  
where SD is the standard deviation obtained from the differences Dj.
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This in turn leads to a paired z-test version of equation (12.1), or a paired t-test if the 
study is small, for testing the differences in an outcome on these two occasions. Thus, if 
there are only two assessment times, longitudinal data can be reduced to single measure-
ments per patient (change in outcome), and so no new principles are involved and the 
analysis has become cross-sectional in nature.

Between- and within-subject variation

Earlier we examined the possible forms of the error term in the regression model 
of equation (14.3), and there were several options available. The model described a 
particular subject, j, but we may wish to extend this to a group of N subjects. In doing 
this, there are several further choices to make. One possibility is to assume that all 
subjects have the same PRO profile with respect to time, apart from random variation. 
In this case, the model remains as equation (14.7) but the error must now contain com-
ponents that include random fluctuations accounting for both within- and between-
subject variation. We shall explore this using generalised estimating equations.

Generalised estimating equations

Repeated-measures ANOVA is a form of fixed effects model, and it also implies that 
the auto-correlation structure is of the exchangeable form. Applying this methodology 
to some of the data of Wisløff et al. (1996) gave the model introduced in bold in Table 
14.4. However, models using the other forms of auto-correlation matrix, independ-
ent, unstructured or multiplicative, can be fitted using so-called generalised estimating 
equations (GEE). This methodology is implemented in many statistical packages.

Example

Applying the GEE methodology to the fatigue data of Wisløff et al. (1996), assum-
ing independent, unstructured and multiplicative forms of the auto-correlation 
matrix, gives the results summarised in Table 14.4. Focusing on model III as this 
seems most appropriate for these data, the estimated regression provided by the 
exchangeable and independent models are the same, but the SE associated with 
the treatment effect is smaller, while the SE for time and the interaction SE are 
somewhat larger. Both the corresponding estimates of the regression coefficients 
and their SEs of the unstructured and multiplicative auto-correlation models dif-
fer from one another and from both the exchangeable and independent models. 
Thus the results change with the underlying auto-correlation structure assumed. 
Nevertheless, the models are in broad agreement, suggesting a statistically sig-
nificant Treatment effect and evidence of a Treatment × Time interaction.

In practice it is often difficult to choose whether an exchangeable, unstructured or 
multiplicative auto-correlation structure is appropriate. Sometimes the choice remains 
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unclear despite examining the initial and subsequent (after model fitting) correlation 
matrices. In this case, models may be developed using each of the alternatives and 
these are then compared. If the models are all similar both with respect to the variables 
included and the corresponding regression coefficients, there is little difficulty about 
which to choose for interpretation. Conversely, if there are major differences, this is an 
indication for further investigation.

The general methodology of GEE is very flexible and in principle can deal with all 
the observed data from a QoL study. The subjects are not required to have exactly the 
same numbers of assessments, and the assessments can be made at variable times. The 
latter allows the modelling to proceed even if a subject misses an assessment. This 
assumes that the probability of being missing is independent of any of the random 
terms (the residuals) in the model. However, care is still needed here, as this assump-
tion may not hold. The very fact that the data are ‘missing’ may itself be informative 
(see Section 15.5). In this circumstance, taking no particular note of its absence may 
result in incorrect conclusions being drawn from the data.

Although the detail need not concern us too much, the process of fitting GEE mod-
els begins by assuming the independence form of the auto-correlation matrix. Thus it 
begins by fitting the model as if each assessment were from a different patient. Once 
this model is obtained, the corresponding residuals – see equation (12.23) – are calcu-
lated and these are then used to estimate the auto-correlation matrix assuming it is the 
exchangeable type. This matrix is then used to fit the model again and the residual once 
more calculated and the auto-correlation matrix obtained. This process is repeated until 
the corresponding regression coefficients that are obtained in the successive models dif-
fer little on successive occasions, that is, they converge. This process is termed iteration.

Example

The lower diagonal of Table 14.5 shows the independence form of the auto-
correlation matrix of the Wisløff et al. (1996) data prior to fitting a GEE model 
of treatment, time and their interaction.

Thus while the model-fitting values of rT average approximately 0.5, the final 
exchangeable value is lower at 0.4. It will usually be the case that after model 
fitting the auto-correlations will appear to have been reduced.

Table 14.5  Matrices of auto-correlation coefficients for FA of multiple myeloma patients 
during the first 24 months of therapy. The lower diagonal gives the independence matrix 
before model-fitting, while the upper gives the exchangeable form after model-fitting

Fatigue 1 6 12 24

1 1 0.40 0.40 0.40
6 0.62 1 0.40 0.40

12 0.48 0.61 1 0.40
24 0.39 0.47 0.56 1

Source: Data from Wisløff et al., 1996.
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Fixed and random effects

Although we may postulate that the slope of the regression line β can be assumed the 
same for all subjects, each may have a different starting point. This can be expressed 
by modifying α of equation (14.6) to αj to give

	 Q t .jt j jtα β ω= + + 	 (14.8)

Again there are options here. One is to assume that αj (the intercept) is unique for 
each of the N subjects and so there are N of these to estimate. This model is termed 
a fixed-effects model, since a different effect is estimated (or fixed) for each subject. 
An alternative is to assume that the subjects chosen for study are a random sample of 
subjects from a population that has mean α and a standard deviation σα. In fitting this 
latter model we estimate for the first term of equation (14.8) with only the two param-
eters, α and σα, rather than N individual values for αj. This second approach is termed 
a random-effects model.

It is important to note that a possible confusion of terms arises, as ‘random’ is used 
in two contexts. Here, it describes a property of the αj regression coefficients in the 
model of equation (14.8). In descriptions of auto-correlation matrices (see Table 14.2), 
it is commonly applied to the ωjt error part of the model, when random is an alternative 
term for the independent error structure.

In the random-effects model, one is effectively modelling α by means of the follow-
ing equation:

	 ,j jα α υ= + 	 (14.9)

where α is the fixed part of this model and υj is the residual, error or random part, 
which is assumed to have a mean of zero and standard deviation σα. In this case, the 
format of equation (14.8) changes to

	 Q t .jt j jtα β υ ω= + + + 	 (14.10)

Thus we are introducing a second component to the residual variation, which now 
comprises both υj and ωjt.

One can go a step further than having a random-effects model for the intercept α 
alone by also postulating that the slope β can be dealt with in a similar way, so that dif-
ferent patients can have different slopes. This leads from equation (14.8) to

	 Q t .jt j j jtα β ω= + + 	 (14.11)

In this situation, the βj can either be estimated from a fixed-effects model or regarded 
as having mean β and a standard deviation σβ in a random-effects model. The latter can 
be expressed as βj = β + ηj, where ηj is the corresponding residual that is assumed to 
have a mean of zero and standard deviation σβ.
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Finally, in order to make use of regression techniques to compare two treatments 
with respect to longitudinal outcomes, we have to extend the above models to include 
a regression coefficient for treatment. Thus we write, for example:

	 Q x t ,jit j i j jitα τ β ω= + + + 	 (14.12)

This model can specify either fixed- or random-effects for either or both of α and β. 
Models that contain both fixed and random effects are termed mixed.

The advantage of the random-effects model is that there are fewer regression parameters 
to estimate. It is based upon the assumption that the subjects in the study are chosen at 

Example from the literature

A mixed-effects repeated measures model was used by Homs et al. (2004) in 
reporting a multicentre randomised trial that compared brachytherapy versus 
stent placement for the palliation of dysphagia from oesophageal cancer. Day of 
assessment and treatment group were fixed effects. Baseline scores were used 
as covariates. A day by treatment group interaction term allowed for differing 
curves. Brachytherapy was beneficial over time on most of the QoL endpoints, 
including dysphagia. There was a significant time-treatment interaction. The 
authors also fit so-called cubic spline functions, to obtain smooth-curve esti-
mates of the degree of dysphagia over time for each treatment with 95% CIs 
(Figure 14.5). This plot confirmed the presence of a treatment-time interaction, 
with brachytherapy being beneficial after about six months, and a suggestion 
that stents might be more effective during the first four months.

Figure 14.5  Brachytherapy or metal stent for palliation of dysphagia from oesophageal 
cancer. Source: Homs et al., 2004. Reproduced with permission of Elsevier.
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random from some wider patient population. This will seldom be true, at least in the con-
text of a clinical trial for which trial patients are screened for eligibility and entered only 
after giving informed consent. Thus although the treatment assigned is ‘at random’, this is 
a very different use of the word random, and does not imply that random-effects models 
are necessarily appropriate; once again, there is multiple use of the same word describing 
different situations. However, it is usually reasonable to assume that the trial patients have 
been chosen at random from a large number of potentially eligible patients, and that they 
represent a random selection from this artificial population. Thus a random-effects model 
is frequently applied whenever a study includes large numbers of patients.

In clinical trials it is common for the randomisation to be stratified by centre. In this 
case centre should be one of the covariates, but should it be regarded as a fixed or a ran-
dom effect? Some authors suggest that random is preferable (Kahan and Morris, 2013).

Multilevel models

If we assume a random-effects model is appropriate, models can be fitted using mul-
tilevel modelling. This is available both in many standard statistical packages or in 

Example

Applying the multilevel methodology to the selected FA data from Wisløff  
et al. (1996) gives the results summarised in model III of Table 14.6. Here the 
mixed model includes the treatment (τ) as a fixed effect, and the intercept (α) 
and time (β) are random effects. This can be compared with the model III results 
summarised in Table 14.4. The model suggests a statistically significant treatment 
effect and a strong Treatment × Time interaction as we had observed before. The 
regression coefficients and SEs do not differ materially from those of Table 14.4.

Table 14.6  Multilevel modelling analysis of FA levels in patients with myeloma receiving 
either MP or MP+IFN. Patients with complete information on assessments up to and includ-
ing month 24 only

Regression 
coefficient

Model III Model IV

Estimate (SE) p-value Estimate (SE) p-value

Constant, α 39.01 21.56

Treatment, τ 10.06 (2.87) 0.0004 9.22 (2.44) 0.0002
    95% CI 4.43 to 15.69 4.43 to 14.00

Time, β −0.08 (0.10) 0.47 −0.08 (0.10) 0.47

Interaction, γ −0.45 (0.15) 0.002 −0.45 (0.13) 0.002

Baseline, ϕ − − 0.37 (0.04) < 0.0001

Source: Data from Wisløff et al., 1996.
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specialised statistical software such as MLwiN (Rasbash et al., 2009). In multilevel 
models, the repeated assessments within a patient are the ‘Level 1’ units and the 
patients themselves are the ‘Level 2’ units. Use of multilevel modelling as opposed 
to GEE allows a more detailed examination of the sources of variance (‘errors’) in 
the model.

It should be noted that the analysis was from 1 to 36 months with the baseline value 
as a covariate. Thus, because of the presence of a strong Treatment × Time interaction, 
the estimated effect of 10.06 and the associated 95% CI of 4.43–15.69 are estimates of 
the treatment effect at month one.

Covariates

All the models can be extended further to include covariates, in a similar way to that 
which we have described in equation (12.15), as it is recognised that patient-specific 
details may influence subsequent patient outcome measures. In the context of QoL 
studies, the pre-treatment values, or baseline assessment, may be particularly critical. 
For example, this is likely to be the case in circumstances where these baseline levels 
determine to some extent the pattern of subsequent missing data.

Example

Adding the baseline FA measure to the random-effects model previously dis-
cussed for the data of Wisløff et al. (1996) gives the model IV summarised both 
in Table 14.4 and the final columns of Table 14.6. The regression coefficient of 
baseline fatigue (FA0) is statistically significant, suggesting its major influence 
on subsequent reported levels.

If baseline variables or other prognostic indicators are important predictors of out-
come, they may be expected to account for some of the otherwise unexplained variabil-
ity in the data. As a consequence, some of the SEs for other coefficients may become 
smaller when these strong predictors are included. This means both that we have bet-
ter estimates of the coefficients – including those for the treatment effect – and that 
their p-values may become more highly significant. However, if we include unneces-
sary variables in the model, such as those baseline characteristics that are irrelevant 
to subsequent outcome, we are in effect adding more noise, which will weaken the 
estimation of treatment effect. One should resist the temptation to add a large number 
of covariates just because ‘they may be important’.

In a randomised trial, the baseline (pre-randomisation) characteristics may be antici-
pated to be broadly similar in the different groups of patients because of the randomisa-
tion procedure itself, and so the estimate of the treatment effect is unlikely to be biased. 
However, as in this example, including covariates can alter the estimate of the treatment 
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Example from the literature

Cnaan et al. (1997) describe the application of general linear mixed models to 
a randomised clinical trial of patients with schizophrenia assessed by the total 
score from the BPRS. There were four treatments: three doses (low, medium 
and high) of an experimental drug and a control drug. Patients were evalu-
ated at baseline, one, two, three, four and six weeks. However, of 245 patients 
randomised only 60% completed the six-week assessment. The results of part 
of their analysis using the random-effects model is summarised in Table 14.7.

The corresponding algebraic model, for a patient receiving low-dose treat-
ment, at week W is

	 BPRS W W BPRS( 3) ( 3) ,L linear Quadratic
2

0α τ β β ϕ= + + − + − + 	 (14.13)

where 𝜏L indicates an offset for the low-dose group, W is the week number and 
BPRS0 is the baseline value. The corresponding fitted equation is

	 BPRS W W BPRS1.90 2.04 1.52( 3) 0.37( 3) 0.65 .2
0= + − − + − + 	

At week 3, this reduces to BPRS  =  3.94  +  0.65 BPRS0. Thus for patients 
with BPRS0 = 40, the predicted score at week 3 with low-dose treatment is 
3.94 + (0.65 × 40) = 29.94 or approximately 30.

Table 14.7  Random-effects model for changes in BPRS in patients with schizophrenia

Variable name Parameter Estimate SE

Intercept α 1.90 2.51
Low dose τL 2.04 1.06
Medium dose τM −1.64 1.03
High dose τH −0.13 1.05
Week βLinear −1.52 0.25
Week*Week βQuadratic 0.37 0.09
Baseline BPRS φ 0.65 0.07

Source: Cnaan et al., 1997, Table VI. Reproduced with permission of John Wiley & Sons, Ltd.

effect. Thus there is a suggestion that perhaps the true difference between the treatments 
may be a little bit smaller than when we ignored the baseline FA score (for example 9.25 
instead of 10.05 if we assume exchangeable or independent auto-correlations).

There are several details in this last example that require further explanation. The 
first is that there are four treatments involved (doses, in this example), rather than 
the two different treatments of equation (14.3). This implies that the τxi part of that 
equation has to be expanded to τLxLj + τMx2j + τHx3j. A patient j receiving the control 
treatment is indicated by xLj = xMj = xHj = 0. For a patient receiving a low dose, xLj = 1, 
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xMj = xHj = 0; for one receiving a moderate dose, xLj = 0, xMj = 1, xHj = 0; and for one 
receiving a high dose, xLj = xMj = 0, xHj = 1. The variables xLj, xMj, and xHj are called 
dummy variables.

Secondly, time in weeks occurs twice in equation (14.13). The first term with regres-
sion coefficient, βLinear, is the linear and the second, βQuadratic, the time-squared or quad-
ratic part (written as Week*Week in Table 14.7). Together they express the fact that, in 
contrast to the example of Figure 14.3, the change in the PRO score over time may not be 
linear but may be somewhat curved. This can be interpreted as a decrease in BPRS scores 
with time, but the decrease is larger initially and then levels off; the quadratic model is 
analogous to an interaction in this context. Further, the equation includes (W – 3) rather 
than W, but subtracting the 3 is merely a convenience device to ease the computational 
problems as squared terms tend to get large and this makes the fitting process less stable.

Finally, there is a covariate term with regression coefficient φ. This is included 
here since it is well known that the initial BPRS is an important predictor of future 
values irrespective of the treatment given. Thus any treatment comparisons need to be 
adjusted for variation in the baseline values for the patients.

Choosing the auto-correlation structure

Although we have illustrated this chapter with the auto-correlation matrix calculated 
from successive observations of FA in patients with myeloma, the actual matrix we 
really wish to examine is that obtained from the residuals. As we have noted, the resid-
ual is the difference between the observed outcome measure and the one predicted 
from the fitted model; this is a quantity w, which estimates the respective ω. However, 
we cannot determine this without first fitting the model, leading to a circular process. 
To avoid this, the usual procedure is to make an initial assumption about the auto-
correlation structure, often as in our example based upon the auto-correlations of the 
observed values. Then we can fit the model, and examine whether the residuals have 
the form that we assumed in the first place. If so, we may accept the assumption as 
reasonable; if not, we may try an alternative.

Example from the literature

The model of equation (14.13) led to the lower diagonal auto-correlation matrix 
of Table 14.2 (Cnaan et al., 1997). The upper and italicised corner was calcu-
lated using the same model but with a further covariate (patient status) added. 
It can be seen that the values of the auto-correlation coefficients are smaller in 
the upper corner than the corresponding values in the lower corner. For example, 
the first model gives rT(1, 6) = rT(6, 1) = 0.35 and the second model 0.32. This 
will generally be the case if one model contains one or more extra variables over 
and above those already contained in the first model. The extra variables reduce 
the amount of otherwise unexplained residual variation, and so the size of the 
ω values will in general be smaller leading to smaller correlation coefficients.
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14.4  Other situations

Logistic models

So far we have assumed that the outcome under study is a continuous or scale vari-
able that can be assumed to have a Normal distribution. However, the methodology is 
not confined to this situation. For example, the outcome could be an item with binary 
responses, in which case allowance would be made in the model-fitting process. This is 
done by specifying a link function. If the basic distribution is Normal the link is known 
as an identity link, which means the outcome is not changed for the fitting process. On 
the other hand, if the PRO item is binary, the basic distribution is often taken as bino-
mial and the corresponding link is the logit (logistic) transformation. The left-hand 
side of the above equations now becomes of the form loge[Q/(1 – Q)], with equation 
(14.14) corresponding to equation (14.3), giving

	 Q Q x tlog / (1 ) .e ji ji i jitα τ β ω−  = + + + 	 (14.14)

The technical details of the methods for fitting the above models become complex, 
but the processes are implemented in most statistical packages that provide GEE or 
multilevel models. The theoretical approach is a very general one, and other distribu-
tions can be accommodated by specifying suitable link functions. Statistical packages 
incorporating these methods usually provide a number of choices.

MANOVA

In the previous sections we have assumed that we are dealing with a single scale or 
item from a QoL instrument. However, most instruments comprise several items and 
scales that are assessed concurrently, ranging, for example, from two for HADS (anx-
iety and depression) to 15 with the EORTC QLQ-C30 (five functional scales, one 
global health status, three symptom scales and six items). Thus the complete analy-
sis of QoL data from a clinical study may seek to summarise multiple features, even 
though sensible study design should have specified in advance the one or two aspects 
of QoL that are of principal interest. The ‘all features’ analysis poses major problems 
for the investigator in terms of the magnitude of the task and of the complexity of the 
eventual summary. In principle at least, such a multivariable analysis can be drawn into 
a single one by extending the repeated-measures ANOVA to multivariate analysis of 
variance, or MANOVA.

MANOVA leaves unchanged the right-hand side of equations such as (14.5), which 
contain the independent or explanatory variables. However, the left-hand side now 
reflects all the PRO measures and not just the single dependent variable that we have 
so far included. This poses some immediate problems as the variables may not all be 
of the same type. That is, some may be binary, some ordered categorical and others 
continuous with a Normal distribution. However, MANOVA is not applicable unless 
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all of the outcome variables can be assumed to have the same form, or all are reduced 
to, say, binary form despite the resultant loss of information. This makes the method-
ology less attractive. Another major difficulty is that some but not all of the responses 
at a particular assessment may be missing; that is, some of the items within an other-
wise complete QoL assessment are not available, as opposed to the whole form being  
missing. The resulting patterns of items missing from forms and whole forms missing 
can be very complex.

In theory, a single MANOVA, perhaps focusing on a between-treatments compari-
son, reduces the number of statistical significance tests conducted on the data and 
so avoids some of the difficulties associated with multiple testing (see Section 11.9).  
Rasbash et al. (2015, Chapter 4) describe how the multilevel modelling approach can 
be extended to include this multivariate situation, which then removes the constraints 
of equal numbers of observations per subject but does not necessarily overcome dif-
ficulties associated with the pattern of missing values.

Perhaps the single greatest difficulty with the use of MANOVA arises when sum-
marising what has taken place. This approach is not easy to explain and the results are 
difficult to interpret, which detracts from its routine use.

Missing data

For reasons of clarity, when describing the techniques included in this chapter we 
have purposely omitted detailed reference to missing data but have recognised that the 
numbers of observations per subject may not be equal owing to attrition. For example, 
in a trial with patients in advanced cancer the attrition may be caused by the death 
of the patient. We have assumed that prior to this the QoL assessments are all com-
plete although not necessarily on schedule. In practice, there will be missing data and,  
depending on their type and volume, this may have a serious impact on the analysis 
and interpretation. The GEE and multilevel methodologies can be applied when some 
data are absent, but for every missing observation there is a reduction in the statistical 
power of the analysis and, perhaps more importantly, the possibility of bias leading to 
incorrect conclusions.

14.5  Modelling versus area under the curve

Modelling fits an overall (average) model to all patients, while allowing for random 
variability. Thus it implicitly assumes that all patients have broadly similar-shaped 
curves describing their experience. In contrast, area under the curve (AUC) condenses 
each individual patient’s measurements into a summary score, and thus the shape 
for each patient’s experience can be completely different. To that extent, AUC is the 
more robust of the two procedures. On the other hand, AUC loses the richness of the 
patterns over time, although this may to some extent be compensated by judicious 
accompaniment of graphical displays. Both AUC and modelling make a number of 
assumptions about linearity of responses, for example if a 100-point scale is being 
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analysed that a shift in score from 0 to 10 is as important as a shift from 50 to 60. 
Both methods work best if the outcome variable has many states and can therefore be 
assumed to be continuous, but are generally quite robust down to seven or even fewer 
categories. To some extent, increasing the number/frequency of assessments over time 
can compensate for loss of precision due to using scales with few categories – and it 
is clearly of advantage to ensure that multiple assessments are made over the periods 
of greatest interest and/or largest variation in the patient’s state. AUC makes explicit 
assumption about the equivalence of time-severity states, for example that six months 
with a score of 50 is equivalent to three months at 100 followed by three months at 0. 
However, equivalent – and equally dubious – assumptions are implicit in most model-
ling approaches.

Most modelling methods additionally assume that the residual unexplained vari-
ability follows a Normal distribution. Therefore floor or ceiling effects can present 
a serious threat to the validity of many models. AUC, by contrast, tends to follow a 
Normal distribution closely even when the original data are distinctly non-Normal; this 
facilitates the subsequent application of regression or other models on AUC scores.

The study protocol should specify the primary method analysis that will be used for 
hypothesis testing and claims concerning efficacy. It may well propose the use of addi-
tional methods for further exploration of the data and to support the primary analysis. 
Thus one pragmatic approach is to take advantage of the simplicity and robustness 
of AUC for the basic significance testing, and present this alongside a more detailed 
explanatory analysis that uses modelling, graphical displays and descriptive cross-sec-
tional estimates at critical time points.

14.6  Conclusions

It should be mentioned that a wide variety of names are used in the statistical litera-
ture to describe versions of the same model, or closely similar models. These names 
include mixed linear; two-stage random-effects; multilevel linear; hierarchical linear 
and random regression coefficient models. Some of these differ only by the technical 
way in which the standard errors are estimated.

One difficulty associated with powerful statistical packages, which can fit numerous 
and complex statistical models almost instantly, is that they may be used as a black box 
by the unwary. All of the models used in these procedures make assumptions about the 
nature of the data, and these assumptions are then reflected in the resulting output. In 
some situations, any visual inspection of the data will indicate what is and what is not 
sensible in relation to the non-error part of the model. For example, Figure 13.6c would 
suggest that baseline values are very similar across the treatment groups, but it may 
not be sensible to assume that PROs change linearly with time. An appropriate model 
would attempt to describe the early advantage in the reduction of HADS anxiety of 
the four-drug regimen. In addition, there is the problem of specifying the appropriate 
auto-correlation structure.
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There is a further difficulty. We have stated repeatedly that the major endpoint 
measures for any study of PROs must be pre-specified in the protocol, and this should 
also be true of the models proposed to describe these data. Our experience is that 
this is rarely done, one reason being the unfamiliarity of many investigators with 
the longitudinal values, in the context of any particular study, of the outcomes being 
assessed. When there is a lack of experience, simple cross-sectional analyses may be 
appropriate, with the more complex statistical models being regarded as tentative and 
exploratory. These models can then form the basis for a better understanding of the 
processes in future studies.
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Missing data

Summary

This chapter describes problems that arise through missing QoL assessment data. Situ-
ations are outlined where values are missing from otherwise complete questionnaires 
or where entire forms are missing. The main difficulty with either type of missing data 
is the bias they may introduce at the analysis stage. We distinguish QoL data that are 
‘missing’ through attrition because the patient has died, from that which is missing in 
the sense that the patient was alive and could have completed a questionnaire although 
one was not returned.

We describe how missing values may be estimated, often termed as imputed, to ease 
the statistical analysis, but stress that imputing values is no substitute for collecting 
real data.

15.1  Introduction

Difficulties with data collection and compliance are major barriers to the successful 
implementation of QoL assessments in clinical trials. The principal problem is that 
bias may be introduced through data that are missing because patients either drop out 
of the trial completely or do not participate comprehensively in the QoL assessment. 
The issue is then whether the data actually collected are representative of the QoL of 
all study patients, including those without data, in such a way that the analysis can be 
taken as a reliable reflection of the study outcome. If the missing data can be regarded 
as absent at random, they will on average be similar to the available data. If not, the 
summary derived only from those who provide data may no longer be representative. 
In this case, the available patient data will give a biased view that will not reflect the 
true situation.

Considerations of potential bias raise questions of whether the missing data are 
missing at random or not at random, and what proportion of missing data is accept-
able in a trial or study. In the context of a randomised trial, there is the question of the 
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impact of ignoring missing data. For example, what are the implications of assuming 
that if the patterns of missing data are similar in all treatment groups, treatment com-
parisons will be unbiased? If the impact of missing data cannot be ignored, how can 
one estimate or allow for the missing data when analysing the trial?

In some situations, the fact that data are absent may be informative, in that this tells 
us something about the patient from whom they are missing. We need to take note 
of this information. For example, suppose the likelihood of a missing assessment is 
high when a patient’s health deteriorates just prior to death. Then any analysis of QoL 
should take account of this pattern, and should recognise that missing values immedi-
ately prior to death are more likely to be associated with poor QoL. These values are 
likely to be different from those that are missing at times distant from death, when 
patients are expected to be healthier and when the reason for their being missing is 
more likely to be accidental.

QoL data are usually collected using a self-assessment questionnaire containing a 
series of questions. Critically, once a patient has missed a QoL assessment, the retro-
spective collection of the patient response is rarely possible although some other types 
of clinical data may often be collected from the patient’s routine medical charts.

There is a clear distinction between data that was anticipated but are missing, and 
data that are absent because they cannot be collected. In the context of a clinical trial 
for a life-threatening disease, QoL may be assessed at monthly intervals. However, 
data can be expected – and hence have the potential to be missing – only for the period 
while the patient is alive. Attrition due to death is covered in Chapter 17. In that situ-
ation, we do not anticipate equal numbers of observations per patient. Nor is it sensible 
to impute values of PROs in the period after death.

Complete-case analysis

The simplest approach to analysis when some data are missing is to remove all patients 
with incomplete data from the analysis. Then standard complete-data methods can be 
used. However, this leaves only those patients for whom the relevant QoL information 
is entirely complete. In studies of advanced disease, where the assessment just prior 
to death may be difficult, this generally means deleting an unacceptable number of 
patients. In addition, during follow-up of patients, those who are in a good condition 
might be expected to have less missing information than those who are not so well. 
Consequently, QoL as summarised from solely those patients who complete all ques-
tionnaires (complete-case analysis) may be overestimated, particularly at later time 
points. Therefore complete-case analysis has two distinct disadvantages: it reduces the 
sample size by excluding patients with incomplete data and may produce misleading 
results. Complete-case analysis is usually equivalent to assuming that, if we had been 
able to retrieve the data, the patients with missing information would have had the same 
values as the mean of the observed patients; this implies that the data are missing com-
pletely at random. This can be extremely bias-prone. We do not recommend it unless 
the proportion with missing data is very small, perhaps in less than 5% of patients.
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Available-case analysis

Suppose we wish to compare two treatments with respect to QoL at specific time 
points, using standard statistical tests such as the t-test or the Mann–Whitney test. One 
possibility is to include in the comparison all the QoL information available at that 
assessment time point and carry out a series of cross-sectional comparisons. Although 
the sample size may then vary at each assessment time point, this method makes use 
of all available data.

The main disadvantage of this method is that different sets of patients contri-
bute information at different time points depending on the pattern of missing data, 
and this makes comparisons unclear. Additionally, an overall comparison of treat-
ments is usually preferable to simple cross-sectional comparisons at specific time 
points because longitudinal analyses (as described in Chapter 14) allow general 
statements about treatment effects, are statistically more powerful and safeguard 
against multiple testing.

Summary measures

As discussed in Chapter 13, a widely used method for an analysis of data collected 
serially over time is to reduce the data on each patient to a single summary statistic, 
such as the area under the curve (AUC). In trials where a treatment is provided with 
the intent of palliating a certain symptom, another useful summary statistic may be the 
patient’s worst QoL score for that symptom. Alternatively, a certain change score from 
baseline may be defined as clinically or subjectively important, and the time taken to 
reach this change score may be calculated. The summary for all patients is then ana-
lysed using an appropriate univariate test.

However, such an approach does not necessarily circumvent the occurrence of miss-
ing values as the key response, perhaps the worst QoL score for that symptom, may be 
the very item that was missing. Thus this approach may also be prone to bias.

Imputing missing data

To avoid the problems with respect to complete-case and available-case analyses, an 
option frequently used is to replace the missing values by imputed values, estimated 
using the data that has been observed. Imputation can make use of available assess-
ments and other details about the patients whose values are missing, as well as infor-
mation from comparable patients who did not have missing data. This can include:

●● from the patient with missing data:

a.	 baseline characteristics, especially factors known to be of prognostic value
b.	 any available previous PRO measurements
c.	 any PRO measurements that became available at later assessments
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●● from other patients:

a.	 patterns of change over time
b.	 information from a subset of patients that has similar characteristics to the patient 

with missing data

The aim of imputation is to make full use of all available information, both from 
the patients with missing data and from other similar patients. Thus the imputed values 
may be regarded as the best estimate of what the missing values would have been, and 
these estimates are inserted into the data file to make a now augmented (and complete) 
file on which the analysis can then be undertaken.

In theory, carefully imputed values should be close to the presumed ‘true’ val-
ues that might have been observed, and therefore the biases should be less than 
when using a naïve analysis that ignores the missing data – such as the complete-
case analysis as described above. However, as we shall discuss, imputation carries 
a number of disadvantages, one of which is that it is easy to fall into the trap of 
thinking one has observed more data than was really collected; clearly it is not poss-
ible to increase the sample size by ‘creating’ new data, and so care must be taken to 
ensure that the appropriate degrees of freedom (df) are used throughout the analyses. 
Another danger is that many forms of imputation result in the underestimation of 
the sample standard deviation (SD); again, care must be taken to ensure a suitable 
correction factor is used.

The attraction of imputation is that, compared to the model-based approaches, it can 
be fairly simple to implement, the assumptions are explicit and the results are relatively 
easy to interpret. Therefore, despite its serious shortcomings, we present a detailed 
description of the major imputation methods.

15.2  Why do missing data matter?

Bias

The main cause for concern is that missing data may result in bias, and that the appar-
ent results of a clinical trial will not reflect the true situation. That is, we will not know 
if the difference we observe between treatments is a truly reliable estimate of the real 
difference. If the proportion of anticipated data missing is small, then, provided the 
data are analysed appropriately, we can be confident that little bias will result. How-
ever, if the proportion of data that is missing is not small, then a key question is: ‘Are 
the characteristics of patients with missing data different from those for whom com-
plete data are available?’ For example, it may be that the more-ill patients, or patients 
with more problems, are less willing or less able to complete the questionnaires satis-
factorily. Then the missing QoL assessments (had we been able to receive them) might 
have indicated a poor outcome whereas those that were completed may reflect a better 
QoL.
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Alternatively, perhaps patients without problems are less convinced about the 
need to return comprehensive information. In that case, the questionnaires that 
have been completed may reflect a worse QoL. In practice, there may be a mixture 
of these two possibilities within a particular trial. There may also be different pat-
terns among patients receiving the different protocol treatments within one trial. 
Any analysis that ignores the presence of missing data may result in biased conclu-
sions about both the changing QoL profiles over time and the between-treatment 
differences.

Consider a randomised clinical trial where we wish to estimate the overall QoL 
scores of patients at one time point and compare these between treatments. If we 
first consider one of the treatment groups, suppose that of the N patients recruited to 
that treatment M (<N) fail to complete the key QoL assessment. The proportion of 
missing data is P = M/N, and the proportion of patients with complete data is there-
fore 1 − P. We assume that the responding and the non-responding patients do have 
different mean QoL values and these are μResponding and μNotResponding respectively. 
The patients recruited to the trial comprise of a mixture of those who ultimately do 
respond and those who do not. The combined mean for all patients, were we able 
to observe it, is

	 P P1 Responding NotRespondingµ µ µ( )= − + .	 (15.1)

But here we are assuming that we do have responses from the non-responders. How-
ever, since one clearly cannot observe the non-responders, we cannot estimate μ with 
the QoL data recorded but only μResponding. Thus the bias, B, will be
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µ µ
µ µ µ

µ µ

= −
= − + −
= −

	 (15.2)

The bias will be zero if the mean scores of responders and non-responders are in fact 
equal, that is, μNotResponding  =  μResponding. However, since the non-responders do not 
record their QoL, we have no means of knowing if this is indeed the case. If there is no 
missing data, P = 0 and there will be no bias.

In a clinical trial comparing two treatments there will be a potential bias of the form 
of equation (15.2) for each treatment. The aim of a clinical trial is to estimate the dif-
ference in QoL between treatments. Thus the bias of this difference, for a trial compar-
ing a test and control therapy, will therefore be

	 B B BDifference Test Control= − . 	 (15.3)



398	 Missing data

The treatment comparison will be unbiased only if the bias happens to be the same (or 
absent) in both treatment arms, but again we have no means of knowing this.

There can be considerable bias in the estimated treatment difference if the propor-
tion of missing assessments differs substantially between the treatment arms. Informa-
tion regarding the reason for non-response, if known, may be useful in determining 
whether the analysis is biased or not. Additionally, if the probability of completing the 
QoL assessment is associated with patient characteristics measured at entry into the 
trial, such as their age, performance status or clinical stage of disease, it may be pos-
sible to reduce the bias by adjusting for these factors. It is important to note that the 
bias of equation (15.2), and hence (15.3) depends upon the proportion of missing data 

Example from the literature

Curran et al. (1998b) describe a sample of metastatic breast cancer patients 
who completed the EORTC QLQ-C30. Physical functioning (PF) was assessed 
using items Q1 to Q5. In this study the QLQ-C30 (version 2) was used, and 
these items were scored 1 (No) or 2 (Yes). Thus the minimum sum-score is 5 
and the maximum 10, which is then scaled to range from 0 to 100. There were 
86 patients completing the first, or baseline, assessment. However, following 
recruitment, some patients dropped out before the next QoL assessment was 
made while the remainder carried on until the next monthly assessment, fol-
lowing which others dropped out.

Figure 15.1 presents the mean PF score by time of dropout either by death 
or failure to complete the QoL assessment. Each profile is calculated from 
those patients completing all QoL assessments up to the specified number of 
months. As may be seen, those patients who provide information on all five 
PF assessments tend to have a higher baseline mean PF score than the other 
groups of patients. Thus there is an intrinsic bias that tends to include only 
the better patients into the QoL analysis at later time points. Care should 
therefore be taken in interpreting any graphs or tabular displays that include 
mean scores calculated from all the data available being regarded as if they 
were all from one homogeneous group albeit comprising subjects for whom 
differing numbers of QoL assessments are available. The overall mean PF score, 
the bold broken line of Figure 15.1, rises steadily from 55.4 at baseline to 70.8 
at the last assessment, suggesting an overall improvement in PF. This con-
trasts with the decline in PF that has occurred in, for example, those patient 
groups with three and four assessments in which the last observed mean PF 
dropped below previous levels. Since only a few patients dropped out at each 
month, the overall mean score is dominated by the patients who completed 
all five assessments.
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and not the number of observations. Bias cannot be reduced by increasing the total 
sample size.

Sample size

The other problem of missing data is more obvious: fewer data are available for analy-
sis, resulting in a loss of power to detect differences in a clinical trial or other study. 
Loss of power also means that confidence intervals about the parameter estimates will 
be wider. However, unlike bias, we can compensate for loss of power by increasing 
the sample size. This will ideally have been done at the time of preparing the protocol, 
when a realistic estimate of the amount of missing data should have been made, and 
the planned sample size increased accordingly.

Compliance

It cannot be emphasised too strongly, the best solution is to take every possible measure 
to improve compliance and to avoid, or at least minimise, missing data. In the chapter 
on planning clinical trials we describe methods for achieving this, and also caution that 
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Figure 15.1  Mean physical functioning (PF) score stratified by time of dropout due to 
death or non-compliance in patients with metastatic breast cancer. Source: Curran et al., 
1998a, Figure 14.2. Reproduced with permission of Oxford University Press.
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studies with much missing data will be prone to bias, difficult to interpret and hard to 
get published.

15.3  Types of missing data

In QoL situations there are two main types of missing data. These are termed unit non-
response and item non-response respectively. The first refers to a whole QoL assess-
ment missing when one was anticipated from the patient, and is commonly described 
as missing forms; the second arises when there are one or more missing items within 
an otherwise complete QoL questionnaire.

Patterns of missing data

There are several types of unit non-response, including those arising from inter-
mittent missing forms, patient dropout from the study, or patient late entry into the 
study. Consider a clinical trial where QoL is assessed every month for two years 
but a patient completed QoL assessments only at months 0, 2, 3, 5 and 6. There 
are intermittent missing questionnaires at months 1 and 4. At month 7 the patient 
dropped out of the study and therefore no additional QoL assessments were received; 
this is sometimes described as terminal missing. In contrast, suppose a patient was 
randomised into this trial in, say, September 2013 and an interim analysis of the 
ongoing trial was performed at the beginning of December 2013. In this case, the 
patient would have completed QoL assessments only at months 0, 1 and 2. This is 
a case of late entry into the trial since one could not expect more questionnaires for 
this patient at this time.

In some clinical trials of chronic diseases QoL assessments continue for the remain-
ing life of the patient. However, especially in advanced disease, it is evident that not 
all patients will complete the same number of assessments, sometimes for medical 
reasons but ultimately because of death.

Example

Curran et al. (1998b) give the Kaplan–Meier plot (Figure 15.2) of time on proto-
col treatment for breast cancer patients with newly diagnosed bone metastases. 
The median time on treatment was 6.4 months. The patients were requested 
to complete a QoL questionnaire pre-treatment, monthly for the first seven 
months and three-monthly thereafter until progression.

As may be seen, there is substantial attrition of patients, mainly due to 
progression of their disease. By month 13 only about 12 patients were still on 
protocol treatment.
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Mechanisms of missing data: MCAR, MAR, MNAR

Analysis of the patterns of missing PROs suggests that they do often occur at ran-
dom. Thus, although those patients who, perhaps through carelessness, omit answers 
to one question are more likely to omit answers to other questions, the reason for 
their so doing may be unrelated to the (unrecorded) level of the particular PRO. 
Also, although missing items within forms may take the pattern of a run of adjacent 
questions, often the questions are unrelated, implying oversight rather than inten-
tional omission. In both these circumstances, it is reasonable to assume the data are 
missing completely at random (MCAR). In formal terms, an item is MCAR if the 
probability of having a missing item is independent of that item’s scores on previous 
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observed questionnaires and independent of the current and future scores had they 
been observed.

In contrast, some items may present particular difficulties. For example questions 
concerning ‘sexual problems’ are frequently unanswered. One plausible assumption 
is that patients experiencing problems are likely to be more reticent concerning this 
question, and that missing items occur more frequently when there are indeed sexual 
problems. Thus missing might imply ‘very much a problem’. Alternatively, for those 
patients who are no longer sexually active, failure to respond may imply ‘not appli-
cable’. In either case, imputation should take this into account, as simply ignoring 
the presence of missing scores for these patients can result in misleading conclusions 
about the severity of problems. Such data are classified as missing not at random 
(MNAR) because the missing data depend on the value of the unobserved scores and 
so the missing data mechanism cannot be ignored.

Missing forms may be MCAR if, for example, staff simply forget to ask patients to 
complete questionnaires. However, it is frequently observed that patients who are most 
ill and have declining health may be less likely to complete questionnaires. For these 
patients, the fact that a form is missing may indicate that the patient has a poor QoL – 
that is, it is informative missing or MNAR.

In QoL studies it is likely that there are a number of non-ignorable mechanisms 
responsible for MNAR data. If sufficient data are collected concerning why QoL ques-
tionnaires have not been completed, one may be able to distinguish the missing data 
mechanisms. In some cases it may be possible to retrieve the PROs of a random sample 
of patients by using alternative modes of administration such as telephone interview or 
by obtaining proxy scores from members of a patient’s family or the responsible medi-
cal team. Then the reasons for missing items can be explored.

In some situations, the likelihood of having a missing score may depend on known 
factors and scores recorded at an earlier QoL assessment, but it may be independent of 
the current (not recorded) score. Such data are termed missing at random (MAR). An 
example might be age group: older people are more likely to have a higher rate of miss-
ing items and are also likely to have poorer physical functioning scores. Within any 
particular age group the data are MCAR, but when considering all patients together the 
data are MAR because those with missing values are likely to have lower true levels of 
PF than those with complete data.

When it comes to analysis, MCAR is frequently described as ignorable missing, 
because it is unlikely to result in biased analyses (although it will still cause loss of 
power). At the other extreme, MNAR is non-ignorable and may well bias any com-
parison. For the analyst, MNAR is the most challenging. In between, MAR is the 
focus of most analytical approaches because, firstly, MCAR is usually unrealistic, and 
secondly, MNAR is so problematic. Provided we can identify a sufficient number of 
explanatory factors, and provided the assumption of MAR is valid, we can use robust 
methods to impute estimated values for the missing items and missing forms.

Statistical tests are available to evaluate whether missing data are MCAR or MAR; 
it is not possible to test for MNAR as, by definition, the data that are needed to deter-
mine this are themselves missing. Fielding et al. (2009) describe four methods for 
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distinguishing MCAR from MAR and apply them to five clinical trials. They also 
emphasise the importance of minimising the amount of missing data by use of remind-
ers, and illustrate how the data recovered following a reminder may be utilised to fur-
ther test the nature of the missingness pattern.

15.4  Missing items

The problem

Experience reported for a variety of clinical trials suggests that, for most single items, 
between 0.5% and 2% of values will be missing from returned questionnaires. Thus, over-
all, the problem of missing items might seem relatively unimportant. However, for a ques-
tionnaire that contains about 30 questions, a one per cent missing rate for items would, if it 
occurred at random, imply that about a quarter of patients could have a missing item on their 
initial QoL assessment. A missing rate as low as 0.5% could result in 14% of patients with at 
least one item missing. Furthermore, at each subsequent assessment there may be additional 
missing data and many patients are likely to have some degree of missing QoL data.

Examples from the literature

Reports of clinical trials describe compliance in terms of missing forms, but 
rarely provide the corresponding information about missing items within forms. 
Other studies provide estimates of typical proportions of missing items. It 
is frequently observed that there can be high proportions of missing values 
for embarrassing questions, including items about sexual function and sexual  
activity. One might speculate that that those with sexual problems would be the 
most likely to choose not to respond, leading to potential bias in the analyses.

In two large prospective observational studies of male adult patients receiv-
ing haemodialysis for chronic kidney disease (Veteran End-Stage Renal Disease 
Study, 314 patients, and the DOPPS Dialysis Outcomes and Practice Patterns 
Study, 3,300 patients), QoL was measured with the KDQOL-SF. This consists 
of the SF-36 and 11 multi-item scales specific to patients with kidney disease 
(Saban et al., 2010). There were between 1% and 10% missing values for all 
items except for sexual function which was missing for greater than 50% of 
data. Between 0 and 5% of items were missing in the Veterans study, versus 6% 
and 10% for the DOPPS study. This difference may have been attributed to the 
Veteran data being collected over the telephone whereas DOPPS data were col-
lected via written questionnaire. Because of the large amounts of missing data 
from both the VETERANS and DOPPS samples for the sexual function subscale, 
sexual function was not included in the calculation of the KDCS.
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Thus, even when there is only a small proportion of missing values for each item, a 
substantial proportion of patients may have at least one or more missing items during 
their follow-up period. Analyses based solely upon those patients for whom complete 
data are available may find that the cumulative exclusion of patients results in too few 
patients remaining in the final analyses, and hence a severe loss of statistical power. In 
addition, there is a process of selection of patients into the analysis since only those 
with complete data are retained. The subsequent subset of patients who have complete 
data may not be representative of all the patients in the trial.

15.5  Methods for missing items within a form

When individual items from a multi-item scale are missing, there are problems in 
calculating scores for the summated scale. In such cases, methods have been developed 
to impute the most likely values for these items. Such methods are no substitute for real 
observations but merely a device to facilitate analysis. The objective of imputation is 
to replace the missing data by estimated values that preserve the relationships between 
items, and which reflect as far as possible the most likely true value. If properly carried 
out, imputation should reduce the bias that can arise by ignoring non-response. By 
filling in the gaps in the data, it also restores balance to the data and permits simpler 
analyses. There are several approaches that can be used for imputation but the final 
choice is likely to depend on the particular context.

Treat the score for the scale as missing

If any of the constituent items are missing, the scale score for that patient is excluded 
from all statistical analysis. When data are MCAR, this reduced dataset represents a 
randomly drawn sub-sample of the full dataset and inferences drawn can be considered 
reasonable. This exclusion method is the simplest approach to the analysis, but results 
in overall loss of data (and so loss of statistical power in the analysis) because the 
scores based upon several items are excluded whenever even a single item is missing. 

Two thousand Dutch households were surveyed by van de Poll-Franse et al. 
(2011), to determine normative values for the EORTC QLQ-C30 and the EORTC sexu-
ality items. The authors found that 197 respondents (11%) chose not to respond 
to the questions on sexual interest and activity. These individuals were more often 
female (14% versus 9% male; p = 0.002) and, on average, younger (p < 0.0001), less 
well educated (p < 0.0001), and reported a lower net family-income (p < 0.0001) 
than those who completed these questions. This study investigated Dutch patients; 
it is likely that the percentages could be very different in other countries or cultures.
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Far more important, however, is that it may lead to serious bias when there is an  
informative reason for the item being missing.

Simple mean imputation

For those QoL instruments that use unweighted sum-scores, the missing scale score can be 
estimated from the mean of those items that are available. This process is usually restricted 
to cases where the respondent has completed at least half of the items in the scale.

If no items are missing, the raw score (RS) is calculated as the average of the items:
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where the Qi are the individual response to the L items in the domain. This is then 
transformed to the standardised score (SS) over the range 0 to 100 by
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where the range is the difference between the largest (maximum) and smallest (mini-
mum) scores possible.

Example

The emotional functioning (EF) scale of the EORTC QLQ-C30 is formed by sum-
ming responses to the L = 4 items of Figure 15.3. These items are all on four-
point scales scored from 1 to 4, and hence the range is 4 − 1 = 3. One patient 
indicated Q21 =1, Q23 = 2 and Q24 = 2 but left Q22 as missing. Taking account of 
the missing response,

	 RS Q Q Q= + + = + + =( ) / ( ) / . ,21 21 21 3 1 2 2 3 1 6677

and

	 SS = − − × ={ ( . ) / } .1 1 6667 1 3 100 77 8

Not at 
all

A  
little

Quite  
a bit

Very 
much

21. Did you feel tense?   1✓ 2 3 4
22. Did you worry? 1 2 3 4
23. Did you feel irritable? 1    2✓ 3 4
24. Did you feel depressed? 1    2✓ 3 4

Figure 15.3  The emotional functioning (EF) scale of the EORTC QLQ-C30.
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If no more than half the items are missing, the RS is still calculated from equation 
(15.4) but with L replaced by the number of items available, and only the correspond-
ing PRO values actually observed in the numerator. The corresponding value of RS is 
then substituted directly into equation (15.5) to obtain the SS.

One disadvantage of simple mean imputation is that, as in this example, it can result 
in some strange scores, such as 77.8, that are intermediate between the scale scores 
calculated for patients with complete data. This can be inconvenient when tabulating 
summary scores against treatment or other factors.

Hierarchical scales

Simple mean imputation is a very easy method to implement. However, there are 
a number of situations in which this may result in misleading values of the result-
ing QoL scores. For example, the EORTC QLQ-C30 scale for PF is hierarchical in 
that it contains an implicit ordering of responses. Thus if a patient replies ‘Yes’ to 
Q3 about difficulties with a short walk but does not answer Q2 about taking a long 
walk, it would not be sensible to base an imputed value for this missing response on 
the average of all the answered items. Clearly, those who have difficulty with short 
walks would have even greater problems with a long walk. In this case, the structure 
of the QoL questionnaire may imply that the replies to some questions will restrict 
the range of plausible answers to other questions. Thus if we assume the response to 
‘long walk’ is missing but the patient responds as having difficulty with short walks, 
it would seem reasonable to assume that long walks would also cause difficulty and so 
we would accordingly impute a value of 2. On the other hand, if the response to ‘short 
walk’ is missing but the subject responds indicating no difficulty with long walks, we 
may assume there is unlikely to be difficulty with short walks and would impute a 
value of 1.

In contrast, simple mean imputation may still be more appropriate for the other two 
possible situations, that is, no difficulty with short walks but ‘long walk’ is missing, 
and difficulty with long walks but ‘short walk’ is missing.

Regression imputation

Regression imputation replaces missing values by predicted values obtained from a 
regression of the missing item variable, QMiss, on the remaining items of the scale. 
The data used for this calculation are from all those subjects in the study with com-
plete information on all variables within the scale. More generally, regression imputa-
tion is a modelling technique. First the relationship of the missing item to the other 
items in the subscale is estimated using regression and the data from other subjects. 
Then the values of the non-missing items within the scale for the subjects with the 
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missing response are substituted in this regression equation, to predict the value of 
the missing item.

Example

Suppose the missing item is Q22 from the EF scale of Figure 15.4, but the 
patient completed questions Q21, Q23 and Q24. Then the corresponding multiple 
regression equation required is

	 Q Q Q Q ,22 0 1 21 3 23 4 24β β β β= + + + 	 (15.6)

where the β0, β1, β3 and β4 are the regression coefficients. This equation is 
then fitted to the data obtained from those patients who have complete data 
on all items.

Suppose equation (15.6) has been estimated using data from the other 
patients, giving Q22  =  0.3 + 0.5Q21+ 0.4Q23 + 0.6Q24, and that the current 
patient had responded with Q21 = 1, Q23 = 2 and Q24 = 2. Substituting in these 
values, we have the imputed value for Q22 = 0.3 + (0.5 × 1) + (0.4 × 2) + (0.6 
× 2) = 2.8. In practice, this imputed value will be rounded to 3, the nearest 
integer, so that finally the scale score for this patient is imputed as 1 + 3 + 2 
+ 2 = 8.

Mean imputation of equation (15.4) can be regarded as a special case of regression 
imputation in which β0 = 0 and, for the above example, β1 = β3 = β4 = 1/3. In general, if 
L items in a scale are all scored with the same range and one item is missing then, apart 
from β0 = 0, the remaining βs will all equal 1/(L − 1).

Regression imputation has the advantage that it can easily be extended to allow 
other predictive factors to be added to the equation, for example age, gender or stage 
of disease.

Score depends upon external variables

The value of an item may be more strongly associated with variables external to the 
scale – for example clinical or demographic variables of the patient – than with other 
items within the scale. In this case, rather than use the associated QoL variables on the 
right-hand side of regression equation (15.6), it may be more appropriate to predict the 
missing item by using only the clinical or demographic variables.
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Informative censoring

In situations where the fact that the item is missing may be informative, it would not be 
appropriate to assume that the average value (or a regression model) of the other items 
should be used to impute the missing score. If ‘missing’ tends to imply that the patient 
has problems, the estimated score should in some way reflect this. The term censoring 
here indicates that the item is missing, albeit in circumstances when it was anticipated 
since the QoL assessment was essentially complete except for this item. The presump-
tion of informative implies that this item was deliberately skipped rather than merely 
overlooked. If those who have sexual problems were embarrassed and likely to skip 
questions about decreased interest, missing would be informative and might imply 
likely problems.

Item ‘not applicable’

It is questionable how to estimate scale scores when some constituent items are miss-
ing through not being applicable. For example, patients may return missing for Q1 in 
the EORTC QLQ-C30 PF scale because they never try to perform strenuous activities. 
It is debatable as to how best to allow for these non-applicable items, and the decision 
will partly depend upon the scientific question being posed. However, in the example 
cited, it might be argued that if ‘not applicable’ implies limitations in terms of PF it 
would be reflected by the other items in the scale, in which case regression imputation 
could still be appropriate.

15.6  Missing forms

The problem

Missing forms tend to be a far more serious problem than missing items. Forms are 
more frequently missing, and if a form is missing so are all constituent items on it. 
Forms may be essentially MCAR if, for example, the patient was inadvertently not 
asked to complete the QoL assessment for a reason unrelated to his or her health sta-
tus. On the other hand, they may be missing at critical stages depending on the rela-
tive health of the patient at the scheduled assessment time. For example, they may be 
missing just before death. Intermittent forms may also be missing because the patient 
feels too ill and so unable to complete the questionnaire, or perhaps feels so well 
that the assessment no longer seems relevant. Hospital staff may also avoid giving 
the form during a period of severe illness of the patient. Such patients may, however, 
complete the succeeding form as their relative health state may have changed by that 
time. These types of missing form will usually not be MCAR or MAR, but are more 
likely to be MNAR.
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Example from the literature

Curran et al. (2009) explored the nature of missing data in a clinical trial of pal-
liative chemotherapy for gastric cancer. A dichotomous indicator variable was 
used to represent dropout (no more forms returned). Table 15.1 shows logistic 
regression used to explore the effect of QoL scores on dropout.

The authors comment that the two QoL terms in the model, ‘difference in QL’ 
and ‘sum of QL’, were significant indicating that if the sum of the two previous 
QoL scores were low then the probability of dropout was high and if there was 
a decrease in QoL score from the previous assessment then the probability of 
dropout was also high. They concluded that the missing data are not MCAR and 
“caution needs to be taken when analysing the QoL data”.

Table 15.1  Logistic regression to explore the nature of missing data in a trial of palliative 
chemotherapy for gastric cancer

Parameter Estimate Standard error Chi-squared p-value

Intercept 0.015 1.006
Time −0.235 0.254 0.854 0.356
Treatment −0.086 0.368 0.054 0.816
Time × treatment 0.160 0.110 2.124 0.145
Difference in QoL −0.018 0.006 8.231 0.004
Sum of QoL −0.008 0.003 7.156 0.008

Source: Curran et al., 2009, Table 4.CC NC 4.0 (<http://creativecommons.org/licenses/by/4.0/>). 
Reproduced commercially with kind permission from Springer Science and Business Media.

Examples from the literature

Missing data has long been recognised as a major problem. Ganz et al. (1988), 
using the FLIC scale in a study of patients with lung cancer, report that while 87% 
of patients returned a baseline questionnaire, overall only 58% of expected forms 
were completed. Hürny et al. (1992), with similar patients, report a compliance 
rate of about 50% when using the EORTC QLQ-C30 with a linear analogue scale 
(LASA) and a mood-adjective checklist (BF-S). They note that the institution, not 
the patients, appeared to be the major variable contributing to high or low compli-
ance rates. 

Geddes et al. (1990), on behalf of the UK Cancer Research Campaign, report 
68% compliance again in patients with lung cancer. They opine that patients 
find it difficult to continue completing the assessment when they become ill 
with progressive disease, “and this poses a methodological problem for investi-
gators who wish to assess effects throughout an entire treatment programme”.

http://creativecommons.org/licenses/by/4.0/
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Randomised phase III trials in cancer patients normally require several hundreds of 
patients to be recruited, and thus such trials are frequently organised on a multicentre 
basis. Whereas a single-centre trial may be able to assemble an enthusiastic team that 
is committed to assessing QoL, there may be severe problems in motivating some par-
ticipants of larger multicentre trials. This can lead to major problems in compliance. 
In general, multicentre trials are the most demanding environment for conducting QoL 
assessments.

15.7  Methods for missing forms

Statistical methods have been developed to impute the most likely values for missing 
data when whole QoL assessments are missing. We have shown how values may be 
calculated for missing items within a form, and how these methods may or may not 
make use of other information collected on the same form. In contrast, when a whole 
QoL assessment is missing, the imputation procedure must use information from other 
similar patients, values from previous and/or later assessments by the same patient, or 
a mixture of both. We note that, if items are used only as components of a scale, it may 
not be necessary to impute values for those items, only for the scale score itself. As 
with missing items, once values have been imputed for the particular missing assess-
ments they may then be stored with the remaining data to give the appearance of a full 
dataset.

15.8  Simple methods for missing forms

Last value carried forward

One straightforward imputation technique is the last value carried forward (LVCF) 
method. The values that were recorded by a patient at the last previously completed 
QoL assessment are used for items on the current (missing) QoL assessment. Thus, for 
example, if a patient completes the first assessment but fails to complete the second 
one, the patient’s score from the first assessment would be used as the imputed value 
for the second (missing) assessment.

A key disadvantage of the LVCF method is that it assumes the patient’s score 
remains essentially constant over time. In the above example, we may be reasonably 
confident of the imputed value for the first missing state but perhaps not so certain of 
the second imputation, as that (missing) assessment was followed by a worsening 
state 2. An imputation method that took account of what follows might have imputed 
2 here rather than 1.

It should be noted that had the second instance of state 3 been missing in the above 
sequence, then, if the patient were known to be alive at that time, the only possi-
ble option for the LVCF or any other method would be 3. Rarely will such certainty 
regarding the true value be justified.
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Example from the literature

Curran et al. (1998a) describe an example in which the EORTC QLQ-C30 PF scale 
was used to assess QoL in post-orchidectomy patients with poor-prognosis  
metastatic prostate cancer. The individual items were summed and then trans-
formed to range from 0 to 100. These scores were then used to define four  
categories, or states, coded as 1 = Good PF (score ≥ 60), 2 = Poor PF (score < 60), 
3 = Progression and 4 = Death.

A typical patient might therefore have a sequence of states as shown here:

1 1 2 1 − − 2 2 3 3 4

This patient initially has Good PF (state 1), drops temporarily to Poor (state 
2) and then improves. There are then two missing QoL assessments, after which 
the patient is in state 2, has disease progression (state 3) and eventually dies 
(state 4). Note that once a patient enters state 3 (progression) or state 4 
(death) the patient cannot return to one of the previous states.

Using LVCF, the first missing value would be replaced by a state 1. This gives 
a still incomplete sequence, and so the LVCF method can be applied a second 
time to obtain:

1 1 2 1 1 1 2 2 3 3 4

If an assessment is missing after a patient has commenced a treatment that is known 
to have major side effects, it would seem silly to impute an LVCF value based on the 
previous pre-treatment assessment. More generally, it is apparent that LVCF is likely 
to be biased whenever there are known to be consistent changes over time that may 
affect the items of interest. An example is progressive chronic diseases, where patents 
may be expected to deteriorate over time.

In summary, LVCF is one of the simplest approaches, but in many situations 
it will be inappropriate and cannot in general be recommended. When it is used, 
care should be taken to evaluate and justify the inherent assumptions regarding the 
validity of LVCF.

Sample-mean imputation

In the context of a missing form, sample-mean imputation is usually the replace-
ment of missing QoL scores by the mean score calculated from those patients who 
did complete the QoL assessment. That is, if there are N patients for QoL assessment 
of whom M have missing values, the mean QN M−  from the N − M patients with QoL 
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observations is used for imputation. This procedure is also called mean value substitu-
tion, or simply mean imputation.

Example

At a particular assessment time, the mean QoL score (on a scale 0–100) was 
Q  = 20 for those patients who were assessed. Thus, for those patients for whom 
the assessment is missing, the corresponding score will be imputed as Q = Q = 20.

Example

At the time of a particular QoL assessment there were N = 10 patients, but M = 2 
of these failed to complete the assessment. The eight observed and ordered QoL 
values were 1, 1, 2, 2, 2, 2, 3 and 3, with mean = 2.0 and SD8 = 0.7559.

The M = 2 missing values are both imputed as Q  = 2.0, giving the full aug-
mented ordered dataset of 1, 1, 2, 2, 2, 2, 2, 2, 3, 3. The mean of the result-
ing ten values remains as 2, but the corresponding SD is reduced to 0.6667. 
However, f = −( ) − −( ) =10 1 10 2 1 1 1339/ .  and the adjusted SD = 1.1339 × 

0.6667 = 0.7560. This also equals the SD8 of the eight values actually observed.

A feature of mean imputation is that the estimate of the mean of the augmented data-
set remains the same as the mean Q that was calculated for the original non-missing 
data. In contrast, the estimate of the SD will be reduced artificially as the imputed 
values are all placed at the centre (mean) of the distribution. This can lead to distorted 
significance tests and falsely narrow confidence intervals (CIs).

However, the SD can be corrected by two equivalent methods. Thus (i) either the 
SD of the N − M non-missing values (denoted SDN−M) is retained and used, or (ii) the 
SD of the now complete set of N augmented observations (which includes the missing 
M) is corrected by multiplying by f, from equation (15.7), to give SDN−M once more.

	 f
N

N M

1

1
.=

−
− −

	 (15.7)

As we have indicated, the two methods are equivalent. In some situations, particularly if 
the dataset is large, it is easiest to add the imputed values to the data file merely to facilitate 
analysis by standard computer packages. In this case, the adjustment method may be the 
most convenient, as it can be applied to all variables including those that have no missing 
values, since when M = 0 we have f  = 1, and the calculated SD remains unchanged.
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Example

For the sequence 1, 1, 2, 1, −, −, 2, 2, 3, 3, 4 discussed previously, horizontal 
mean imputation would give 1, 1, 2, 1, 1.25, 1.25, 2, 2, 3, 3. Here 1.25 is the 
mean of the first four item values in the sequence. In practice, these values 
could be rounded to the nearest integer before being added to the augmented 
dataset.

Example

For the sequence 1, 1, 1, 1, 2, 2, 2, 2, 3, −, 4, horizontal mean imputation 
would result in 1, 1, 1, 1, 2, 2, 2, 2, 3, 1.67, 4. Here, 1.67 (rounded to 2 
before addition to the dataset) is the mean of the first nine item values in the 
sequence. This is clearly not a good estimate in this situation.

It is also important to note that the correlation between different scores (or items) 
may be affected by the imputation. Imputing a missing value by the corresponding 
mean value of the remainder of the data will tend to reduce the size of the observed 
correlation coefficient if the calculation is carried out on the augmented dataset.

The sample-mean imputation method that we have described here uses the full data-
set from all available patients, but a modification is to take only the mean score of a 
subset of patients. Patients with similar characteristics to the patient with the missing 
data would be chosen. The presumption here is that matched patients will behave in a 
similar way; a generalised version of this approach is discussed under pattern mixture 
models.

Horizontal mean imputation

Unlike the LVCF method, sample-mean imputation takes no account of the longi-
tudinal nature of an individual’s QoL data. Thus an alternative to sample-mean 
imputation is to impute the missing value from the mean of the patient’s own pre-
vious scores. This method is sometimes termed horizontal as it takes into account 
the longitudinal nature of the QoL data. It reduces to the LVCF method if there is 
only one previous assessment available or if there has been no change in PROs over 
the assessments to date.

The same reservations as for LVCF apply here. Thus horizontal mean impu-
tation is not recommended if there is evidence of a systematic decline or fall in 
PROs over time.
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When imputing intermittent missing items, this (and other) approaches may readily 
be extended to make use of information from later assessments in addition to the pre-
vious ones.

Regression models

Regression models provide a wide range of methods for improving imputation. 
The method most frequently entails using those patients for whom the value of the 
item in question is known at the time point of interest, and developing a regression 
model for ‘predicting’ this value. The regression equation is then applied to the 
patients with missing values of the item, to obtain an estimate of the unknown 
value. In its simplest form, regression could be used as a substitute for LVCF. Then 
we would use the patients with complete data at the time point of interest, calculate 
the regression equation based on the previous assessment, and apply this equation 
to impute values for patients with missing forms. This adjusts for any shift or trend 
in the general levels of QoL in the patient population over time and overcomes that 
major disadvantage of LVCF. It also makes use of knowledge about each patient’s 
previous score.

This simple form of regression imputation can be extended, by exploring and testing 
for other predictive indicators. The regression models may contain baseline character-
istics or other prognostic factors as covariates, and may include other previous or later 
assessments in addition to the previous value. If the sample size is sufficiently large, 
separate equations may be developed for the randomised treatment arms; failing this, 
creating dummy variables for the treatment effects enables the exploration of interac-
tions between the treatments and the covariates.

By including the relevant factors, regression modelling can be efficient if the pattern 
of missing is MAR. One major disadvantage is that, as with sample-mean imputation, 
the SD will be artificially reduced; however, it is now less clear what correction factor 
to use. It is even less clear how to correct the standard errors (SEs) of estimated param-
eters, and thus how to calculate p-values. Despite this, regression modelling provides a 
useful stage in the analysis of data when there are missing values.

Example

Figure 15.4 illustrates the different methods of imputation for a single 
patient. The upper trace shows the mean values for patients with complete 
data. Beneath is a patient who completed two assessments, but with a miss-
ing form at month 6. It can be seen that the method of imputation makes a 
huge impact on the value that is generated. Imputation is clearly dubious for 
predicting values of a single patient, as the implicit assumptions markedly 
affect the outcomes.
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Figure 15.4  Illustration of simple imputation methods: imputing an item for a single 
patient.

Although one might hope that imputation would perform more satisfactorily when 
applied to the whole sample, a few points should be noted.

	 1.	 If the patients with the poorest QoL tend to have missing forms, the sample mean 
will consistently overestimate the missing values.

	 2.	 If patients fail to return forms when their health is declining, both horizontal mean 
and LVCF will overestimate the true values.

	 3.	 If QoL for the whole sample is declining over time, simple regression will tend to 
result in lower estimates than the other methods.

15.9  Methods of imputation that incorporate variability

Markov chain imputation

In the methods described so far, the imputed values will be the same for any two 
patients with the same profile of successive non-missing values. Such methods are 
termed deterministic. A major disadvantage of all these simple methods is that the 
variance of the observations is underestimated. This can result in a falsely reduced SD, 
artificially narrow CIs and misleading significance.
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Another approach to imputation is to use the concept of a so-called Markov chain. 
This reflects the possibility that the two patients with missing assessments may have 
differing QoL profiles had they been recorded. This method assigns, for a patient in a 
particular QoL state at one assessment, probabilities of being in each of the possible 
states, including the same, at the next assessment. These probabilities are termed tran-
sition probabilities and are often described in percentage terms.

Example

In the prostate cancer example of Curran et al. (1998a), above, suppose that 
at one QoL assessment there are 100 patients in state 1 and that at the next 
assessment 65 of these remain in state 1. Of the remaining patients, 20 move to 
state 2, 12 to state 3 and three to state 4. The corresponding transition prob-
abilities are 65/100 = 0.65, 20/100 = 0.20, 12/100 = 0.12 and 3/100 = 0.03, 
that is, 65%, 20%, 12% and 3% respectively.

Example

In fact, the observed transition probabilities for the prostate cancer trial are 
shown in Table 15.2. These were constructed from all the data available from 
QoL assessments four, five and six combined together. This table is referred to 
as a matrix of transition probabilities. Thus at this stage of the trial a patient 
with Good PF has a transition probability of 76.0% for remaining in the same 
state, whereas the transition probability for Progression is 12.6%. For a patient 
already in Progression, the probability of remaining in that state is 91.4% and 
the transition probability of Death of 8.6%. These probabilities can be used to 
impute missing QoL data.

Table 15.2  Transition probabilities between states, expressed as percentages, for a prostate 
cancer trial

Resultant state

1 = Good PF 2 = Bad PF 3 = Progression 4 = Death

Initial state:
1 = Good PF 76.0 11.4 12.6 0.0
2 = Bad PF 11.1 75.0 13.9 0.0
3 = Progression 91.4 8.6
4 = Death 100.0

Source: Curran et al., 1998a, Table 14.1. Reproduced with permission of Oxford University Press.
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Example

In the missing pattern above, the fifth and sixth QoL assessments were missing, 
but we know the patient is alive and without progression. Therefore we know 
that the missing states must be replaced by either a 1 or a 2 since a patient 
cannot return to state 2 from either Progression or Death.

1 1 2 1 − −

The state observed immediately before the first missing QoL value was 1. Thus 
the only possible transitions from the fourth to the fifth QoL assessment are, 
from Table 15.2, 1→1 (76.0%) and 1→2 (11.4%). However, these transition 
probabilities total 87.4% rather than 100%. Therefore we divide each of the 
two possible transition probabilities by 87.4 to obtain: 76.0/87.4 = 0.87 or 
87% and 11.4/87.4 = 0.13 or 13%.

Example

Suppose the first random number is 10, which is ≤ 87. Then state 1 is imputed, 
giving:

1 1 2 1 1 −

Since the fifth assessment was imputed as state 1, the transition probabilities  
for the sixth assessment remain as 87% and 13%. Thus to complete the sequence 
the same procedure is followed. If the second random number is 68 and is thus 
≤ 87, state 1 is again imputed and we have:

1 1 2 1 1 1

This is the same sequence that was generated using the LVCF method. However, 
this need not necessarily have been the case had other random numbers been 
drawn. Thus all the alternatives to 1  1 are possible; that is, 1  2, 2  1 and 2  2. 
As a consequence, a second patient with exactly the same QoL profile may have 
a randomly different missing sequence imputed.

To impute the missing values, we make use of these transition probabilities 
together with a table of random numbers or a computer random number generator, 
giving random numbers from 0 to 100. If the random number so generated is less 
than or equal to 87, we impute for the missing QoL state as state 1; otherwise we 
impute state 2.
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In the method just described, we used the knowledge that the missing values could 
not have been either state 3 or state 4. Thus we restricted and simplified our transition 
matrix accordingly. However, we ignored the fact that we have additional information 
about the next (seventh) state, which had been reported to be 2. More comprehensive 
calculations are shown in the next table, improving the imputation process by taking 
into account the known value of the observation following the missing values.

Example

In the incomplete patient sequence given previously 1 1 2 1 – – 2 2 3 3 4, 
the last value before the missing value was state 1 and the first value after 
the missing sequence was state 2. The four possible intermittent sequences of 
1 1, 1 2, 2 1 and 2 2 for the missing values are given in Table 15.3, with the 
associated transition probabilities. The probability of each sequence occurring 
is then calculated by multiplying the corresponding transition probabilities. 
Thus for the first sequence, that is 1  1 (moving from state 1 to 1, then 1 again, 
and ending in 2), the probability is: 0.870 × 0.870 × 0.130 = 0.098. Once the 
probabilities for all possible sequences are calculated, they are adjusted to 
ensure that they sum to 1 or 100%. Thus the adjusted probability for the first 
sequence is 0.098/(0.098 + 0.099 + 0.002 + 0.099) = 0.329. Finally, to facili-
tate the choice of sequence using random numbers, the cumulative probability 
is then calculated by adding the probabilities of the individual sequences.

Using random number tables, we select a number randomly between 000 to 999. 
If this number is in the range from 001 to 329, sequence 1 1 is imputed. Similarly, 
if from 330 to 661, the sequence is 1 2; if from 662 to 668, the sequence is 2 1; 
and, if from 669 to 999 or equal to 000, the sequence 2 2 is chosen.

Suppose the random number generator gave 831. This is in the range 669 to 
999 and so 2 2 is chosen for the imputation, giving the complete sequence of 
states for the patient as:

1 1 2 1 2 2 2 2 3 3 4

Table 15.3  Probabilities of sequences for imputing values for missing data in the 
prostate cancer trial

Possible 
sequence

All possible sequences with associated 
transition probabilities Probability

Adjusted 
probability

Cumulative 
probability (%)

1   1 1 0.870* 1 0.870 1 0.130* 2 0.098 0.329 32.9
1   2 1 0.870 1 0.130 2 0.871 2 0.099 0.332 66.1
2   1 1 0.130 2 0.129 1 0.130 2 0.002 0.007 66.8
2   1 1 0.130 2 0.871 2 0.871 2 0.099 0.332 100.0

*From Table 15.2: 76.0/(76.0 + 11.4) = 0.870 and 11.4/(76.0 + 11.3) = 0.130.
Source: Curran et al., 1998a, Table 14.3. Reproduced with permission of Oxford University Press.
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If there are more than one successive missing items, an alternative method of impu-
tation is to calculate probabilities for the possible sequences that may be imputed for 
the missing sequence. The sequence chosen to impute the missing sequence is itself 
chosen at random in proportion to the corresponding probability.

There are several difficulties with this approach. One is its complexity com-
pared with methods such as LVCF. A second difficulty is the assumption about the  
relative stability of transition probabilities over time. In our example, Table 15.2 
was calculated using only information from QoL assessments four, five and six. It 
was judged that the transition probabilities would be stable over this period. How-
ever, perhaps probabilities are different for the first three assessments or from the 
seventh assessment onwards. It is difficult to make decisions about the stability of 
the transition probabilities over time. Another problem is that scales often have 
larger numbers of categories, leading to many cells in the corresponding table of 
transition probabilities. Consequently, these probabilities may be based upon rela-
tively few observed patients and may be unreliable, making their use for imputation 
problematic.

However, an important advantage of this method over the deterministic LVCF or 
mean imputation methods is that the variability of the data is preserved in the aug-
mented dataset, and hence the value of the SD is maintained.

Hot deck imputation

Hot deck (a pack of playing cards) imputation selects at random, from patients with 
observed QoL data, the QoL score from one of these and substitutes this as the 
imputed value for the patient with the missing QoL assessment. The hot deck liter-
ally refers to the deck (here computer file) of responses of patients with observed 
data from which the missing QoL score is selected. The particular deck chosen may 
be restricted to those patients that, in some way, are similar to the patient with the 
missing QoL score.

Curran et al. (1998a) describe how this method can be extended to more-complex 
situations with differing imputation probabilities assigned taking into account WHO 
performance status, treatment group and initial pain levels. This basic form of hot deck 
imputation has been largely superseded by more sophisticated computer-intensive 
variants.

Example from the literature

Curran et al. (1998a) indicate that in patients with prostate cancer the baseline 
WHO performance status (PS) affects the probability of being in a subsequent 
QoL state. Thus in Table 15.4, 73.3% of patients with PS = 0 at baseline were 
state 1 (Good PF), but this was so for only 20.0% for those with PS = 2.
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EM algorithm

When the missing values arise through a known censoring mechanism, the so-called 
EM algorithm can be used to impute missing values. (The E stands for expectation and 
M for maximum likelihood, but these details need not concern us.) The EM algorithm 
is particularly useful when many patients have missing forms at different assessment 
points, because then there may be few patients with complete data from whom we are 
able derive hot decks or transition probabilities.

To apply the EM algorithm, we first need to decide upon an imputation method 
for estimating the missing items. This could be one of the methods described above, 
or could be multiple regression as described for missing items. If using regression 
models, we can of course include various factors that are expected to be predictive 
of the PROs, for example age, gender, stage of disease. Let us assume we decide to 

To impute a missing value using information about the baseline PS, we 
first identify the corresponding ‘deck’ of patients. Thus if a patient with a 
missing baseline QoL value has PS = 0, the deck consists of patients with 
this PS. Table 15.4 shows that, for this deck, state 1 (Good PF) would be 
imputed with probability 0.733 and state 2 (Bad PF) with probability 0.267. 
On the other hand, if the deck were PS = 1, states 1 and 2 would be imputed 
with probabilities 0.476 and 0.524 respectively. Finally, if the deck is PS = 2, 
states 1 and 2 would be imputed with probabilities 0.200 and 0.800 respec-
tively. Although the possible imputed values (states 1 or 2) remain the 
same for all patients with missing assessments, the probabilities attached 
to the (two) alternatives within the deck are varied according to baseline PS 
values. Thus the three PS decks considered here all consist of two types of 
‘cards’, Good or Bad PF, but these are present in the three decks in differing 
proportions.

Table  15.4  Percentages of patients with good or bad physical 
functioning (PF), by WHO performance status. These percentages are 
used for the hot deck imputation

WHO Performance Status 1 = Good PF 2 = Bad PF

0 73.3 26.7
1 47.6 52.4
2 20.0 80.0

Source: Curran et al., 1998a, Table 14.4. Reproduced with permission of 
Oxford University Press.
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use regression and have developed a regression model. The procedure of the EM 
algorithm is:

	 1.	 Replace all missing values with the estimates that are predicted from the regression.

	 2.	 With the new dataset, recalculate the parameters of the regression equation.

	 3.	 Now repeat from (1), using the revised regression equation as just calculated 
in (2).

This iterative procedure is continued until the values put back do not differ from those 
just taken out. The process is then deemed to have converged.

When using regression methods, the EM algorithm will usually converge after only 
a few cycles. When there is much missing data, the resultant estimates will be far more 
reliable than if a simple (non-iterative) regression approach were used.

15.10  Multiple imputation

It is clear that there are several options for the methods of imputation chosen. If deter-
ministic methods such as LVCF are used, the augmented dataset will be unique. In 
contrast, if a random element is included in the imputation of missing values, the 
resultant augmented dataset will be equivalent to a single random one chosen from 
many potential datasets. We can then use this dataset for analysis. For example, we 
might perhaps carry out a t-test or estimate CIs for a treatment comparison.

The idea of multiple imputation is that many alternative ‘complete’ datasets can 
be created instead of just one. The analysis (t-tests, or whatever) can be repeated 
for each dataset and then combined in some way. Common practice suggests that 
five repetitions should suffice. Rubin (1987) gives some rules for combining these 
separate analyses into a final summary analysis. Kenward and Carpenter (2007) pro-
vide a review of multiple imputation procedures, with full details of how it may be 
implemented.

Multiple imputation is a powerful technique, and overcomes the disadvantages 
associated with both deterministic methods (such as underestimated SDs, CIs and 
correlations) and Markov or hot deck models (the randomly chosen values may be 
randomly atypical). Although it was initially developed for use in large population 
surveys and tends to require large samples, multiple imputation has been repeatedly 
shown to be superior to simpler methods and is becoming increasingly used with 
PROs. Sterne et al. (2009) found 59 examples of multiple imputation in four lead-
ing medical journals over a five-year period to 2007, reviewed its use, commented 
on pitfalls, and proposed reporting guidelines. They concluded: “We are enthusi-
astic about the potential for multiple imputation and other methods to improve the 
validity of medical research results and to reduce the waste of resources caused by 
missing data. The cost of multiple imputation analyses is small compared with the 
cost of collecting the data. It would be a pity if the avoidable pitfalls of multiple 
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imputation slowed progress towards the wider use of these methods. It is no longer 
excusable for missing values and the reason they arose to be swept under the carpet, 
nor for potentially misleading and inefficient analyses of complete cases to be con-
sidered adequate.”

15.11  Pattern mixture models

Frequently, missing PRO data might be expected to be MNAR, or non-ignorable 
missing. This is particularly likely to be the case when the presence of missing data 
is associated with, for example, severe toxicity or disease progression. Studies with 
MNAR data are difficult to analyse satisfactorily because the very data needed to 
evaluate or explore models for imputation are, by definition, missing. One approach 
that attempts to overcome this is to use pattern mixture models.

In a pattern mixture approach, patients are divided into subgroups according to the 
pattern of missingness. For example, patients might be classified as early dropouts, 
later dropouts during therapy, dropouts during post-treatment follow-up, and those 
with intermittent missing data; this would result in four subgroups or patterns. Alter-
natively, data might be stratified by reason for dropout or missing values (for example, 
side effects, lack of efficacy, deteriorating health or “unexplained, presumed random”). 
Patterns may also be formed by subdividing these strata according to additional prog-
nostic factors, as in the example below.

Choice of patterns is one of the most critical – and difficult – aspects of the 
pattern mixture approach. Pattern groups should be chosen on the basis of best 
reflecting the suspected mechanism of missingness, such that patients within each 
group may plausibly be thought to be homogeneous. This decision may be partly 
founded on clinical perspectives, and partly by exploring and contrasting data from 

Example from the literature

Curran et al. (2009) rejected the assumption of MCAR in their trial of palliative 
chemotherapy for gastric cancer, and used a pattern mixture model to evaluate 
the PRO measures. This allowed modelling of the repeated measures structure of 
the data, taking into account the dropout pattern. Terms in the model included 
treatment, time, dropout pattern and their interactions. Thus they were able to 
allow the fixed effects as well as the covariance parameters to vary according 
to the dropout pattern. In addition, several baseline clinical variables (age, 
gender, WHO performance status, pain assessed by the clinician, prior surgery 
and weight loss) were considered as covariates in the model.
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patients with missing values against those with complete data. However, the sample 
size of the study will also restrict the number of pattern groups that are feasible for 
analysis.

Having selected the pattern groups to be used, data are then analysed separately for 
each of these groups and values can be imputed for the missing data. Analysis of the 
study is completed by combining the stratum-specific results.

Multiple imputation and pattern mixture models are frequently used together, with 
the overall estimates and significance tests being derived by combining the multiple 
repeated imputations as described in the previous section (also see Figure 15.5). Pauler 
et al. (2003) provide a detailed example of how pattern mixture models may be used 
when analysing QoL results in a clinical trial. The choice of pattern groups is clearly to 
a large extent arbitrary, and consequences of alternative groupings should be explored 
in a sensitivity analysis (see Section 15.14).

Another alternative is a selection model, which provides a two-stage approach for 
handling missing data that cannot be ignored. First, a model is developed to predict 
whether or not a patient is likely to drop out. This predicted dropout probability can 
then be used in the longitudinal model as a covariate. A criticism of selection models 
is that their validity cannot be tested because the model includes the missing values as 
an explanatory variable.

Figure 15.5  Pattern mixture model with multiple imputation.

	 1.	I dentify potential missing data patterns, based on exploratory analyses and clinical or 
other experience. Choose groups of respondents who share similar missingness char-
acteristics (pattern groups). Respondents with complete data (no missing values) are 
often divided into subgroups by treatment arm.

	 2.	 For each pattern,

a) specify an imputation model to be used.

b) estimate the parameters of the imputation model from the observed data.

	 3.	A pply the models and parameter estimates from step 2, so as to impute missing data in 
each pattern group.

	 4.	C ombine the groups to form a dataset with “complete” data.

	 5.	R epeat the imputation process of steps 3 and 4 multiple (typically five or more) times, 
resulting in multiple datasets with “complete” data.

	 6.	A nalyse each of the multiple datasets separately.

	 7.	C ombine the results for the multiple datasets, using standard multiple-imputation 
methods of stratified analysis.
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15.12  Comments

One possibility is not to impute any values at all and resort to either complete-case or 
available-case analysis. There are clearly difficulties associated with such an approach. 
For example, in the analysis of the breast cancer data of Figure 15.1, if we include only 
the 52 patients for whom up to five assessments are available, we may be seriously 

Example from the literature

Post et al. (2010) describe a trial comparing standard-dose and high-dose 
chemotherapy for patients with breast cancer. The authors used a pattern mix-
ture approach because they suspected informative drop-out. The physical func-
tioning (PF) scale of the SF-36 was analysed. Patterns were based on the state 
of the patient at the end of the study period: deceased, alive with relapse, and 
disease free. Within each pattern the drop-out was assumed to be MAR, so that 
the missing PF values could be predicted from the observed measurements of 
patients within the pattern group. The model included terms for time, treat-
ment and time by treatment interaction. From this, the course of PF was esti-
mated for each state and treatment combination. Finally, the stratified analysis 
provided overall estimates of PF by time for each treatment group (Figure 15.6). 
For a sensitivity analysis, models were also explored using only patients with 
complete five-year follow up, and similar results were obtained.

Figure 15.6  The course of PF over time by treatment, estimated using pattern mixture 
models. Source: Post et al., 2010, Figure 5.CC NC 4.0 (<http://creativecommons.org/licenses/
by/4.0/>). Reproduced commercially with permission of Springer Science+Business Media.
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misled. We might incorrectly conclude that the overall mean was 64.6 at baseline and 
that by the assessment at four months the mean QoL score has risen by 6.2 to 70.8. 
As can be seen from Figure 15.1, this method of analysis considerably overestimates 
the mean QoL score at all but the final assessment time points. Case-wise deletion can 
result in significant bias.

An alternative to imputation is to make use of complex analytical models offer-
ing facilities for handling non-ignorable missing data. These include random-effects 
mixture models, shared-parameter models and selection models. Although such mod-
els may appear attractive, Fairclough (2010) notes that all these models make strong 
assumptions that cannot be formally tested and the estimates ‘are not robust to model 
misspecification’. Complex statistical models do not offer a panacea, but those who 
wish to explore them are referred to the further reading list (Section 15.16).

15.13  Degrees of freedom

A major advantage of imputing missing values is that, once the values have been filled 
in, standard methods of analysis can be used – with some provisos. The augmented 
dataset comprising the observed values and the imputed values cannot be regarded as 
the same as one consisting of complete real data; obviously it is not possible to create 
data that do not exist. This can cause problems since, although summary statistics such 
as the mean and median may not be distorted, the corresponding SDs may be affected 
with consequences for the associated CIs and any significance tests. Even if the SD 
remains unaffected or is adjusted as we have described earlier, the degrees of freedom 
(df) must be reduced to reflect the availability of less information. Thus calculated 
CIs and p-values have to take account of the corresponding (reduced) df. A cautious 
approach to calculating the df when there are missing data is to reduce the df by 1 for 
every patient with missing values for the variable under consideration. Thus suppose 
that there are N patients recruited to each of two treatment groups in a clinical trial and 
QoL information is available from all but M patients. Then if the CI of the difference 
in mean QoL between treatments is required, the df will be reduced from 2N − 1 to  
(2N − 1) − M; that is, df = 2N − M − 1 will be used to obtain the value of t from statisti-
cal tables, which will be then used in the calculation of the correct CI.

However, if this method is applied when there are single items missing within a scale 
and the scale score has been imputed, the final df may be too small as it is reduced by 
1 for every such item. A possible compromise in this situation is to reduce the df by a 
fraction for every observation missing. For example, if an L-item scale is calculated for 
a particular patient but one item is missing, df can be reduced by 1/L. These fractions 
are then summed over all the M patients who have only one missing data item, to obtain

	 df N
M

L
= −( ) −2 1 , 	 (15.8)

and this is rounded down to the nearest integer.
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15.14  Sensitivity analysis

Imputation is never an ideal solution; it is a salvage job. A major aim is to reduce bias 
by making full use of additional known information about the patients with missing 
data, and information about the patients with complete data. Thus the analyst is mak-
ing many assumptions about the relationship of the observed data to the unobserved 
missing values. An essential aspect of making the conclusions of a trial more convinc-
ing is to show readers the consequences of the various assumptions. This leads to what 
is termed a sensitivity analysis, in which the stability of the imputation methods is 
examined against their impact upon the analyses. An extreme case of this would be to 
replace the missing data first with extremely low QoL values and then with extremely 
high values. If the results from both these analyses are consistent with those obtained 
using more formal imputation, the conclusions gain credence. If, on the other hand, 
the results disagree, it is necessary to explore and explain the possible reasons for the 
discrepancy. This may involve using a variety of imputation methods to explore which 
assumptions are most critical for influencing the study conclusions.

15.15  Conclusions

Many investigators are suspicious about using imputation techniques, because of the 
assumptions that are overtly involved. However, it should be remembered that not 
imputing missing data also involves making assumptions – namely, that the patients 
failing to respond are similar to those study patients for whom data have been recorded. 
One difference between imputing or not imputing is simply that the assumptions are 
explicit for the former and implicit for the latter. Thus, for example, if patients with 
poor baseline performance status tend to have follow-up QoL assessments missing, 
it is presumably better to make use of this baseline characteristic by imputing values 
rather than (implicitly) assuming that these patients are likely to be similar on average 
to the other patients in the study, many of whom are known to have a high performance 
status. Imputation tries to use the available information, so as to make better allowance 
for patients with missing data.

Of the imputation techniques described, the multiple imputation and pattern mixture 
approaches seem the most efficient, as they take additional patient information into 
account in the imputation process, and they preserve the magnitude of the SDs, ensur-
ing that the CIs can be correctly estimated. They also allow the user’s prior knowledge 
and experience to be incorporated into the imputation process.

The simplest of the methods described are based on MCAR; this is usually unlikely 
to be realistic. The recommended methods assume MAR, which is more plausible 
than MCAR. Even so, MAR is only a justifiable assumption for this purpose if there 
are enough explanatory variables to predict the missing values and their pattern. In 
the absence of sufficient predictive variables, MAR ceases to be applicable and the 
missing data must be regarded as MNAR. In this case, the presence of the missing 
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measurement is in itself informative, and we cannot predict the missing value without 
making further untestable assumptions. Then, any imputation becomes suspect and 
bias cannot be ruled out. Of the methods described in this chapter, only the pattern 
mixture approach is suitable when the missing data are MNAR.

An intrinsic difficulty, especially when there is a large amount of missing data, 
whether missing forms or items, is the final choice of imputation method. The best 
method may be specific to the individual missing items or scales concerned as well 
as the particular assessment sequence. In many QoL questionnaires there are so many 
items that to tailor the imputation for each component may not be practical. In any 
event it is probably important, at least in most circumstances, to decide the method of 
imputation in advance of examining the data. Previous experience with similar data 
will often guide the choice of method. Of particular concern are those few PROs and 
scales that have been selected as the major endpoints for the study concerned. These 
should be the major focus for determining the imputation process. Secondary QoL 
endpoints may perhaps be imputed using the less sophisticated approaches.

It is important to emphasise that estimating missing values is an extra burden on the 
analyst and therefore consumes resources, some of which would be better deployed by 
giving greater attention to patient compliance at an earlier stage in the study process. 
Sophisticated imputation methods are merely devices for facilitating the final analysis. 
They are no substitute for the real data. It is a fallacy to think that one can create new 
data by analyses and imputation. The only way to be confident of avoiding bias is to 
have high compliance rates. Studies with poor compliance will remain unconvincing 
and unpublishable, no matter how carefully the data are analysed. Always aim for 
100% compliance.

15.16  Further reading

Most texts on analysis of longitudinal studies with missing data assume a deep under-
standing of statistical modelling. The classic text on this subject is Little and Rubin 
(2002) Statistical Analysis with Missing Data. For a modern and simpler approach, 
focusing on QoL data, Fairclough (2010) Design and Analysis of Quality of Life Stud-
ies in Clinical Trials is highly recommended and contains many worked examples of 
analyses with accompanying code in the statistical computer package SAS (SAS Inst. 
Inc., 2008). Sterne et al. (2009) provide accessible advice regarding multiple impu-
tation for clinical research. The European Medicines Agency (2010) provides general 
advice on all aspects of handling missing data in trials.
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16
Practical and reporting issues

Summary

At various stages in the book, we have indicated issues on which decisions have to be 
made when analysing, presenting and reporting QoL studies. With the wealth of data 
that is usually generated, it is clear that compromises have to be made, and these mean 
that the major focus will need to be placed on relatively few aspects. Choices made 
will have implications ranging from the way compliance is summarised to which par-
ticular comparisons will be presented with the associated confidence intervals (CIs). 
Although QoL data pose unique difficulties, there are general aspects of presenting and 
reporting the results of clinical studies that should always be adhered to. We assume 
that good reporting standards are indeed followed, and our focus will be on those 
aspects that relate to QoL studies in particular.

16.1  Introduction

Guidelines to assist investigators on reporting QoL studies have been suggested by a 
number of authors (e.g. Revicki, 2005). These guidelines addressed aspects of QoL as 
well as more general recommendations for all types of clinical studies. Meanwhile, 
standards of reporting for clinical trials were set by the CONSORT statement (Schulz 
et al., 2010), which initially arose as a direct consequence of poor reporting stand-
ards for randomised clinical trials. The CONSORT Quality of Life Extension (Calvert  
et al., 2013) sets a similar standard for reporting QoL and PROs.

Prior to these guidelines, weaknesses of the published reports of QoL in clinical 
trials have ranged from the lack of information on specific items, such as the psycho-
metric properties of the instruments, to the handling of missing data caused especially 
through patient attrition (Brundage et al., 2011).
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16.2  The reporting of design issues

Instruments

The justification for the selection of a health profile (descriptive) and/or a patient pref-
erence (utility) approach for the QoL assessment as well as of a particular question-
naire should be given. If a QoL instrument is not well known or is new, it must be 
described in detail and the psychometric properties should be summarised. The ration-
ale for creating a new instrument and the method by which the items were created is 
indispensable. For disease‐specific instruments, an indication as to whether or not the 
psychometric properties were established in the same type of population as the study 
subjects is essential.

Of particular importance are the time frame over which the subject has to assess 
their responses to the items of the questionnaire (e.g. the past week) and the method 
by which the instrument was administered (e.g. by face‐to‐face interview). If appropri-
ate, information on the process by which the measure was adapted for cross‐cultural 
administration must be detailed.

Sources relevant to the development and format of the chosen QoL instruments 
should be referenced. When an instrument, item or scale is being used in a new popu-
lation or disease from that in which it was originally developed, the psychometric 
properties of the instrument in the new context must be reported.

The choice of instrument will often be specific to the type of patients involved, for 
example children (Solans et al., 2008), or disease, for example osteoarthritis (Veenhof 
et al., 2006).

Sample size

In a comparative study, and particularly a randomised trial, the anticipated effect size 
that it was planned to detect should be specified. As indicated in Chapter 11, an esti-
mate of the required sample size calculated on the basis of the endpoints of the study 
should be provided. The test size (α) and power (1 – β) must be specified. If (unusu-
ally) a one‐sided test is used, it needs to be justified.

As noted in Chapter 11, sample size and power estimation must always be made 
during the design stage, and these pre‐study estimates should be reported. There is no 
value in reporting calculations carried out retrospectively, after completing the study.

16.3  Data analysis

When describing the choice of instrument, it is important to give details of how the 
responses are scored, preferably by reference to a published scoring manual or other 
available source document. Any departure from such procedures should be detailed 
and justified. Information on how to interpret the scores is necessary; for example, do 
higher scores indicate better or worse functioning or symptoms?



	 16.3 D ata analysis	 431

Ideally, only those QoL endpoints that were defined before the trial commenced 
should be used for the formal analysis. For these endpoints, CIs and p‐values should 
be quoted. Other variables will be used only for descriptive purposes and to generate 
hypotheses for testing in later studies.

The statistical methods of analysis must be described in sufficient detail for other 
researchers to be able to repeat the analysis if the full data were made available. When 
appropriate, assumptions about the distribution of the data should be indicated. It 
should be indicated whether the analysis is by ‘intention to treat’ or otherwise. In case 
of multiple comparisons, attention must be paid to the total number of comparisons, 
to the need for any adjustment of the significance level, and to the interpretation of 
the results. If applicable, the definition of a clinically important difference should  
be given.

Missing items

It is imperative to document the causes of all missing data. Several types of missing 
data are possible and should be identified and documented separately in the publica-
tion. If patients or subjects fail to complete all items on a QoL instrument, possibly 
accidentally, the corresponding scoring manual for the instrument will usually describe 
methods of calculating scale scores when there are a few missing values for some 
items. Particular note should be taken if missing data tend to concern particular items 
on the QoL instrument or occur with a certain type of patient.

In the study report, the percentages of missing data for each item in the question-
naire should be compared, always focusing on the pre‐specified major endpoints. Any 
difference in the percentages by patient group should be commented upon.

Missing forms

It should be specified whether missing data are due to informative (non‐random)  
censoring – that is, due to the patient’s health state or particular treatment – or to 
non‐informative (essentially random) censoring mechanisms. The methods by which 
missing data were defined and analysed, including any imputation methods, must be 
clearly stated. In appropriate contexts, it is important to specify how data from patients 
who die before attaining the study endpoints are dealt with in the analysis.

As described in Chapter 15, missing the whole of a QoL form, and not just some 
items, poses a particular problem as their absence may lead to serious bias and hence 
incorrect conclusions. When forms are missing, there is no easy solution for eliminat-
ing this potential bias. Therefore, emphasis must always be placed upon avoiding the 
problem by ensuring optimal compliance with assessment. Any form of correction to 
the analysis is second best and the study results will be convincing only if compliance 
is high and missing data are kept to a minimum. Data forms may be missing for a 
variety of reasons, ranging from death of the patient to refusal to comply for no given 
reason.
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Compliance with completion of the questionnaires can be defined as the percentage 
of completed forms received by the investigator from the number anticipated by the 
study design, taking due account of factors that would make completion impossible, 
such as the death of the patient. Thus the number of expected forms is based on the 
number of people alive. A special issue of the journal Statistics in Medicine is devoted 
to this topic alone (Bernhard and Gelber, 1998).

Choice of summary statistics

In certain cases – for example if a PRO follows an approximately Normal distri-
bution shape (it need not be continuous for this) – the mean and SD encapsulate 
the essential features of the data. As we have discussed, the Normal distribution 
form may require a transformation from the original scale of measurement. If the 
underlying PRO variable is of an ordered categorical form, we would not recom-
mend such an approach; rather we would use the median as the measure of location 
and the range as the measure of spread as are used in the box‐and‐whisker plot of 
Figure 12.5. In some situations, especially if the number of categories is small, 
there may be a tendency for the observations to cluster towards one or other end of 
the scale; that is, to take the minimum or maximum values, sometimes termed the 
floor and ceiling values. In this situation, the median and minimum (or maximum) 
may coincide. In such cases, there is no entirely satisfactory summary that can be 
used. We suggest that for these variables the simple proportion falling in the first 
(or last) category be quoted, thus converting the ordered categorical variable to a 
binary one.

Choice of analysis

PROs are mostly either continuous or of an ordered categorical form (a binary vari-
able is a special case of the latter), and standard statistical methods as described in  
Chapter 12 can be used for between‐group comparisons of two groups. These methods 
can be extended to the comparison of three or more groups and can be adjusted to 
take account of patient characteristics (e.g. age), which might also be influencing QoL 
apart from group membership itself. This leads us, in the case of a variable that has a 
Normal distribution, from the comparison of two means via the z‐ or t‐tests, to ANOVA 
for three or more groups and the F‐test, to multiple regression to adjust for patient 
characteristics. Similarly, we are led from the comparison of two proportions using the 
z‐ or χ2‐tests, to logistic regression with between‐group differences expressed in terms 
of the odds ratio (OR), to the extension to an ordered categorical variable and finally to 
multiple logistic regression.

All the methods described are interconnected and are examples of multiple regres-
sion analysis with either continuous or categorical variables. As a consequence, it is 
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usually best to approach analysis in this way. It should be noted, however, that the 
computer programs for multiple regression and multiple logistic regression are not the 
same.

Simple comparisons

Many of the complications in analysis arise because studies that assess PROs usually 
assess each patient at multiple time points. When cross‐sectional analyses are carried 
out, many of the problems disappear. Sometimes straightforward comparison of two 
means is required so that t‐tests may be appropriate with associated CIs. Some of 
these comparisons may need to be adjusted by multiple regression techniques to exam-
ine the effect of prognostic variables upon PROs. Non‐parametric tests, such as the  
Wilcoxon or Mann–Whitney, may often be better because many of the PRO single 
items and some of the functioning scales can have asymmetric (non‐Normal) distribu-
tions. Where single items are, for example, four‐point scales, ordered logistic regres-
sion might be appropriate if one wants to examine the effect of prognostic variables.

For single items, a percentage rather than a mean may be a better summary of the 
corresponding variable. When percentages are used, the analyses often reduce to com-
parisons of binomial proportions by use of simple logistic regression.

Multiplicity of outcomes

A typical QoL instrument contains many questions often with supplementary mod-
ules containing additional items and scales. Thus there are potentially many pairwise 
statistical comparisons that might be made in any clinical study with two – or more – 
groups. Even if no treatment effect is truly present, some of these comparisons would 
be spuriously statistically significant, and hence be false positives. Specifically, if a 
single comparison is evaluated and p is found to be less than 0.05, it indicates that 
there is a less than 5% chance that this is a false positive. If we assume for convenience 
that the comparisons are independent (that is, the outcomes are uncorrelated) and that 
all are tested against an alpha of p < 0.05, the overall probability that at least one of 
the outcomes is deemed ‘statistically significant, p < 0.05’ rapidly increases. With two 
outcomes the chance of at least one false positive is no longer 5%, but becomes 10%; 
for three, 14%; five, 23% … ten, 40% and so on. For k comparisons, the equation is 
1 1− −( )p

k . Of course PROs are unlikely to be uncorrelated, but the risk of at least one 
false positive will nonetheless rapidly become unacceptable as the number of compari-
sons increases, and individual p‐values will fail to capture the overall risk.

One way of avoiding this problem is to identify in the protocol itself one or two 
PROs as being the ones of principal interest. These few outcomes will then be the main 
focus of the analysis, and therefore there will be no problem of multiple testing. We rec-
ommend (with caution) that the p‐values for these should not be corrected but perhaps 
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a comment be made concerning the problem of multiple testing in the discussion of the 
results. This approach is recommended by Perneger (1998), who concludes that: “Sim-
ply describing what tests of significance have been performed, and why, is generally 
the best way of dealing with multiple comparisons.” For these comparisons, we suggest 
a corresponding confidence interval be reported (Altman et al., 2000). A precautionary 
recommendation here may be to have in mind a 99% CI as an aid to interpretation.

The alternative, especially if, despite the above recommendations, many PROs are 
being investigated with a large number of statistical hypothesis tests, is to use the  
Bonferroni correction as mentioned in Chapter 11. For k hypothesis tests, the Bon-
ferroni‐corrected p‐values are the observed p‐values multiplied by k. This correc-
tion assumes that the comparisons are independent of each other (which for PROs is 
unlikely to be true), and becomes progressively conservative (that is, over corrects) 
as the outcomes become more highly correlated. Although the Bonferroni procedure 
is widely used, there exist alternative procedures that are more efficient, such as the 
Holm step‐down procedure (Holm, 1979). In this, the p‐values calculated by the sig-
nificance tests are ranked in order, from most to least significant. The first (most highly 
significant) value is multiplied by k (as for the Bonferroni correction). If this is sig-
nificant (e.g. p < 0.05 if 5% has been specified as the target denoting ‘significance’), 
the next p‐value is multiplied by (k – 1). If this is significant, the next is multiplied by 
(k – 2), and so on. The process terminates as soon as a comparison is not significant, 
whereupon all subsequent values are deemed not significant. A variety of more effi-
cient procedures, of varying complexity, is reviewed by Dmitrienko et al. (2013).

For the remaining PROs, we recommend a less exhaustive analysis. All these analy-
ses may then be regarded as primarily hypothesis generating and the associated p‐ 
values merely indicative of possible differences to be explored at a later stage in further 
study. Even here it may be sensible to adopt ‘conservative’ p‐values, either by using 

Example

Suppose k = 5 outcomes were pre‐specified for hypothesis testing, and the 
corresponding p‐values calculated using a statistical test such as the t‐test; 
statistical significance was denoted by p < 0.05. The observed p‐values were 
0.046, 0.032, 0.136, 0.011 and 0.006. Four values are less than 0.05, but (con-
servatively assuming independence) there is overall a 23% chance of at least 
one false positive. Applying the Bonferroni correction, only 0.006 × 5 = 0.03 
meets the criterion of p < 0.05 and all other values are not significant.

If it had been pre‐specified in the protocol that the Holm procedure was 
to be used, the p‐values would have been sorted to give 0.006, 0.011, 0.032, 
0.046 and 0.136. The corresponding correction factors are 5, 4, 3, 2, 1. Then 
both 0.006 × 5 and 0.011 × 4 are less than 0.05 and thus significant. Since 
0.032 × 3 is not significant, testing ceases and the remaining two comparisons 
are also not significant.
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the more stringent p ≤ 0.01 (or even p ≤ 0.001) or, as discussed in the chapter on sample 
size estimation, by applying the Bonferroni correction. If a large number of outcomes 
are considered in an exploratory analysis, the Benyamini–Hochberg (1995) false  
discovery rate might be considered instead of p‐values.

In the case of multiple comparisons, attention must be paid to the total number of 
comparisons, to the adjustment, if any, of the significance level, and to the interpreta-
tion of the results. Seldom will a global multivariate test producing a single (or com-
posite) p‐value be of use. Best is to circumvent the problems of multiple testing by 
defining a single outcome, or possibly a couple of outcomes, as the primary hypothesis 
to be tested, with other outcomes and hypothesis tests being regarded as exploratory.

Repeated measurements

This raises similar issues to those just preceding, but rather than the numerous items on a 
QoL instrument leading to many comparisons, it is the longitudinal nature of the patient 
follow‐up that can lead to repeat statistical testing of the difference between treatments 
at successive time points. Thus, of the various methods available, one of the simplest and 
yet most informative approaches is to use graphical displays (Chapter 13) and accompany 
these by cross‐sectional analyses (Chapter 12) at a few specific time points. Ideally, the 
study protocol will have pre‐specified that the analysis will focus both upon the aspect of 
QoL concerned and the particular time points. Nevertheless, the difficulty remains, there 
are still repeated tests and the problems associated with false positives remains.

A more satisfactory alternative is to encapsulate these repeated measurements into 
a single summary for each patient. Examples are: the overall mean QoL, the worst 
QoL experienced during therapy or the area under the curve (AUC) (Chapter 13). The 
choice of which to use will depend on the study objectives. The analyses can then com-
pare and test using these summaries as the basic data for each patient in an appropriate 
cross‐sectional manner.

Modelling

For the truly primary endpoints, more sophisticated methods are available and these 
allow for the auto‐correlation between QoL values at successive time points. The main 
methods include the hierarchical or multilevel models and the generalised estimating 
equations (Chapter 14), as well as methods to cope with missing values (Chapter 15). 
Some of these methods do ideally require specialist statistical software to implement, 
such as MLwiN (Rasbash et al., 2015) or HLM (Raudenbush et al., 2004) for multilevel 
models and BUGS (Lunn et al., 2009) for Bayesian modelling; for that reason, in this 
book we do not describe the application of these methods. However, many of the methods 
are also becoming more widely available in standard statistical packages; for example, 
GEE is available in widely used statistical computer packages such as SAS and STATA.

In general, we would not recommend use of multivariate analysis of variance 
(MANOVA) for repeated measures because the conclusions to be drawn from, for 
example, a statistically significant result are in many instances far from clear.



436	 Practical and reporting issues

A sensible precaution before embarking on the modelling process (or for that mat-
ter using repeated measures ANOVA and related techniques) is first to plot the data. 
This will give a general idea of models that may or may not be appropriate. For exam-
ple, there is unlikely to be a linear trend in values of, say, nausea and vomiting when 
assessed before active treatment commences, several times during chemotherapy and 
then several times during post‐treatment follow‐up in cancer patients. However, an 
indiscriminate use of statistical packages leads some analysts to simply read off the 
significant p‐values giving little thought to the appropriateness or otherwise of the 
underlying statistical procedure.

Clinical significance

Although it is not possible to give a clear definition of clinical significance, neverthe-
less specific examples are given in Chapter 18. It is clear that statistical and clini-
cal significance should not be confused. Statistical significance tells us whether the 
observed differences can be explained by chance fluctuations alone, but says nothing 
about clinical significance. Despite the difficulty of determining what is clinically sig-
nificant, an idea of its magnitude has to be elicited for trial planning purposes.

16.4  Elements of good graphics

Exploratory and descriptive data analyses explore, clarify, describe and help to inter-
pret the QoL data. These less formal analyses may reveal unexpected patterns in the 
data. Because these analyses are less concerned with significance testing, graphical 
methods are especially suitable. A judicious use of graphics can succinctly summarise 
complex data that would otherwise require extensive tabulations, and can clarify and 
display the complex inter‐relationships of QoL data. At the same time, graphics help 
to emphasise the high degree of variability in QoL data. Current computing facilities 
offer unrivalled facilities for the production of extensive and high‐quality graphics.

Simple graphical summaries

Perhaps the simplest summaries of all are histogram and bar charts, which show the 
frequency distribution of the data. These are often used for the initial inspection of 
data and to establish basic characteristics of the data. For example, prior to using a 
t‐test one ought to check whether the data are distributed symmetrically and whether 
they appear to follow a Normal distribution. Thus Figure 12.2 illustrates a histogram 
of baseline emotional functioning (EF) in patients with multiple myeloma. This is a 
common method of displaying information.

Although this is a simple graphical display, there are a number of variations that 
may improve the presentation. Thus Figure 16.1 shows the same information, adding 
‘blank lines’ to make it visually easier to assess the height of the histogram bars, and 
using light shading of the blocks.
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Figure 16.1  Histogram of baseline emotional functioning (EF) in patients with multiple myeloma. 
Source: Data from Wisløff et al., 1996.
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One common way of displaying the differences between two treatments or two groups 
of patients is a bar chart. An example is shown in Figure 16.2a, which displays the 
mean fatigue levels for males and females at various times over the duration of the 
study.

However, the format of Figure 16.2b is preferable since it more readily conveys the 
shape of the relationship with time and helps quantify more readily the gender differ-
ences. Also, in contrast to Figure 16.2a, the unequal time intervals between assess-
ments are correctly represented along the horizontal axis. This figure could be further 
enhanced to provide CIs.

Association of variables

When showing the association between two variables, the simplest graphic is perhaps 
the scatter plot, as shown for anxiety versus age in Figure 16.3a. One of the difficulties 
with such a plot is that two or more patients may supply the same pair of values, leading 
to plotting symbols being overprinted and their true impact lost. One device to expose 
this overlap is to ‘jitter’ these multiple observation points about the true plotting posi-
tion. Thus Figure 16.3b represents exactly the same data as Figure 16.3a, but there now 
appears to be more data points. The second figure gives a more complete picture of the 
true situation. In the latter figure, the marginal box‐and‐whisker plots for EF and age are 
added above and to the right‐hand side of the main panel to assist interpretation further.
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Figure 16.2  Mean levels of fatigue in patients with multiple myeloma, before and during treatment 
with MP or MP+IFN: (a) bar chart; (b) line plot. Source: Data from Wisløff et al., 1996.
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Figure 16.3  Baseline EF by age, in patients with multiple myeloma: (a) scatter plot; (b) scatter plot 
with ‘jitter’ and marginal box plots. In the box plots, the box shows the 25% and 75% quartiles and the 
median, and the ‘whiskers’ indicate the so‐called ‘adjacent values’. Source: Data from Wisløff et al., 1996.
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16.5  Some errors

Baseline variables

In the reporting of any study, presentation of, for example, basic demographic and other 
baseline data in tabular format by patient group is always valuable. In this respect, QoL 
studies are no different. However, these tables are usually for descriptive purposes only 
and so would usually contain, for example, means (or medians) and SDs, and possibly 
minimum and maximum values, rather than means and CIs.

In randomised clinical trials, statistical tests of significance between baseline charac-
teristics of the groups are rarely pertinent. If the group membership was determined at 
random, as is the case of allocation to treatment groups in a randomised trial, any statisti-
cally significant difference in baseline characteristics will either be solely due to chance or 
be an indication of violation of the randomisation procedure (Fayers and King, 2008a,b). 
Provided one is confident that the randomisation methods are reliable, there is no point 
in carrying out a significance test. Statistical tests and CIs should be confined to the end-
point variables alone, although these comparisons may be adjusted for baseline variables 
that were included in the tabulation just referred to. It should be noted that the decision 
to adjust for baseline variables should depend primarily on their prognostic or predictive 
relevance. It is particularly important to allow for prognostic factors that are imbalanced at 
the baseline assessment, irrespective of whether that imbalance is statistically significant.

A common mistake is to calculate and quote CIs of, say, the mean of each group 
separately, whereas in any comparative study it is the CI of the difference between 
groups that is relevant. As already indicated, such problems are not confined to QoL 
studies alone, but they are compounded in such studies as the number of baseline and 
endpoint measures may be very large.

Confidence intervals

In published QoL research, some investigators summarise differences between subject 
groups for each of the QoL items or scales under study by merely reporting in a tabular 
format the corresponding p‐value. Often they fail to quote the precise p‐value unless it 
is less than 0.05, instead using the notation NS (not statistically significant). This is very 
bad practice and is now actively discouraged by the leading medical journals since NS 
covers a range of p‐values from a little over 0.05 to 1. The conclusions drawn from a 
result with p = 0.06 are quite different from one for which it is 0.6. It is important, even 
when there is no statistically significant difference, to provide not just the p‐values but 
also an estimate of the magnitude of the difference between groups together with the 
associated CI. This is emphasised by Altman et al. (2000), with clear recommendations.

Graphical

One disadvantage to profile plots is that there may be a tendency for naïve readers of 
such plots to assume that the different dimensions may be compared – for example 
in Figure 12.6, to think that overall quality of life (ql) is slightly greater than or ‘bet-
ter’ than role functioning (rf), and that social functioning (sf) is much ‘better’ than 
both ql and rf. However, responses to items on QoL questionnaires are not calibrated  
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uniformly across dimensions, and it is meaningless to describe whether one scale takes 
higher (or lower) values than other scales.

A common and, at first sight, apparently reasonable form of analysis is to compare 
change in QoL scores for patients against their baseline values. Thus one might seek 
to determine whether patients who start with a poor QoL are likely to have an even 
poorer QoL after treatment, or whether they tend to improve. Hence one might plot the 
baseline score (QoL0) against the change between baseline and, say, month‐1 (QoL1) 
values. Thus Figure 16.4a, for EF, shows a moderate degree of correlation between the 
change (QoL1 – QoL0) and the baseline measurement.
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Figure 16.4  Change in EF from baseline, plotted against the baseline EF, in patients with multiple 
myeloma: (a) plotting (EF1 – EF0) against EF0; (b) substituting random numbers in place of EF0, the 
initial measurement. Source: Data from Wisløff et al., 1996.
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However, this plot cannot be interpreted. This is because a similar plot can be 
obtained by replacing the initial EF observations by random numbers over the same 
range of possible values and using these in the calculation of the change from baseline! 
Such a ‘random numbers’ plot against initial EF is shown in Figure 16.4b. The reason 
for the association in Figure 16.4a is that the vertical axis measure y = (QoL1 – QoL0) 
and the horizontal axis measure x = QoL0 both contain the same quantity QoL0. Thus, 
in part, one is correlating –QoL0 with +QoL0 itself, and this correlation is perfect but 
negative (–1). This correlation then dominates both panels of Figure 16.4, creating the 
illusion of an association.

A comparison of change against initial value may be of clinical importance, and 
more rigorous methods of analysis are available. These issues are discussed by Bland 
and Altman (1986), who suggest plots corresponding to change in score (QoL1 – QoL0) 
against the average score (QoL1 + QoL0)/2.

16.6  Guidelines for reporting

In recent years, the number of clinical trials incorporating measurement of health‐ 
related QoL has substantially increased. We introduce here general guidelines for 
the reporting of clinical trials that include a QoL measurement. These proposals are 
intended for researchers reporting a new study as well as for those who are asked to 
evaluate critically the published reports.

Checklist

Some of the headings in this section repeat those already mentioned above, but the 
topics are collected here as a checklist. The associated comments add some detail not 
included previously.

●● Abstract
�Describe the purpose of the study, the methods, the key results and the principal 
conclusions.

●● Introduction

a. � Describe the objective of the study in detail. Its rationale must be supported with 
a comprehensive review of the literature relevant to the disease or the treatment 
of interest.

b.	 The natural history of the disease and its treatment should be described succinctly 
so that it is clear why QoL is being assessed.

c.	 The pre‐study hypotheses for QoL assessment must be stated, indicating the do-
mains or scales that were expected to show a difference between treatment arms. 
The definition of QoL should be presented.
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●● Materials and methods

●● Population and sample

a.	 A description of the patient population, including the study inclusion and exclusion 
criteria, is mandatory. The population sample must be described with appropriate 
demographic data, for example age, gender and ethnicity, depending on the con-
text. Other variables, such as the clinical and mental status, should also be included 
if they were likely to alter the ability of the patient to answer a questionnaire.

b.	 It is important to indicate how and from where the patients were recruited to the 
study. For instance, indicate whether the sample was random or one of conveni-
ence, and the number of centres involved. If a subset of the total sample size is 
deemed to be sufficient for the QoL part of the trial, the method used to select the 
patients in the subset must be explained.

●● QoL instrument selection

a.	 Rationale for the choice of instrument, including where appropriate references to 
previous validation, or details of the validation and the psychometric properties.

b.	 Justify the suitability of the instrument – are all the relevant domains covered?

●● Trial size
Definition of the target difference to be detected, and details of the pre‐study sample 
size calculations.

●● Endpoints
State the dimension(s) or the item(s) of the instrument that were selected as 
endpoint(s) before subject accrual. When overall QoL is not the primary endpoint, 
the major endpoints of the trial should have been specified in the protocol. Endpoints 
not chosen before the start of the trial are to be avoided.

●● Timing and administration of assessments

a.	 The scheduled times of instrument completion must be given (for example every 
four weeks), as should the timing of the follow‐up assessment. For instance, at 
the completion of treatment or discontinuation of treatment, every three months, 
or at the end of the study, and so on.

b.	 Describe the method of administration. For example by self‐completion, inter-
view or proxy‐assessment; at home or at hospital; by post or administered in the 
clinic.

●● Data
The means by which the data were collected and the procedure for evaluating their 
quality should be described. The criteria for what is to be considered adequate/inad-
equate must be specified.
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●● Method of analysis
Definition of p‐value level for statistical significance. If there will be multiple sig-
nificance tests, what allowance will be made for multiplicity?

●● Results

●● Presentation of data

a.	 The results of planned primary and secondary analyses should be presented along 
with the results of appropriate tests of statistical significance, such as p‐value,  
effect size and CIs.

b.	 The report should include reference to all the other items or scales from each 
instrument used in the study. In particular, it is important not to pick and choose 
which scales to report from an instrument without indicating very clearly why 
this has been done.

●● Patient data

a.	 All patients entered in the study must be accounted for and their characteristics 
presented. For example, how many centres were involved, how many eligible 
patients were approached, how many were accrued, how many refused to partici-
pate, how many were unable to complete the questionnaires, and so on.

b.	 In the context of a clinical trial or comparative study, numbers of patients should be 
given for each group. Thus details are required on the numbers: eligible and entered; 
excluded from the analysis (with inadequate data, with missing data); losses to fol-
low‐up and death; adequately treated according to protocol; failed to complete the 
treatment according to protocol and received treatments not specified in the protocol.

●● Scheduling of instrument administration
Descriptive information is required that contributes to an understanding of treatment 
schedules, patient compliance, time windows, median follow‐up times, and other 
practical aspects of QoL data collection and follow‐up.

●● Missing data and compliance
Details of compliance/completion rates of the QoL questionnaires, divided by date 
of assessment (visit number), presented for each randomisation group. Report the 
methods of handling missing data, including specification of any imputation meth-
ods or adjustments to the analyses. Assess the potential bias that might arise from 
incomplete QoL data.

●● Statistical analysis

a.	 The main analysis should address the hypothesis identified in the introduction. 
Although it is recognised that there are often large numbers of items on a QoL 
questionnaire, the particular and few dimensions which were selected as design 
endpoint(s) should be the most relevant part of the report.
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b.	 Analysis of other variables as well as any subgroup analysis not pre‐specified 
should be reported only as exploratory or tentative.

c.	� If appropriate, the reasons for not adhering to the pre‐trial sample size should be 
discussed.

d.	 In the case of a graphical presentation, it is important to specify the number at risk 
by treatment group beneath the time axis in the plot.

●● Discussion and conclusions

a.	 The findings should be discussed in the context of results of previous studies and 
research.

b.	 Some particular issues in the interpretation of QoL data should be addressed here, 
including (as appropriate) the clinical interpretation of score change.

c.	 A summary of the therapeutic results should be reported alongside the QoL  
results so that a balanced interpretation of the trial results can be made.

●● Appendices
In addition to describing the instruments that were used, as part of the Methods of 
the report, it may be appropriate to provide a copy if the instrument or measure is 
not well known. For a copyright instrument, information should be provided about 
the source of the instrument. If the instrument has been modified, any changes must 
be justified and fully documented.

16.7  Further reading

The main CONSORT statement includes a list of 25 items that should be reported for 
all clinical trials. There is also a flow chart describing patient progress through the trial, 
which should be included in the trial report. In addition, a few specific subheadings are 
suggested within the ‘Methods and Results’ sections of the paper. In the spirit of the 
times, the recommendations are evidence‐based where possible, with common sense 
dictating the remainder. The CONSORT Quality of Life Extension lists the additional 
issues that must be addressed when using PROs.

In essence, the requirement is that authors should provide enough information for 
readers to know how the trial was performed and analysed, so that they can judge 
whether the findings are likely to be reliable. The CONSORT suggestions mean that 
authors will no longer be able to hide study inadequacies by omission of impor-
tant information. Full details of the CONSORT statement (2011) and QoL Exten-
sion (Calvert et al., 2013) are available at the CONSORT website (http://www. 
consort‐statement.org). CONSORT guidelines are published in and endorsed by the 
many of leading medical journals, for example Schulz et al. (2010), and are further 
explained and elaborated by Moher et al. (2010).

http://www.consort%E2%80%90statement.org%00%00
http://www.consort%E2%80%90statement.org%00%00
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17
Death, and quality-adjusted 
survival

Summary

Attrition due to death can complicate the analysis of clinical trials, especially if there 
are different death rates in the treatment arms. One approach is to explore the trade-off 
involved in choosing an aggressive therapy, with serious side effects, in the hope of 
improved survival versus a milder therapy that offers poorer survival prospects.

The overall survival time in a patient newly diagnosed with a life-threatening 
disease may be considered as being partitioned into distinct periods during which the 
QoL levels of the patient may expect to differ. These states may include, for exam-
ple, the active treatment period. Once the time in each of these states is determined, 
they can be used to calculate the time without symptoms and toxicity (TWiST), the 
time actually experiencing symptoms and/or toxicity (TOX), and the time in relapse 
following progression of the disease (PROG).

Utility coefficients corresponding to each of these states can be evaluated and used 
as multipliers of TOX, TWiST and PROG to obtain a weighted quality-adjusted time 
without symptoms and toxicity (Q-TWiST). These are then averaged over all patients 
receiving a particular treatment and so can be used to compare treatments.

Threshold analysis enables an investigation into how sensitive this quantified 
difference in treatments is to the values of the utility coefficients for each state. The 
way in which Q-TWiST may be compared between different prognostic groups, and 
changes over successive time intervals from diagnosis, are described.

17.1  Introduction

The measures described so far in this book are sometimes called profile instruments 
because they provide a descriptive profile as to how each patient is feeling. This 
information may be used to describe groups of patients, as we have seen, or may be 
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used for comparative purposes in a clinical trial. Thus it can be used by clinicians when 
deciding whether one treatment results in, on average, better or worse QoL and whether 
this should result in a wider use of that treatment or even preclude its use altogether. 
Although the summary scores may seem at first sight difficult to interpret, Chapter 18 
examines ways in which these scores may be interpreted clinically. The QoL profiles 
also provide a source of information about the possible consequences of therapy, and 
this information can be discussed with patients when deciding which treatment may be 
the most suitable. Thus clinicians can contrast the potential therapeutic benefits against 
possible impact upon QoL, and this can be used as the basis for patient decisions when 
choosing between alternative treatments.

However, for some decision purposes it is desirable to weigh up the therapeutic 
benefits and contrast them more formally against the changes in QoL. Specifically, if 
the more efficacious therapy is associated with poorer PROs, is it worthwhile?

Just as QoL can be assessed only by the patients themselves, so for clinical decisions 
the value judgement of treatment preference should similarly be determined by asking 
the patients. Various methods are available for determining patient preference ratings, 
some of which aim to combine QoL and survival duration into a single summary score 
that may be broadly summarized as equating actual years of survival to the (smaller) 
number of equivalent healthy years. The aim of this is to enable overall benefits of 
various treatment or management policies to be contrasted.

An alternative approach to combining QoL and survival duration is used for health 
economic studies. In this setting, cost is also considered and in contrast to the clinical 
approach it is usual to base utility values on the opinions of a sample of the gen-
eral population. Although this book does not attempt to address health economics, the 
techniques developed for that purpose can be of value when analysing PROs in trials 
in which the survival rates differ across the randomisation groups.

17.2  Attrition due to death

In some diseases, such as cancer, more aggressive therapy may be associated with 
improved survival but at the expense of greater incidence of severe side effects. In 
some clinical trials this can result in the randomised groups having different survival 
durations, and indeed in such trials survival is frequently the primary outcome of 
interest. However, this leads to greater amounts of PRO or QoL data being available in 
one arm of the trial than the other. Although, superficially, this may seem analogous to 
missing data – with one treatment arm having more missing data than the other – it is 
rarely sensible to impute expected values for the ‘missing’ assessments that occur after 
death. Thus we use the term attrition, instead of missing, to encompass the additional 
loss of data due to death. One important distinction is that high rates of missing data 
indicate a poorly designed or poorly executed trial, in which there is a strong risk 
of biased results. In contrast, high levels of attrition due to deaths may sometimes 
be anticipated yet unavoidable, and do not imply that the trial is biased. However, a 
naïve analysis that ignores the consequences of attrition, especially when the rates 
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of attrition due to death differ across randomisation arms of the study, may lead to 
misleading results.

A landmark analysis is a simple cross-sectional analysis at a prespecified time. This 
can provide a non-controversial and clinically relevant comparison of the patients who 
remain alive at that time. However, problems arise when carrying out analyses of the 
repeated measurements. Repeated cross-sectional analyses will be based on declin-
ing numbers of patients, making it difficult to compare the results at the various time 
points. Some authors attempt to address this by using a complete case analysis, in 
which analyses are restricted to patients alive at, for example, one year and carrying 
out a longitudinal analysis from baseline up to that time point. Quite apart from the 
wasteful loss of data, such an analysis provides results that are only applicable to simi-
lar patients surviving to that time and tells us nothing about patients who die earlier, 
nor does it inform what happens at later times.

An alternative approach, which is the topic of this chapter, is to evaluate patients’ 
preferences. Specifically, suppose a patient is given the choice between two treatments, 
where one increases their probability of living slightly longer relative to the other treat-
ment but at the expense of serious toxicity. Which treatment option would they prefer?

17.3  Preferences and utilities

When the outcomes are known in advance, patients can express a preference for one 
treatment or another. For example, if it can be stated that treatment will result in cure 
but at the cost of specified QoL disadvantages, patients can decide whether or not to 
accept the treatment. However, in most clinical situations there will be uncertainty 
regarding both the cure and the QoL outcomes. Usually, we can state only that there 
is a certain probability of cure and that this may be gained at possible QoL disadvan-
tages. When preferences are assessed in the face of uncertainty, they are called utilities, 
because a patient might make one selection under uncertainty but might express a 
different preference if it were known what outcome would ensue.

Visual analogue scales (VAS)

The simplest way of establishing preference ratings is by means of a visual analogue 
scale, in which the extreme anchors are usually ‘best possible QoL’ and ‘worst possible 
QoL’, or some equivalent wording. The patient is then asked to indicate on the 10-cm 
line the position of their current state, and also to mark positions corresponding to 
various scenarios, such as their likely condition during or following therapy. For the 
least favourable state, ‘death’ is often avoided because some patients may declare 
particular states of health to be worse than death; thus for alternative wording one 
might consider ‘worst imaginable state of health’.

This method has been found to be efficient and easy to use, and appears to provide 
meaningful values for relative preferences of various states of health and treatment. It 
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can be extended to include the concept of uncertainty, thereby providing utilities, if the 
scenarios include suitably phrased descriptions that indicate a risk of side effects or 
disease progression; in this case, extra care is needed in choosing appropriately worded 
endpoints for the scale.

Time trade-off (TTO)

Time trade-off involves comparing QoL against length of survival. A typical strategy 
for evaluating TTO is to present a scenario under which health is impaired by spe-
cific disabilities or symptoms, and to ask the patient whether he or she would choose 
one year in perfect health or one year with impaired health; presumably, the healthy 
year would be selected. Then the duration of the healthy period is gradually reduced: 
‘Would you choose 11 months in perfect health, or one year with impaired health?’ 
and so on. At some stage, equilibrium should be reached, and it may then be concluded 
that the value of impaired life is equivalent to a certain percentage of time relative to 
healthy life.

As we shall see, TTO is conceptually equivalent to the QALY approach (Section 
17.6), and might therefore seem attractive. Since it does not involve uncertainty, it is 
a method for eliciting patient preferences. However, many patients find the concepts 
difficult to apply.

Standard gamble (SG)

The standard gamble method involves decisions in the face of uncertainty, where 
the uncertainty involves a risk of death or some other outcome. Thus SG attempts to 
estimate patient utilities.

For example, SG might be used to establish the value of anti-hypertensive therapy 
by offering the following alternatives to patients: ‘Suppose there is a P percent chance 

Example from the literature

De Haes and Stiggelbout (1996) compare VAS, TTO and SG methods in 30 tes-
ticular cancer patients. In line with other reports, the VAS method yielded the 
lowest scores and TTO was slightly lower than SG. The authors note that since 
many patients are reluctant to trade survival for QoL, and are willing to accept 
high levels of toxicity for a relatively modest increase in survival time, it is 
perhaps not unexpected that TTO results in higher scores than VAS. Similarly, SG 
patients are asked to consider the possibility of immediate death, which is even 
less acceptable to many. The authors suggest that the choice between the three 
methods might be made according to the disease and the intended application 
of the ratings; for example, in a surgical trial that involves a risk of early death, 
the SG approach might be preferred.
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of death within the following year if you do not take anti-hypertensive therapy, but 
on the other hand you would have to take therapy for the rest of your life and it has 
these side effects …’ By varying the percentage, P, the point of indifference can be 
established. The value (1 − P) then provides the utility value for impairment due to this 
form of therapy.

As with TTO, many patients find the concepts of SG unrealistic and have difficulty 
in making consistent responses. One particular problem is that it is frequently difficult 
to provide realistic scenarios for some of the medical conditions and therapies that are 
under consideration.

Willingness to pay (WTP)

Whereas SG involves a gamble and the element of risk when comparing the value of 
different health states, and TTO uses varying time periods, willingness to pay intro-
duces the concept of monetary value. The foundation for this is that people are accus-
tomed to making decisions about how much they are willing to spend upon most things 
relating to life – from small items such as food and clothing, and medium-cost deci-
sions such as annual holidays, through to major expenses including car and house. The 
amount that an individual is willing to pay is an indicator of the utility or satisfaction 
that they expect to gain from the particular commodity.

Various methods have been used to elicit WTP values, including basic questions 
such as ‘What is the most that you would be willing to pay for … ?’. A variation on this 
is to present a list of options or a set of cards containing ‘bids’ of increasing amounts, 
from which the respondent selects the amount they would be willing to pay.

WTP has rarely been used in QoL research.

Discrete choice experiments (DCE)

Another technique for assessing preferences of health states is a discrete choice experi-
ment, also known as conjoint analysis. This has been used extensively in market research 
and transport economics, and is increasingly used in health economics. DCEs involve con-
structing a number of realistic scenarios that represent combinations of different health 
states (item levels). Obviously, there are too many possible states to be able to present 
them all (see Section 17.4), and so particular scenarios must be selected. The patient is then 
presented with two or more of the scenarios and asked to rank them, rate them or indicate 
their preferred option. Since the majority of people are accustomed to making what are 
effectively pairwise comparisons and decisions on a daily basis, a single binary choice may 
be the preferred approach for DCEs (Ryan, 1999).

DCEs offer an alternative to SG, TTO and VAS. It has been found that many people 
find SG difficult, and make inconsistent choices; DCEs appear to be easier to apply. TTO 
has the disadvantage of being less rooted in economic theory. Although DCEs do not need 
to incorporate risk assessment, this can be included as part of the scenarios if so desired. If 
single binary choices are used, the resultant data consist of binary preferences that can be 
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analysed using logistic (or the related probit) regression models; some of the models are 
complex, requiring specialised software for their fitting (Ryan and Gerard, 2005).

Example from the literature

Ryan et al. (2006) illustrate the use of DCEs to estimate a preference-based 
measure of outcome for social care of older people. Five core domains were 
identified: Food/nutrition, Personal care, Safety, Social participation and Con-
trol over daily living. Within each domain, three levels of need were defined: 
no unmet needs, low needs and high needs. Thus there were 243 (35) possible 
outcomes. Using experimental design techniques, 14 ‘choice sets’ or pairs of 
scenarios were identified, enabling the fit of a linear additive model. To reduce 
respondent burden, each person was only asked to rate 7 choice sets and for 
each of these the respondent was asked to identify which scenario they least 
preferred. An example is shown in Figure 17.1.

There were 326 individuals over the age of 60, drawn from 14 day-centres, com-
pleting the evaluation exercise. A regression model revealed problems with the 
assessment of Safety and so a reduced model was explored, provisionally exclud-
ing Safety and retaining four domains. Quality weights were estimated, with high 
unmet needs anchored as zero for each domain. The quality weights for unmet 
needs were: Food, no or low = 0.141; Personal care, no = 0.353, low = 0.176; 
Social, no = 0.293, low = 0.193; and Control, no or low = 0.213.

Thus for someone who had no unmet needs on all four domains,

utility score = + + + =0 141 0 353 0 293 0 213 1 0. . . . . .

Similarly, another person with low needs on all domains would have

utility score 0.141 0.176 0.193 0.213 0.723.= + + + =

Figure 17.1  Example of a choice in the DCE. Source: Ryan et al., 2006. Reproduced 
with permission of Elsevier.

Which of these two situations do you think is worse?

SITUATION 1 SITUATION 2

You have as much control over daily  
living as possible.

You have sufficient, varied, timely  
meals and you are always clean and  
appropriately dressed.

But, you have an inadequate diet 
potentially resulting in a health risk. You 
are occasionally unwashed or not properly 
dressed and you have some worries about 
safety. You are also socially isolated with 
little or no contact from others.

But you have some worries about  
safety and you feel lonely and socially 
isolated with little or no contact from 
others. You have some control over  
daily living but could have more.
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A number of more complex DCE methods have been proposed. Best attribute scal-
ing additionally asks respondents to indicate the attributes of the scenarios that they 
most and least prefer. Multiple-choice options can be used to allow individuals to 
choose from a number of scenarios. Respondents can also be asked to rate the strength 
of their preferences. Bridges et al. (2011) discuss the role of DCEs in healthcare and 
offer a checklist of good practice.

17.4  Multi-attribute utility (MAU) measures

Having assessed patient preferences or utilities for individual items, for example 
by using VAS, SG or TTO, there remains the issue of how to combine them. Some 
schemes use utilities as a form of item weighting for forming a summary index. How-
ever, there are few grounds for assuming that, for example, a patient with vomiting, 
pain and headaches should score the same as the sum of the three individual utility 
scores. Multi-attribute utility theory (MAUT) is a method for investigating the utilities 
associated with health states represented by a combination of item scores.

If an instrument has, say, three 5-point scales, there are a total of 53 = 125 possible 
combinations of scores. Each such combination is called a state, and for example a 
score of 4 on the first scale, 3 on the second, 4 on the third could be written as the state 
(4,3,4). Ideally, preferences or utilities should be established for each of these states, 
but for many instruments this would not be feasible – an instrument with as few as six 
5-point dimensions would result in 15,625 states and, for example, the SF-36 has mil-
lions of possible combinations. This has led to some utility-based instruments being 
deliberately brief; the EuroQol EQ-5D-3L has five dimensions that result in a total of 
243 states. Of course, it is also possible to base the assessment of patients upon a single 
global item, in which case all that is required are the utilities corresponding to each 
level of the global item.

For longer instruments, there are a number of possible strategies. If it is thought 
reasonable to regard the dimensions as independent, only the marginal utilities are 
required and so each dimension can be studied separately when investigating the utili-
ties. A multiplicative model is frequently used to combine disutility dimensions, where 
disutility is (1 – utility). The rationale for this is that symptoms or other deteriorations 
are likely to have the greatest impact if they are the first and only problem, and will 
reduce overall QoL to a lesser degree if they are but one of many problems. Equally, 
an improvement in a single area will not be sufficient to restore good QoL if there are 
many other problems. For example, with a three-dimension instrument, if a score of, 
say, 4 on the first dimension d1 has utility Ud1(4), a score 3 on dimension d2 has utility 
Ud2(3), and 4 on dimension d3 has utility Ud3(4), then

d d d

U

U U U

Utilityof ( 4, 3, 4)

(4,3,4)

1 [1 (4)] [1 (3)] [1 (4)].d d d

1 2 3

1 2 3

= = =
=
= − − × − × −
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Other, more complex, schemes are available for rendering manageable the task of 
assessing multi-state utilities. One alternative is to evaluate the corner state utilities, 
such as, for example, the corner states of U(1,1,1), U(1,1,4), U(1,4,1) etc. for a three-
dimension instrument that has 4-point scales. Other schemes involve a combination of 
the marginal and corner states.

17.5  Utility-based instruments

Some QoL instruments have been designed explicitly with preference- or utility-based 
methods in mind, and can be described as MAU instruments. The Quality of Well- 
Being scale (QWB) of Kaplan et al. (1979) combines preference values with scale 
scores for mobility, physical activity, social activity and symptoms. The preference 
values were obtained by using rating scales to assess each possible state on a VAS scale 
from 0 to 1, and were obtained from the general community. The resultant scores range 
from 0, death, to 1, full functioning without adverse symptoms. It has been suggested 
that, since this instrument is sometimes used for resource allocation, the preferences of 
the payers – the community – are more relevant than those of the patient; in the UK, the 
National Institute for Health and Care Excellence declares that “Economic evaluations 
should quantify how the technologies under comparison affect disease progression and 
patients’ health-related quality of life, and value those effects to reflect the preferences 
of the general population” (NICE, 2013). In any event, it is also often claimed that 
community-expressed preferences are usually not too dissimilar from patient opinions. 
The QWB was used extensively by the Oregon Health Services Commission in the 
USA, and in 1990 a priority list was produced based upon the rank ordering of services 
according to cost-utility.

The Health Utilities Index (HUI-3) as described by Feeny et al. (1995, 2002), used 
patient-generated utilities derived from TTO and SG methods. The HUI-3 evaluates 
eight attributes (emotion, cognition, pain, dexterity, vision, speech, hearing and ambu-
lation), each on five- or six-category scales. An earlier version, HUI-2, used seven 
attributes and therefore provided less discriminative power.

Example from the literature

The HUI-3 was used in the 1991 population health survey in Canada. Feeny  
et al. (1995) report that 75% of the 11,567 participants were in the 12 most 
common states, with 30% reporting ‘perfect health’.

Preference scores are available for the HUI-3, and it has been used to develop 
a population health index, comparing the health of different subgroups and 
monitoring changes over time.
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Examples from the literature

Brooks et al. (1996) report the valuations for the 13 ‘common core’ states of 
the EuroQol EQ-5D, using VAS, TTO and SG. Although the three methods resulted 
in very different scores, the ranking of the health states was broadly similar.

Example

Different methods (SG, TTO, WTP, DCE) result in different utility values, as does 
the choice of whose values should be solicited (patients or national popula-
tions); similarly, different instruments also produce results that are difficult to 
compare. This leads national health technology organisations to declare stand-
ards that should be used for cost effectiveness studies in their country. In the 
UK, the National Institute for Health and Clinical Excellence states that “For 
the cost-effectiveness analyses health effects should be expressed in QALYs. 
For the reference case, the measurement of changes in health-related quality of 
life should be reported directly from patients and the utility of these changes 
should be based on public preferences using a choice-based method. The EQ-5D 
is the preferred measure of health-related quality of life in adults.” Further, 
“A set of preference values elicited from a large UK population study using a 
choice-based method of valuation (the time trade-off method) is available for 
the EQ-5D health state descriptions. This set of values should be applied to 
measurements of health-related quality of life to generate health-related utility 
values.” (NICE, 2013).

The EuroQol EQ-5D, with five dimensions each originally having three categorical 
levels, is a brief instrument intended for use in economic evaluation. However, this still 
results in a total of 243 health states, and so the designers decided to focus on 13 of 
the most commonly occurring states, covering a broad range of health conditions. The  
revised version, the EQ-5D-5L extends the number of levels to five and potentially  
offers improved discrimination with fewer floor and ceiling effects, although the num-
ber of states is increased to 3125 (Herdman et al., 2011). The SF-6D is a six-dimen-
sional instrument derived from the SF-36 and is described in the Example in Section 
17.6 (Brazier et al., 2002). The EQ-5D, HUI-2 and HUI-3, SF-6D and QWB all focus 
on the same three underlying dimensions of QoL: physical, psychosocial and pain 
(Cherepanov et al., 2010). However, these measures generate different health state 
values, even on the same populations (Tsuchiya et al., 2006), so comparisons using 
different instruments should be interpreted with caution, especially when instruments 
use different valuation methods (SG, TTO, VAS).
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17.6  Quality-adjusted life years (QALYs)

Having established values for preference ratings or utilities, the next stage is to attempt 
to combine them with the patient’s likely duration in each condition. Quality-adjusted 
life years (QALYs) allow for varying times spent in different states by calculating an 
overall score for each patient. In broad terms, if the state of health during disease or 
treatment has been assigned a utility of 60%, then one year spent in this state is consid-
ered equivalent to 0.6 of a year in perfect health. Thus, if a patient progresses through 
four states that have estimated utilities of U1, U2, U3, U4, spending time T in each state, 
we have

	 QALY U T U T U T U T= + + +1 1 2 2 3 3 4 4 . 	 (17.1)

This is analogous to the area under the curve (AUC) discussed in Chapter 13, but 
using utility values instead of scale scores. QALYs can be calculated for various medical 
conditions, and although the scores may be difficult to interpret in absolute terms, they 
provide relative rankings for alternative states and treatments in different disease areas.

Since QALYs explicitly make use of utilities when combining scales and when 
incorporating survival, it is arguable that they are a more realistic method for deriv-
ing summary indexes of QoL than the more naïve summation across dimensions and 
AUC calculations. QALYs have become widely used in health-economic analysis, and 
used to provide a summary index that enables the comparison of different policies of 
treatment or management, and which is consistent across various disease areas. How-
ever, whether or not it is meaningful to combine such disparate dimensions as QoL 
and survival into a single number must remain debatable, although this is clearly a 
convenient procedure for policy-making. Thus Fayers and Hand (1997b) point to the 
logical difficulties of declaring one treatment to be ‘better’ than another when there are 
gains in some dimensions that are offset by losses in others; the comparison depends 
heavily upon the trade-off across dimensions, and different people will have different 
opinions about the relative values – and these opinions will change over time, accord-
ing to circumstances, contexts and experiences. Patients have different priorities from 
others, and community-averaged opinions may reflect only the views of a few central 
individuals. All the implicit assumptions regarding value judgements can too easily 
become obscured, or conveniently disguised, when only a single summary index such 
as cost per QALY is cited and presented in a league table.

As mentioned, QALYs are commonly used for health economic comparisons, when 
it is desirable to have an index that can be applied across a variety of disease areas. 
Consequently, generic instruments are most commonly used. Furthermore, the use of 
brief instruments (or a small subset of items/scales from a longer instrument) simpli-
fies the evaluation of utilities for the many combinations of health states. Widely used 
MAU instruments for health economics include the EuroQol EQ-5D, SF-6D, HUI-2 
or HUI-3 and QWB. To facilitate general applicability of the QALY scores and com-
parability across disease areas, the utilities may be based on the preferences of general 
population groups. Since health economic decisions are made at national level, the 
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utilities are frequently evaluated from national population samples. However, values 
may be stable over comparable populations and so, for example, Greiner et al. (2003) 
suggest that for the EQ-5D a single European value set may suffice.

17.7  Utilities for traditional instruments

Preference-based indexes have also been developed for some of the widely used tradi-
tional health status instruments such as the SF-36. This has led to the SF-6D, a prefer-
ence-based measure of health derived from the SF-36 and intended for use in economic 
evaluation. In creating the SF-6D, the SF-36 was revised into a six-dimensional health 
state classification. This offers a method for analysing existing SF-36 data from tri-
als and other sources of evidence where there is no other means of estimating the 
preference-based health values for generating QALYs. Thus it provides an alternative 
to existing preference-based measures of health for use in cost utility analysis.

Example from the literature

Brazier et al. (2002) report the estimation of utilities for the SF-6D in a sample 
of 611 people from the UK general population. SG was used to evaluate a sam-
ple of 249 different health states, and from this models were used to predict 
the health state valuations of all 18,000 possible states defined by the SF-6D.

An example of a ‘health state’ is the following (abbreviated from the original):
Your health limits you a little in vigorous activities; You are limited in the 

kind of work or other activities as a result of your physical health; Your health 
limits you in your social activities some of the times; You have pain but it does 
not interfere with your normal work; You feel tense or downhearted and low a 
little of the time; You have a lot of energy most of the time.

This covers the six dimensions of physical functioning, role limitations, 
social functioning, pain, mental health and vitality. In this example, the level 
of the first dimension (physical functioning) is 2, corresponding to ‘a little’, 
and so on, resulting in a SF-6D health state categorised as 223222.

Respondents were asked to choose between living in one such hypothetical 
health state for the rest of their life, and living with the uncertain prospect of 
either the worst possible or best possible health state. Using the SG approach, 
the chance of living in the best state was varied until the respondent was 
indifferent to the certain and uncertain scenarios. The results from various 
models were used to derive health state utility values. These values can be 
used for weighting data in future clinical trials and other studies. Kharroubi et 
al. (2007) update this approach using a nonparametric Bayesian approach to 
provide revised values for the SF-6D.
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Mapping across instruments

Health economic analyses have mostly been calculated using generic preference-
based instruments such as the EuroQol EQ-5D, HUI-3 or SF-6D, and it is generally 
thought that these measures are applicable to all patients and all treatments. However, 
the generality of such brief generic instruments comes at the expense of not including 
disease- or treatment-specific items. Therefore, many clinicians and other investiga-
tors prefer to use targeted, condition-specific instruments; these can be more relevant, 
sensitive and informative regarding both group differences and within-patient changes 
over time. If health-economic analyses have been planned, generic utility-based instru-
ments may be used alongside the disease-specific instruments. Frequently, however, 
data from generic utility instruments is not available.

These considerations have led a number of authors to report mapping studies that 
provide algorithms for predicting utility values from the scores of the disease-specific 
instruments. To that end, patients are asked to complete both the preference-based and 
the condition-specific instrument, enabling cross-calibration and a mapping function 
to be derived. This then enables the calculation of QALYs in clinical studies that have 
not used a preference-based instrument.

Example from the literature

McKenzie and van der Pol (2009) use two approaches to model the EQ-5D data. 
First, the EQ-5D values were modelled as a function of the EORTC QLQ-C30 data, 
using ordinary least squares regressions. Second, the five EQ-5D dimensions were 
modelled using ordered probit regression. The mapping equations were tested 
on a separate dataset, for which the QLQ-C30 data were used to predict EQ-5D 
values and estimate QALYs; these results were compared against the observed 
EQ-5D values and the corresponding QALYs. The authors found that the simpler 
first method was best, although they also suggest this may be because they 
ignored correlations and did not explore multivariate probit analysis.

The development data was from a clinical trial of palliative therapies for inop-
erable oesophageal cancer, and the validation data from a trial of radiotherapy 
after breast cancer surgery for low-risk elderly women. Table 17.1 shows that 
although there were some differences between the estimated and predicted 
EQ-5D values and the QALYs, the difference in QALYs were small (−0.019 and 
−0.017).

However, in this confirmatory trial the randomised groups did not differ 
significantly; it would have be interesting if the authors had also been able 
to evaluate the results in a trial for which there was a significant treatment 
effect. Crott and Briggs (2010) also describe mapping the EORTC QLQ-C30 to the  
EQ-5D, and summarise the results of a number of other studies.
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Table 17.1  Actual and predicted EQ-5D values and QALYs by treatment arm, for 254  
elderly women with low-risk breast cancer in a trial of post-operative radiotherapy

Radiotherapy No radiotherapy Difference t-value

EQ-5D mean value
  A  ctual 0.765 0.755 -0.010 0.77
    Predicted from QLQ-C30 0.779 0.769 -0.009 0.70

QALYs
  A  ctual 0.954 0.935 -0.019 0.69
    Predicted from QLQ-C30 0.972 0.955 -0.017 0.54

Source: McKenzie and van der Pol, 2009, Table 5. Reproduced with permission of Elsevier.

Brazier et al. (2010) review 30 studies that report a total of 119 different methods 
and models for mapping. They found that prediction of values for individual patients 
is generally relatively inaccurate, especially for patients with severe problems in who 
the gains may be underestimated. However, for health economics the aim of mapping 
functions is to estimate differences across groups of patients in clinical trials, and not 
to predict individual-level index values. Fayers and Hays (2014b) show regression to 
the mean results in attenuated estimates of SD, and that mapping studies should not 
use linear regression unless compensatory adjustments are made; alternative methods 
are preferable for linking measurement scales. The use of mapping functions is always 
a second-best solution to using a preference-based generic measure in the first place 
(or arguably using a preference-weighted condition-specific measure), but it is often 
necessary for pragmatic reasons.

Deriving a mapping function is a relatively simple approach. To derive a preference-
based measure, it is necessary to use a full psychometric approach with preference 
elicitation methods. Examples of this are Rowen et al. (2011) for the EORTC QLQ-
C30 and Dobrez et al. (2007) for the FACT-G.

Assumptions of QALYs

The value of QALYs is that they provide a common unit that can be compared across 
different disease areas and treatment groups. However, this is at the expense of a num-
ber of assumptions.

Utility independence is the assumption that individuals value length of life in a 
health state independently of the value of that health state. For example, if one were 
indifferent to the choice between two years with severe pain and one year’s survival 
that is pain-free, one should also be indifferent to the choice between two weeks with 
severe pain and one week of pain-free survival.
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Risk neutrality assumes a linear function for utility of life years. Thus, suppose 
one is willing to gamble on a 50–50 chance of either dying in one year or living for 
four years, versus the certainty of living for two years. Then, under risk neutral-
ity, one should also be willing to gamble similarly in the future between a 50–50 
chance of either dying in 21 years or living to 24 years versus the certainty of liv-
ing 22 years.

Constant proportional trade-off is the assumption that the proportion of remaining 
life that one is willing to give up for a specified improvement in quality of life is inde-
pendent of the number of remaining years of life.

QALY maximisation is the assumption that the objective of health care is to max-
imise the number of QALYs gained, irrespective of whom those QALYs go to and how 
they are distributed across society.

These are strong assumptions, and there is some evidence that none of them is 
realistic. For example, Brazier et al. (1999) provide a general review, while Dolan  
et al. (2005) comment on problems of QALY maximisation and constant proportional 
trade-off.

Discounting of QALYs

Most people place a greater value upon benefits that are immediate rather than those 
that may arise many years later. Thus it may be relevant to discount distant gains 
by proportionally reducing that component of the QALYs that relate to distant ben-
efits. This concept of discounting is widely applied in economic analyses and appears 
equally important in the context of QALYs, especially when the utilities are derived 
from TTO evaluations.

Cost-utility ratios

One application for QALYs is to provide a single summary statistic for the economic 
evaluation of the cost-utility of interventions. This, coupled with the possibility of cal-
culating QALYs in order to compare the impact of treatment across different diseases, 
has led to their widespread use by economists. The cost of each intervention is deter-
mined, and the cost-utility per expected number QALYs is estimated as

	 Cost-utility per CostQALY QALY= . 	 (17.2)

When comparing a new treatment A versus a standard (control) B, for example, we 
have

	 Cost-utility per gained Cost CostA B A BQALY QALY QALY= − −( ) ( ). 	 (17.3)

This ratio, also called the incremental cost-effectiveness ratio (ICER), can then be used 
as a measure to guide efficient use of healthcare funds.
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Example from the literature

Grant et al. (2008) evaluated the relative benefits and risks of laparoscopic fun-
doplication surgery as an alternative to long-term drug treatment for chronic 
gastro-oesophageal reflux disease (GORD), in a multicentre randomised trial. 
They randomised 357 participants to either surgery (178) or medicine (179), 
and additionally recruited 453 participants who chose surgery (261) or medi-
cine (192). Participants completed a set of questionnaires, including EQ-5D 
as well as other health status questionnaires. After one year there were sub-
stantial differences (one-third to one-half standard deviation) favouring the 
randomised surgical group across the health status measures.

Baseline and follow-up EQ-5D scores and QALYs are shown in Table 17.2a. A 
within-trial cost-effectiveness analysis suggested that the surgery policy was 
more costly (mean £2,049) but also more effective (+0.088 QALYs), as detailed 
in Table 17.2b. The estimated incremental cost per QALY was £19,000–£23,000, 
with a probability between 46% (when 62% received surgery) and 19% (when 
all received surgery) of cost-effectiveness at a threshold of £20,000 per QALY. 
Modelling plausible longer-term scenarios (such as lifetime benefit after sur-
gery) indicated a greater likelihood (74%) of cost-effectiveness at a thresh-
old of £20,000, but applying a range of alternative scenarios indicated wide 
uncertainty. The authors concluded that amongst patients requiring long-term 
medication to control symptoms of GORD, surgical management significantly 
increases general and reflux-specific health-related quality of life measures, at 
least up to 12 months after surgery. Complications of surgery were rare. A surgi-
cal policy is, however, more costly than continued medical management. At a 
threshold of £20,000 per QALY it may well be cost-effective, especially when 
putative longer-term benefits are taken into account, but this is uncertain.

Table 17.2a  Predicted unadjusted HRQoL and QALY, and QALY adjusted for baseline 
differences in HRQoL for patients receiving randomised treatment per protocol and 
followed up for one year

Medical (n = 155) Surgical (n = 104)

Mean SE Mean SE

Baseline EQ-5D index 0.736 0.020 0.722 0.023
First follow-up EQ-5D 0.700 0.024 0.800 0.024
Second follow-up EQ-5D 0.710 0.022 0.777 0.023
Unadjusted QALY 0.710 0.019 0.786 0.020
QALY adjusted for baseline 
differences in EQ-5D

0.706 0.014 0.793 0.017

Source: Grant et al., 2008, Table 36. Reproduced commercially with permission of the National 
Institute for Health Research (NIHR).
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Table 17.2b  Cost-effectiveness results for patients receiving randomised treatment per 
protocol and followed up for one year

Mean 95% CI

Difference in mean costs (£) 2,049 1,907–2,198
Difference in mean QALYs 0.088 0.046–0.130
ICER (£/QALY) 23,284
Probability surgery is cost-effective when threshold = £20,000 19%
Probability surgery is cost-effective when threshold = £30,000 80%

Source: Grant et al., 2008, Table 37. Reproduced commercially with permission of the National Institute 
for Health Research (NIHR).

17.8  Q-TWiST

The quality-adjusted time without symptoms and toxicity (Q-TWiST) approach is 
similar in concept to QALYs, in that it uses utility scores to reduce the importance 
of years survived when health is impaired. Unlike QALYs, however, Q-TWiST can 
be applied to censored survival data and is therefore particularly appropriate for use 
in clinical trials. The principle is to partition the overall treatment-related survival 
curves into a few – typically three – regions that define the time spent in particular 
clinical states. The areas of the regions are then used to provide scores for these 
states, and the scores are weighted according to utilities that have been derived as for 
the QALY method.

Q-TWiST versus QALY

QALYs aim to provide health-economic comparisons, frequently across different 
disease areas. The instruments used are therefore usually generic ones, such as the 
EQ-5D, HUI-2 and HUI-3, SF-6D and QWB (or disease-specific instruments for 
which a mapping onto a generic instrument is available). Comparisons usually aim 
to inform decisions about resource allocation or management policies at the national 
level, and so utility values are likely to be derived from random samples of the national 
population, or based on existing utility estimates available for countries thought to be 
in some sense similar. In contrast, Q-TWiST utilities are patient orientated. Therefore, 
disease-specific instruments are more commonly used, with patient-derived utility 
weights. Q-TWiST is appropriate for use in clinical trials, and aims to inform clinical 
decisions.
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Choice of health states

The initial task in calculating Q-TWiST is to define the health states. The overall sur-
vival time (OS) of each patient may include a time without symptoms or toxicity 
(TWiST). This will usually represent the optimal state, or the best possible QoL that is 
realistic and attainable for patients with chronic diseases such as cancer, and is there-
fore usually one of the health states included in a Q-TWiST analysis. This state has by 
definition a utility of 1. In contrast, death has a utility of 0. The other states are chosen 
according to clinical relevance, but two states might be, for example, the period with 
symptoms and toxicity (state 1 = TOX), and when in relapse (state 2 = REL). In this 
case, OS = TOX + TWiST + REL with progression-free survival (PFS) = TOX + TWiST; 
but other states might be more suitable for partitioning survival in other contexts.

Example

Suppose a patient with operable lung cancer has the tumour surgically removed 
so that in practical terms the patient is (almost) free of disease and hence 
symptom-free. However, post-operative chemotherapy of three cycles is given 
in the hope of eliminating any potential metastases. Following each cycle of 
chemotherapy, the patient experiences severe toxicity for five, three and seven 
days. Thereafter the patient remains without either symptoms or toxicity until 
the disease recurs at 250 days after surgery when symptoms also reoccur and 
he dies 50 days later. Here TOX = 5 + 3 + 7 = 15, TWiST = 235, REL = 50 and 
OS = 15 + 235 + 50 = 300 days.

Survival curves

A standard survival analysis is based upon OS for each patient, and the treatment-
specific groups can be compared using the Kaplan–Meier method as described by 
Machin et al. (2006). This form of analysis also takes into account survival times of 
patients who have not yet died at the time of analysis. In very broad terms, the treat-
ment that is most effective corresponds to the upper of these two survival curves, and 
the magnitude of the area between them represents the size of their difference.

To partition the survival curves, the time in each of the Q-TWiST states is quantified 
for each patient and summarised using the corresponding Kaplan–Meier estimates to 
graph the curves for the different states. The area beneath the corresponding Kaplan–
Meier curve provides an estimate of the mean duration of time spent in each particular 
health state. The areas between the curves for TOX, PFS and OS are estimates of the 
respective mean health state durations. Thus the area between the PFS and TOX sur-
vival curves is an estimate of the mean duration of TWiST, while the area between the 
OS and TWiST survival curves is an estimate of the mean duration of REL.
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Example from the literature

Wang et al. (2011) use Q-TWiST analysis to evaluate the benefit of adding 
panitumumab to best supportive care for patients with metastatic colorectal 
cancer. The partitioned survival curves are shown in Figure 17.2. Toxicity was 
defined as the time spent with grade 3 or 4 adverse events, during the period 
from randomisation until disease progression.

The panitumumab patients spent on average 3.5 weeks in TOX, 13.3 weeks 
in TWiST and 9.4 weeks in REL; the corresponding periods for the control group 
were 1.1, 8.0 and 16.1 weeks.

Figure 17.2  Partitioned survival curves for the two treatment arms of the metastatic 
colorectal cancer trial. (a) panitumumab+BSC and (b) BSC alone, where BSC=best supportive 
care. REL is the relapse period until death or end of follow up; TOX represents days with 
grade 3 or worse adverse events; TWiST is the time without symptoms or toxicity. Source: 
Wang et al., 2011, Figure 1. Reprinted with permission of Macmillan Publishers Ltd on behalf 
of Cancer Research UK.
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Calculating Q-TWiST

The period in TWiST is regarded as optimal, with a utility of 1, but we need utilities 
uTOX for TOX, and uREL for REL. These presumably have utilities between 0 and 1, 
and could be determined using the methods of VAS, SG or TTO, or could be chosen 
arbitrarily on the basis of experience of clinicians or other staff. The utilities might be 
specified as part of the protocol documentation, or could be collected during the trial 
itself. Q-TWiST is then calculated by summing the utility-weighted values for TOX, 
TWiST and REL. Thus,

	 Q TWiST u TOX u TWiST u RELTOX TWiST REL- = + +( ) ( ) ( ).× × × 	 (17.4)

Since TOX, TWiST and REL are measured in units of time, such as months, Q-TWiST 
too is measured in the same time units.

Example from the literature

Gelber et al. (1995) calculate the survival curves for OS, PFS and TOX for the 
individual treatments of the International Breast Cancer Study Group (IBCSG) 
Trial V. This trial tested the benefits of Long versus Short chemotherapy. The 
estimated mean times for their three states are TOX = 1, TWiST = 47 and REL = 16 
months for the Short chemotherapy arm in the IBCSG Trial V. They also define 
uTWiST = 1.0, uTOX = 0.5 and uREL = 0.5. Thus,

Q TWiST- months= + + =( . ) ( . ) ( . ) . .0 5 1 1 0 47 0 5 16 55 5× × ×

If the utilities used were different, a different value of Q-TWiST would be 
obtained. For example, suppose relapse were followed by a period of much 
lower QoL than when TOX was being experienced. In such a case perhaps uTWiST 
= 1.0 and uTOX = 0.5 as previously, but uREL = 0.25. Then

Q TWiST- months= + + =( . ) ( . ) ( . ) . .0 5 1 1 0 47 0 25 16 51 5× × ×

Here the value of one month spent during the relapse period is one-quarter that 
spent with the better QoL of the TWiST interval, and one half of that during the 
period of symptoms and/or toxicity.
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The utility model of equation (17.4) makes the assumption that the quality-adjusted 
time spent in a health state is directly proportional to the actual time spent in the health 
state. It also assumes that the value of the utility coefficient for a health state is inde-
pendent of the time the health state is entered. This implies, for example, that if toxicity 
is experienced on three separate occasions then the associated uTOX will be the same 
for each occasion.
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Comparing treatments

In a randomised trial to compare treatments, Q-TWiST itself becomes the variable for 
analysis. In theory, the value of Q-TWiST for each patient could be calculated, which 
would then enable the Mann–Whitney test described in Section 12.2 to be used for 
testing significance. However, the methods described above based upon partitioned 
survival curves are advocated for use with censored data or when there are missing 
values, and these result in a single summary statistic for each treatment group. One 
way of testing the statistical significance of this observed treatment difference is to 
use computer-based bootstrap methods to calculate confidence intervals (CIs) and 
p-values, as described in Altman et al. (2000). Revicki et al. (2006) reviewed pub-
lished studies in oncology that used Q-TWiST and suggest that a clinically important 
difference is 10% of the overall survival in a study, and that differences of 15% are 
clearly clinically important. For planning studies, if little is known about the treat-
ment and/or disease area, they recommend using an effect size of 5% to 10% for 
sample size estimation.

Example from the literature

In the study of Wang et al. (2011), the EQ-5D was also used. This permits an 
alternative approach to determining the values of uTOX and uREL. Utility values 
for uTWiST, uTOX and uREL were obtained from the observed EQ-5D utility data for 
the TOX and REL periods. Since Q-TWiST compares TOX and REL relative to TWiST, 
all three utility values are scaled through division by the patient-estimated 
uTWiST, following the example of Bernhard et al. (2004).

The authors note that EQ-5D scores were higher for patients on panitumumab 
compared to the control group during periods of both TOX and TWiST. They also 
comment that in these patients skin rash was a common side effect of treat-
ment and has a detrimental effect on HRQoL.

Example from the literature

Gelber et al. (1995) describe the steps taken in the calculation of Q-TWiST using 
data from the IBCSG Trial V. These calculations are summarised in Table 17.3. 
In broad terms, they conclude that the advantages for long-term chemotherapy 
in terms of OS and PFS over the short-term chemotherapy are not offset by the 
disadvantages associated with the greater toxicity. Thus the Q-TWiST difference 
of five months favours the use of long-term therapy for these patients. CIs were 
calculated using bootstrap methods.
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Table 17.3 C alculation of Q-TWiST from International Breast Cancer Study Group Trial V

Endpoint
Utility  

coefficient

Mean time  
(months)

Difference 95% CILong Short

Survival (OS) — 69 64   5 2 to 8
Disease-free survival (DFS) — 59 48 11 8 to 15
Time with toxicity (TOX) 0.5   6   1   5 —
TWiST 1.0 54 47   7 —
Time in relapse (REL) 0.5   9 16 −7 —

Q-TWiST — 61.5 55.5   6 3 to 8

Source: Gelber et al., 1995, Table 2.

17.9  Sensitivity analysis

The final value of Q-TWiST depends critically on the values assigned to the utility 
coefficients. Thus, in Table 17.4, had the utilities uTWiST = 1.0, uTOX = 0.75 and uREL = 0.25  
been used in place of 1.0, 0.5 and 0.5, we would have Q-TWiSTLong  =  60.75 and  
Q-TWiSTShort = 51.75 months. Then the advantage of the Long regimen is extended 
to the equivalent of 60.75 − 51.75 = 9.00 disease-free months. Thus there is value in 
exploring how robust the conclusion is to changes from the utility coefficients speci-
fied. If this exploration concludes that whatever the values of the utilities provided 
there always remains an advantage to one particular treatment, the message is clear. 
However, if there are conflicting suggestions depending on the choices made, the situ-
ation may become ambiguous. Or at least, the choice of best treatment option should 
be based on individual (patient-specific) values.

Such a sensitivity analysis, or threshold utility analysis, begins by comparing equa-
tion (17.4) calculated for each of the two treatment options. For brevity, we term these 
treatments A and B. For a particular clinical trial, we will have calculated TOXA, 
TWiSTA, RELA and TOXB, TWiSTB, RELB and hence Q-TWiSTA and Q-TWiSTB. The 
difference between these two values of Q-TWiST is termed the gain, G:

	 G Q TWiST Q TWiST= −- -A B. 	 (17.5)

This equals

G u TOX TOX u TWiST TWiST u REL RELTOX TWiST REL= − + − + −× ×( ( ( .) ) )A B A B A B

Further, if we assume uTWiST = 1, as will be the case in most applications, then G sim-
plifies to

   G u TOX TOX TWiST TWiST u REL RELTOX REL= − + − + −× ×( ( ( .) ) )A B A B A B 	 (17.6)
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From equation (17.5) the gain will be zero, that is G = 0, if Q-TWiST for the two 
treatments is the same. To achieve this, one can search for values of the pair (uTOX, 
uREL) that, once substituted in equation (17.6), make this true. The values of both 
uTOX and uREL are confined to the range between 0 and 1. We can also search for 
values of (uTOX, uREL) that have G > 0. In this case, treatment A would be preferred 
to B. Similarly, we can search for values that have G < 0, in which case treatment B 
is preferred to A.

This sensitivity analysis can be presented as a two-dimensional plot of uTOX against 
uREL. The straight line obtained by setting G = 0 is the threshold line that indicates  
all pairs of utility coefficients (uTOX, uREL) for which the two treatments have equal  
Q-TWiST. The threshold line is determined by setting G  =  0 in equation (17.5). In 
effect, we rewrite that equation in the following way:

	 u
TWiST TWiST

TOX TOX
u

REL REL

TOX TOX

( )

( )

( )

( )
.TOX REL

A B

A B

A B

A B

= −
−

− −
−

	 (17.7)

This is in the form of the equation of a straight line y = α + βx, where

y u x u
TWiST TWiST

TOX TOX

REL REL

TOX TOX
, ,

( )

( )
and

( )

( )
.TOX REL

A B

A B

A B

A B

α β= = = − −
−

= − −
−

Example from the literature

For the IBCSG Trial V comparing Long and Short chemotherapy, Gelber et al. 
(1995) use the data of Table 17.4 to specify equation (17.7). This gives

G u u

u u

(6 1) (54 47) (9 16)

5 7 7 .
TOX REL

TOX REL

= × − + − + × −
= + −

Setting G = 0 we have, from equation (17.7):

	 u
u

u
7
5

7
5

1.4 1.4 .TOX
REL

REL= − +
×

= − +

This implies that the threshold line has intercept α = −1.4 and slope β = 1.4. 
In fact, the authors quote uTOX = −1.2 + 1.4uREL but the difference between 
the two expressions is due to rounding to whole numbers when presenting the 
summary calculations.
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Example from the literature

Wang et al. (2011) apply this approach and summarise their threshold sen-
sitivity analysis as shown in Figure 17.3. The threshold line for which the 
two treatments have equal Q-TWiST (that is, G =  0) is shown by the sec-
ond line from the bottom right corner in Figure 17.3. The other lines show 
the differences in Q-TWiST (weeks) corresponding to varying values of uTOX 
and uREL.

Results were statistically significant (p <  0.05) for all TOX utility levels 
when uREL ≤ 0.4, and when uREL = 0.6 results were still significant for all val-
ues of uTOX ≥ 0.5. The authors concluded that the addition of panitumumab 
to best supportive care provided significant improvements in quality-adjusted 
PFS and quality-adjusted OS and, that the toxicities associated with panitu-
mumab are more than offset by the associated increase in time without severe 
toxicity.
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Figure 17.3  Threshold utility analysis, showing differences in Q-TWiST (number of weeks) 
for varying toxicity and relapse utility levels. Positive numbers indicate a benefit in favour 
of the panitumumab arm. Source: Wang et al., 2011, Figure 3. Reprinted with permission of 
Macmillan Publishers Ltd., on behalf of Cancer Research UK.
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17.10  Prognosis and variation with time

Prognostic factors

In many clinical situations, the appropriate treatments and the patient’s final choice 
of therapeutic option may differ depending on circumstances. Nevertheless there may 
be groups of patients, perhaps pre-menopausal women with breast cancer, who might 
choose a different approach from that chosen by post-menopausal women with the 
same disease. The Q-TWiST methodology extends to this situation and can also be used 
for comparing patient groups receiving the same treatment. From such studies one 
may conclude, for example, that pre-menopausal women gain additional disease-free 
equivalent days by use of a particular therapy when compared with the post-menopau-
sal women receiving the same treatment. More generally, one can make comparisons 
between treatments within each of these patient groups.

Variation of Q-TWiST with time

The preceding sections have summarised Q-TWiST in a single figure, essentially encap-
sulating the period from diagnosis to subsequent death of the patient. This may be rele-
vant to patients with relatively poor prognosis, but not for those whose prognosis is good. 
However, the principles involved in calculating Q-TWiST are not changed if the time 
from diagnosis is divided into segments – perhaps into yearly or even shorter intervals.

Thus in some situations patients diagnosed with a certain disease receive an aggres-
sive treatment for a relatively short period (say less than one year) during which they 

Example from the literature

In describing a Q-TWiST analysis, Cole et al. (1994) present the mean times spent 
in TOX, TWiST and REL for four groups of women according to treatment (Short 
or Long chemotherapy) received. The prognostic groups comprised women who 
were pre-menopausal with small tumours and few nodes, pre-menopausal with 
large tumours and numerous nodes, post-menopausal with small tumours and 
few nodes, and post-menopausal with large tumours and numerous nodes. Their 
results are summarised in Table 17.4.

In this table there are differences between treatments with respect to the time 
spent in each of the states TOX, TWiST and REL. In addition, there are some major 
differences between patient groups. For example, for the pre-menopausal women 
with small tumours receiving Short chemotherapy, Q-TWiST = 0.8uTOX + 74.5 + 
19.0uREL, whereas for those who are pre-menopausal but have large tumours it 
is 0.8uTOX + 38.1 + 23.5uREL. Thus whatever the values given to uTOX and uREL by 
these two groups of women, those with the smaller tumours will have the greater 
Q-TWiST with short-duration therapy. The TWiST values of 74.5 and 38.1 months, 
respectively, dominate the corresponding Q-TWiST values.
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Table 17.4  Average number of months in each of three health states for four groups of 
patients with breast cancer receiving one of two chemotherapy regimens

Chemotherapy

Short Long

Tumours <2 cm and <4 nodes
Pre-menopausal
               TOX 0.8 5.8
              TWiST 74.5 83.5
                  REL 19.0 7.7
Post-menopausal
               TOX 0.8 5.8
              TWiST 80.1 87.9
                  REL 16.8 6.7

Tumours ≥2 cm and ≥4 nodes
Pre-menopausal
               TOX 0.8 5.8
              TWiST 38.1 50.1
                  REL 23.5 9.9
Post-menopausal
              TOX 0.8 5.8
              TWiST 43.9 55.8
                  REL 22.1 9.4

Source: Adapted from Cole et al., 1994.

experience both treatment-related toxicity and symptoms of their disease. Thereafter 
they may have an extensive period in which they are disease-free, followed by the 
remote possibility of relapse and the emergence of long-term side effects of treatment. 
In this example, for all patients on therapy, the first post-diagnosis year may be domi-
nated by TOX, and the remaining parts with TWiST and REL within this year may be of 
relatively short duration. Whereas in the second post-diagnosis year a few patients may 
be still experiencing toxicity, the majority are disease-free, while a few may relapse. 
Thus the balance between TOX, TWiST and REL may change. This implies that the 
gain, G, of equation (17.6) may well vary from period to period following diagnosis.

Example from the literature

Gelber et al. (1995) show, with their example of Short and Long chemotherapy 
regimens of the IBCSG Trial V, how the gain changes with time during the first 
seven years post-diagnosis. In Figure 17.4, the bold central horizontal line shows 
the relative gain when uTOX = 0.5 and uREL = 0.5, and the shaded region denotes 
the range of Q-TWiST gains as the utility coefficients vary between zero and one.
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Thus Figure 17.4 illustrates how the balance in the first year after diagno-
sis favours the Short regimen. This is clearly because all the active treatment 
occurs in this period and the TOX component of Short is much less than that of 
Long. As a consequence Q-TWiST, when confined to this period, will be domi-
nated by TOX unless the associated utility coefficient, uTOX, is very small. How-
ever, in later years the contribution of TOX to Q-TWiST is less, and so the balance 
between the two options shifts in favour of the Long regimen.
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Figure  17.4  Change in Q-TWiST gain (months) over time for women with breast cancer 
receiving Short or Long duration chemotherapy; ‘gain’ indicates the advantage of Long over 
Short. Source: Gelber et al., 1995, Figure 4.

Thus with Q-TWiST potentially varying with time following diagnosis, the attend-
ing physician may discuss with the patient with breast cancer the pattern of possible 
gain over the coming years. This in turn may then influence the patient’s choice of 
treatment.

17.11  Alternatives to QALY

Various alternatives to QALYs and Q-TWiST have been proposed, but none have gained 
matching popularity. Healthy-years equivalent (HYE) and Disability-adjusted life 
years (DALY) are two of the principal alternatives.

HYE is claimed by its advocates to be superior to QALY because it avoids some of 
the assumptions (Gafni et al., 1993). The principle of HYE is to avoid the need for 
expressing the preferences of patients in terms of utilities, which are an abstract con-
cept, but instead to obtain an estimate of the equivalent number of years in full health 
that the patients would trade for their health-state profile.
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The original procedure involved a two-stage estimation to obtain patients’ HYE val-
ues, but it has been shown that HYE is very closely related to QALYs calculated using 
TTO. The difference is as follows. For QALYs, we need to know the utility of each 
health state, and the overall QALY score is calculated by assuming that this utility then 
applies uniformly to the time in that particular health state, as in equation (17.1). In the 
HYE formulation, the number of HYEs has to be measured for every possible duration 
of time in each possible health state. Thus HYE avoids the ‘risk-neutrality over time’ 
assumption of QALY, but at the major expense of having to evaluate HYEs for every 
possible state duration.

The DALY is a measure of disease burden, with disability weights for loss of func-
tioning. One DALY represents the loss of one year of equivalent full health, whereas 
one QALY corresponds to the gain of an extra year of full health. The weighting func-
tion assigns different weights to life years lived at different ages, and the method of 
estimating DALY and QALY weights differs (Murray, 1997). Detailed examples of cal-
culating DALYs are provided by Fox-Rushby and Hansen (2001) and Sassi (2006).

Whether or not HYE or DALY have benefits over QALY and Q-TWiST remains con-
troversial. In any event, in clinical trial settings HYE or DALY will rarely be feasible 
unless utility values have been evaluated and are available.

17.12  Conclusions

Utility approaches attempt to combine QoL with survival, enabling a comparison of 
different policies of management when both QoL and survival vary simultaneously. 
They do this by equating a year of survival with good QoL as being equivalent to a 
longer period with poor QoL. However, there are clearly some difficulties with assess-
ing this quality-adjusted survival. These include the determination of the utilities them-
selves and the rather simplified concept of health states during which QoL remains 
essentially constant. Although cost utility may remain constant, a patient’s attitude and 
hence QoL with respect to successive cycles of chemotherapy may well be very vari-
able and far from even approximately constant. Thus although the threshold analysis 
examines the robustness of this approach to some extent, it does not challenge some 
basic assumptions.

Another problem is that different patients may have very different sets of utilities. 
The concept of asking patients to assess their utilities for themselves is likely to be fea-
sible only in relatively small groups of patients. Furthermore, an individual patient’s 
utilities need not remain constant but may change over time or according to experience 
and circumstances. Thus, unless a threshold analysis confirms that conclusions regard-
ing treatment superiority hold for a very wide range of utilities, it would be difficult to 
maintain that the results have general applicability.

Although this chapter has touched on heath economics, the main focus of this book 
remains clinical trials and clinical interpretation of the results; anyone interested in 
health economic studies are advised to read specialist texts on that subject. In many 
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clinical trial situations it would seem preferable to report the observed QoL and the 
overall survival differences and let the individual – whether patient, clinician or health-
care planner – decide what relative importance to attach to the separate dimensions. 
That is, one possibility is to aim to present sufficient information to let the individual 
apply their own set of utilities.

17.13  Further reading

This chapter has touched upon health economic analyses, mainly with respect to  
QALYs as a means of integrating QoL and survival. However, health economics is a 
subject in its own right, and anyone embarking on such studies is recommended to seek 
specialist advice. Books on this topic include Drummond et al. (2005), Brazier et al. 
(2007) and Glick et al. (2007). Ramsey et al. (2005) propose standards for good cost-
effectiveness research alongside clinical trials.
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18
Clinical interpretation

Summary

The interpretation of QoL scores raises many issues. The scales and instruments used 
may be unfamiliar to many clinicians and patients, who may be uncertain of the mean-
ing of the scale values and summary scores. We describe various methods aimed at 
providing familiarity of scale scores and understanding the meaning of changes in 
scores. We describe the use of population-based reference values from healthy indi-
viduals and from groups of patients with known health status and various illnesses. 
We also discuss patient-orientated methods. These include the identification of the 
minimal changes in PROs that are discernible by patients or are important to patients, 
the impact of QoL states upon behaviour, and the changes in QoL which are caused 
by major life events. Data-derived effect sizes, which consider the random variability 
of the observed data, provide yet another method and can be particularly useful when 
reference values and patient-orientated information are not available. Threshold values 
used for interpretation are also useful for determining suitable targets to be used when 
calculating the sample size for a study.

18.1  Introduction

Previous chapters have described methods of collecting, analysing and summarising 
PROs. What do the results mean? What is the clinical relevance of a particular score 
for QoL, and how important are the changes in patients’ PROs?

Sometimes results for single items are reported. For example, when a seven-point 
global question about overall QoL has been used, the results might indicate that treat-
ment improves overall QoL by, say, on average 0.8 points. A clinician (or a patient) 
might quite reasonably demand to know how to interpret such a change. If QoL for an 
individual patient changes by that amount, would it be a noticeable change? Would it 
be an important change? Similarly, when scores are calculated for multi-item scales, 
what do they mean? What are the clinically important differences between groups of 
patients?
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Although some clinicians may hope to identify a single value that will serve as a 
clinically significant difference in QoL, it can be argued that this is a demand that is 
unfairly imposed more frequently upon QoL scales than other clinical scales. Suppose 
we consider blood pressure (BP) measurement. Systolic and diastolic BP are two of 
the most widely used medical measurements, and the association between elevated BP 
and increased mortality is well recognised. The epidemiology of BP and its relation-
ship with age and gender are also well established. Yet there is little consensus as to 
what critical levels should be taken as indications of hypertension demanding treat-
ment. Most clinicians would probably consider initiating therapy if repeated diastolic 
BP measurements exceed 100 mmHg, but some might start at 95 mmHg. Some would 
use diastolic BP in conjunction with systolic BP. Some would make allowance for age 
when setting the threshold for commencing therapy. Given this divergence of agree-
ment about thresholds, it is not surprising to find that there is even less agreement as 
to what differences are clinically worthwhile. If beta-blockers lower diastolic BP by 
20 mm, from 120 mmHg to 100 mmHg, is it worth continuing long-term therapy? 
Many might say yes. But what if the change is 10 mm? Or even as little as 5 mm? 
Despite international guidelines, national practices vary.

One could level similar arguments against other simple measurements. If a course 
of cytotoxic drugs prolongs survival by an average of 50% in small-cell lung cancer 
patients, is it worth giving routinely? Most would agree that it is worthwhile for good-
prognosis patients, but how about patients with advanced disease who are expected to 
have very short survival and for whom a 50% increase results in a gain of only a few 
weeks? Would therapy still be worthwhile if it prolongs average survival by less than 
10%? Clearly there is little consensus about survival, either. It appears to be recog-
nised and accepted that clinically important survival benefits are very much a matter 
of personal value judgements, on the part of both the patient and the treating clinician.

One obvious distinction is familiarity with the scales. Most people can understand the 
concept of survival, and thus many patients justly demand to be involved in decisions 
about their survival. Patients have less feeling for the meaning of BP measurement, but 
realise that their clinicians have a better understanding of it than they do. Therefore they 
expect the clinician to help assess the value of treatment. Unfortunately, with PRO scales, 
both patients and clinicians may feel uncertain what a score change of, say, 10% means. 
Hence the need for information about the levels of QoL that are to be expected for ill 
patients and guidelines to help decide what magnitude change in QoL is worthwhile.

No single approach is likely to provide a complete feel for the meaning of PROs, 
and thus it is important to use a variety of methods for obtaining familiarity and under-
standing of QoL scores.

18.2  Statistical significance

The meaning of statistical significance and the power of tests was covered in Chap-
ter 11. Here, we merely emphasise that statistical significance does not imply clini-
cal significance. Statistical significance tests are concerned solely with examining the 
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observed data values, to determine whether differences or changes can be attributed 
to chance and patient variability, or whether there is sufficient weight of evidence to 
claim that there is almost certainly a pattern in the data. Highly statistically significant 
p-values indicate little about the magnitude of the differences, and tell us only that the 
differences are probably real as opposed to chance events. They tell us even less about 
the clinical significance of the observed changes.

It is particularly important to bear this in mind when reading reports of survival stud-
ies. Many of these enrol large numbers of patients in order to be certain of detecting 
small, yet clinically important, differences in survival. Sample sizes of several hundred are 
not uncommon in multicentre randomised trials, and some recruit thousands of patients. 
PROs are often secondary endpoints in those clinical trials that aim to compare two treat-
ments for survival differences. This large sample size means that if there is even a very 
small difference in QoL it will be detected and found to be statistically highly significant. 
A p-value of, say, p < 0.01 tells us that, because of the large sample size, it is unlikely (a 
chance of less than 1 in 100) that we would have observed such extreme data purely by 
chance. Therefore we are reasonably confident that there is likely to be a difference in 
QoL. However, despite being ‘highly significant’ in statistical terms, the observed differ-
ence in a PRO (which is our best estimate of the true difference between patients taking 
these treatments) might in fact be very small. It might be clinically unimportant.

Conversely, in a small study a difference might be found to be barely significant at 
the 5% level (say, p = 0.049). Yet the observed difference in QoL could be substantial 
and, if confirmed to be true, might be exceedingly important in clinical terms.

In summary, statistical significance does not necessarily indicate clinical relevance 
of the findings. Statistical significance tests are concerned solely with evaluating the 
probability that the observed patterns in the data could have arisen purely by chance.

18.3  Absolute levels and changes over time

The interpretation of scores will take different forms according to the purpose for 
which the outcome is being assessed.

●● Cross-sectional studies may collect data representing the levels of an outcome in a 
group of patients, and often it will be appropriate to contrast the observed average 
values against reference data from other groups, such as the general population.

●● Follow-up studies that collect repeated measurements for each patient may be inter-
ested in the same issues as cross-sectional studies, but in addition they are likely to 
place greater emphasis upon changes over time rather than absolute levels. Large 
follow-up studies have the power to detect small variations in the mean level of an 
outcome, and some of these changes may be so small that they are of little conse-
quence to individual patients.

●● Sample size estimation requires specification of a target difference. Although the 
emphasis of this chapter is on interpretation of results, there is a close relationship 
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between interpretation and the definition of the effect size to be used as the target when 
estimating the number of patients required for a study. Generally, at the study design 
stage, the investigator wishes to ensure that the sample size is large enough to have a 
reasonable probability of detecting relevant differences, where relevance is typically 
either differences that are large enough to influence the management of patients, or 
differences that patients notice and are considered by them to be important.

●● Clinical trials place the focus upon differences between the randomised groups. Usually 
the investigators will carry out a significance test to determine whether there is evidence 
that the observed differences are larger than can be attributed to chance alone. If statisti-
cal significance is established, they will next want to know whether the between-group 
differences are large enough to be clinically important. They may also want to know 
whether one or both groups of patients in the trial have lower or higher scores than ref-
erence groups such as the general population. Also, in clinical trials, assessments are 
usually made at baseline, during treatment and during follow-up. Investigators may be 
interested in differences between groups of people or within-person changes over time.

a.	 If one group has worse (or better) outcomes than another group, are the differ-
ences large enough to be important?

b.	 If PROs change over time, how large do the changes need to be before they are 
noticed?

c.	 What magnitude of change in scores is big enough to be important?

d.	 Do differences between the groups diminish over time? If so, when do they cease 
to become clinically important?

e.	 Do some individuals have such a large reduction in QoL that psychosocial inter-
vention is necessary?

Many forms of information are necessary to answer the above questions. The inter-
pretation of QoL data may often be based upon a consideration of absolute levels 
relative to a reference population, combined with a judgement concerning the magni-
tude and clinical importance of observed differences between groups of patients and 
changes over time. We need to define a reference population. Often this will consist 
of healthy people or the general population. We need to know what levels of QoL are 
present in the reference population and how much variability there is in the data. This 
variability is often summarised by the SD calculated from the reference population. We 
need to know what magnitude of differences or changes are perceived by patients or 
others as being noticeable, important and worthwhile.

18.4  Threshold values: percentages

One of the simplest forms of presentation – and therefore one of the simplest for 
interpretation – is to show the percentage of patients above some specific value. For 
example, when comparing treatment groups one might tabulate the percentage of 
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patients that report ‘good’ QoL. For a few instruments, such as the Hospital Anxiety 
and Depression Scale (HADS), there are guidelines for values that denote ‘cases’ and 
‘doubtful cases’ requiring treatment. Even without such guideline levels, many readers 
seem to find it intuitively easier to visualise a comparison based upon the percentage 
of patients above and below some arbitrary cut-point rather than a difference in group 
means.

In some situations, such as when many patients rate themselves at the maxi-
mum (ceiling) value, it may be helpful to compare the proportion of patients at this 
maximum.

Similarly, when using odds ratios (OR) it is also in principle possible to choose 
a critical value and compare the proportion of patients lying above and below that 
threshold. This approach has not been widely used and so for most instruments it is 
less clear what critical values might be appropriate.

18.5  Population norms

Interpretation of PROs may use population-based reference values, which provide 
expected or typical scores that are called norms. Tables of normative data, taken from 
surveys of randomly selected subjects from the general population, provide a use-
ful guide for interpretation. Norms can consist of values for the general population 
as a whole or for various subgroups, such as healthy people or those with particular 
disease conditions. Norm-based interpretation of PROs consists of defining one (or 
more) reference groups for whom norms are available, and treating these scores as 
target values against which the scores observed in an individual patient, or the aver-
age for a group of patients, can be compared. For comparative purposes, the average 
patient values and the norms can be listed side by side. A possibly better method is to 
regard the norms as anticipated values; these can be subtracted from the patient aver-
ages to give the difference-scores of observed-minus-expected values. These differ-
ences can be standardised, to allow for differences in variability of the measurements 
and scales. Usually, if a measurement scale has a small SD in the general population 
(indicating that most people have very similar values to each other), even a small 
difference from the norm will be noticeable and important. Conversely, if the popula-
tion SD is large, there will be a large amount of variation from one person to another 
and only large differences between the observed patient values and the norms will be 
clinically important. Therefore the standardised differences, in which the differences 
are divided by the SD, may be easier to interpret than plain observed-minus-expected 
differences. Standardisation is also related to the concept of effect sizes, as described 
in Section 18.12.

What reference population should be chosen? The two obvious choices are the 
general population, which includes both the healthy and those with chronic or acute 
illness, or the healthy population after excluding those with illnesses. Random sam-
ples from the general population may find that more than half of the subjects report 
chronic illnesses of varying severity, although the proportions will vary according to 
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the composition of the sample (e.g. age range and distribution) and the definition of 
‘chronic illness’. Often the optimal choice of reference population will be debatable. 
In some studies, patients who are recruited into the study will be as likely as the gen-
eral population to have concomitant diseases. For example, a study of QoL in patients 
with cardiovascular diseases may find that many patients have chronic lung disease 
too. In such cases, the general population would seem the most suitable choice. This 
is the reference population that is most frequently used. However, the healthy popu-
lation could be used to provide an indication of the ‘ideal’ target value. Sometimes 
the healthy population may be more appropriate as the reference group. For example, 
some clinical trials may have eligibility criteria that exclude patients with serious 
comorbid conditions. In such trials, contrast with values from the healthy population 
is preferable. In other circumstances, neither reference population is ideal. For exam-
ple, when considering the meaning of QoL states in patients who are receiving active 
therapy or recovering from side effects, sometimes the target and potentially achiev-
able QoL might be defined as that obtained by long-term survivors or cured patients. 
These data are less frequently available for QoL instruments, and most investigators 
make use of the general population or, less commonly, the healthy population.

Normative data, also called reference values, are available for many QoL instru-
ments. Mostly, these are based upon cross-sectional surveys of the general population 
and are presented as values tabulated by age and gender. Norms are also sometimes 
available for different disease groups. Less common, although important, are norms 
from longitudinal studies, showing the changes over time that may be expected for 
healthy or ill subjects. For example, it could be important for the interpretation of 
results to know the anticipated rate of change in palliative care patients, or in those 
responding to therapy.

Example from the literature

Hjermstad et al. (1998a) report normative data for the EORTC QLQ-C30 in a 
randomly selected sample of 3,000 people from the Norwegian population, aged 
between 18 and 93. Data were available for 1,965 individuals. Table 18.1 sum-
marises their results, by age and gender, for the functioning and global health/
QoL scales of the QLQ-C30 (version 2.0).

Apart from emotional functioning, all functioning scales and the global score 
show a decline with age. The fall is particularly marked for physical functioning 
above the age of 50. Men tend to have markedly higher levels than women. 
These patterns are clearly shown in Figure 18.1. The authors also present bar 
charts of the data, showing that there is a large amount of variability in the 
data; the distributions are inevitably asymmetric since the mean values are 
close to the ceiling of 100.
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One way of using normative data for interpreting values observed in individual 
patients is to note the decrease in levels with increasing age. Physical functioning 
declines by nearly 5 units per decade of life, both for men and for women. This may 
help give a feeling for what an average change of 5 units might mean to patients. Simi-
larly, global health/QoL declines by approximately 2 units per decade, role functioning 
by 3.5, cognitive functioning and social functioning by 2, and emotional functioning 
by 0.5.

Anchor methods

Approaches such as the above are sometimes described as anchor methods. The out-
come of interest is anchored by using either a patient’s or health professional’s judge-
ment to define a (clinically) important difference. Other examples are anchoring against 
patients’ global rating of change (Section 18.6); comparing before and after treatment 
and then linking the observed change to participants who had a clinical improvement as 
defined by other criteria; anchoring contrasts between groups of patients to determine an 
important difference; and comparisons with other life-affecting events (Section 18.11).

Figure 18.1  Age-distribution of the mean scores for the subscales of the EORTC QLQ-
C30 (version 2.0), for males (0) and females (Δ) from a sample of the general Norwegian 
population. Source: Adapted from Hjermstad et al., 1998a. Reproduced with permission 
from the American Society of Clinical Oncology.
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Adjusting for age and gender

The patterns in Figure 18.1 emphasise the need to allow for age and gender when 
contrasting normative data against groups of patients who may have very different 
age–gender profiles. People with chronic health problems may tend to be older than 
those who are healthy, and for many disease areas the patients in clinical trials may be 
older than people in normative samples. Thus an adjustment should be made for differ-
ing age and gender distributions.

There are two principal approaches to this problem. First, it is possible to regard the 
age distribution of the reference population as being the standard to which all other 
datasets should be adjusted. The age-specific scores for the patients are calculated, 
and the age distribution of the reference population is used with these scores so as to 
estimate the mean level of QoL that would be expected for the reference age-structure. 
This leads to adjusted, or standardised, mean scores for each of the disease groups. 
This procedure is equivalent to direct standardisation as used in epidemiology. This 
method is not often used because, unless the disease group is large, age-specific mean 
scores cannot be estimated very accurately.

The second approach, illustrated in Table 18.2, is based upon the concept of calcu-
lating expected mean scores for the disease group. The population reference values are 
used to calculate the expected scores that would be observed for subjects of the same 
age and gender distribution as in the disease group. Since each disease group will have 
a different age–gender distribution, separate expected values are calculated for each 
group. The calculations use basic reference data, such as those in Table 18.1. Similar 
indirect standardisation is used in epidemiology when comparing incidence or preva-
lence rates amongst different subgroups.

Although we illustrate the calculations using the age-grouped data presented in 
Table 18.1, a variation on this approach is to use the individual-patient raw data and 
apply regression modelling to fit an equation that includes age and gender. This can 
be used to generate expected (predicted) values for each individual. In principle this 
should be a more accurate method since it makes full use of the individual values and 
involves fitting a smooth curve. In practice, however, it usually makes negligible dif-
ference to the estimates and has two disadvantages: it requires access to the individual-
patient data, and the regression models will often involve different non-linear functions 
of age for each gender.

Age- and gender-adjusted normative reference values are frequently compared 
against the observed results of studies, often as a simple table. Alternatively, profile 
plots as shown in Figure 12.6 may be used.

As noted for Figure 12.6, the mean scores for different dimensions, whether symptom 
or functioning scales, should not be contrasted against each other as PROs are rarely 
scaled uniformly. For example, when describing  it would be incorrect to suggest that pain 
in the LRRC group, with a mean value just over 40, is worse than fatigue or other symp-
toms. This would be an unfounded statement as there is no evidence that a particular score 
on one scale is equivalent to the same score on other scales. We can only say that pain in 
the LRRC group is worse than in the other groups. Consequently, some authors prefer to 
use bar charts to compare PROs for groups of patients and the corresponding normative 
values. However, we find that the underlying patterns are easier to discern in profile plots.
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Example from the literature

Hjermstad et al. (1998b) illustrate how to allow for age and gender when using 
normative reference data. They compared the cognitive functioning of 265 
patients with cardiac problems, as given in Table 18.2, against the reference 
data of Table 18.1. There are 17 females aged 18–29 years and, if we exam-
ine the comparable age–gender group in the normative data of Table 18.1, we see 
that the expected value of their cognitive functioning is 89.5. Therefore the 
expected total score for these females is 17 × 89.5 = 1,521.5. Similarly, we can 
estimate the expected total score for the remaining female groups. Combining 
these gives an expected total score of

(17 89.5) (8 87.3) (14 86.9) (14 86.1) (23 86.4)

(48 77.9) 103,68.3.

× + × + × + × + × +
× =

Similarly, for the 141 males:

(9 91.6) (21 88.9) (15 89.5) (16 86.5) (26 82.7)

(54 77.6) 11,758.4.

× + × + × + × + × +
× =

The expected total score for all 265 cardiac-problem patients is therefore 10,368.3 
+ 11,758.4 = 22,126.7, giving an expected mean score 22,126.7/265 = 83.5. 
The observed mean score for cognitive functioning of the 265 patients with 
cardiac problems was 75.9 which, even after allowing for age and gender, is 
lower than that of the general population by 83.5 − 75.9 = 7.6.

Note that, if we had not allowed for age and gender but used the mean score 
for the total normative sample directly, the difference (86.5 − 75.9 = 10.6) 
would be more than three points larger (10.6 − 7.6 = 3.7).

Table 18.2  Age and gender distribution of a group of 265 
patients with cardiac problems

Age group Female Male Total

18–29 17 9 26
30–39 8 21 29
40–49 14 15 29
50–59 14 16 30
60–69 23 26 49
≥ 70 48 54 102

Total 124 141 265

Source: Hjermstad et al., 1998b. Reproduced with permission of Elsevier.
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Example from the literature

Traa et al. (2014) report the HRQoL of patents who received treatment for rectal 
cancer at a tertiary referral centre in The Netherlands. Treatment for rectal cancer 
is based on clinical T-stage, pathological lymph nodes and distant metastasis. 
The standard treatment for non-advanced rectal cancer in The Netherlands is neo-
adjuvant radiotherapy followed by a total mesorectal excision with autonomous 
nerve preservation, except for cT1N0 patients where radiotherapy is not indicated. 
Patients with locally advanced rectal cancer (LARC) or locally recurrent rectal can-
cer (LRRC) are treated with neo-adjuvant radio-chemotherapy often followed by 
more extensive extra-anatomical surgery in order to achieve a curative resection.

All patients who were still alive in 2010 were contacted to ask them if they 
were willing to participate in this study. In total, 80 patients with NAD (median 
years since surgery = 4.5), 292 patients with LARC (median years = 2.3) and 
67 patients (median years = 3.3) with LRRC returned completed EORTC QLQ-C30 

Table 18.3  EORTC QLQ-C30 scale scores, for 439 patients with rectal cancer divided into 
non-advanced disease (NAD), locally advanced rectal cancer (LARC) and locally recurrent 
rectal cancer (LRRC). The normative group consists of age- and gender-matched reference 
values in a sample of the general population in the Netherlands

NAD (N=80) LARC (N=292) LRRC (N=67)

Normative  
(Reference  

values)

Mean SD Mean SD Mean SD Mean SD

ql 70.5 22.1 68.1 23.4 64.0 24.0 77.2 17.4
pf 80.3 19.1 79.5 20.4 71.9 22.8 86.0 17.1
rf 75.0 28.4 75.3 28.1 69.6 31.6 86.4 21.6
ef 84.8 18.8 82.6 20.7 81.1 22.6 90.3 15.0
cf 84.4 20.9 83.7 21.1 80.9 22.1 90.8 14.1
sf 82.7 22.4 79.2 25.2 69.6 29.2 93.1 16.8
fa 23.1 22.3 26.8 23.9 26.2 22.1 17.8 20.5
nv   3.0     8.3   4.4 11.8    4.0 11.6   3.0 11.8
pa 14.8 21.3 15.8 22.8 41.9 22.3 17.8 23.0
dy 16.0 24.4 13.8 22.5 12.4 19.3   9.4 19.6
sl 19.4 27.5 18.7 26.5 21.3 30.4 14.9 22.0
ap   3.8 10.7   6.7 17.7   3.2    9.9   3.3 12.0
co   8.4 16.4   9.1 20.5   9.3 23.7   5.6 15.3
di 21.5 27.8 18.7 25.3 19.4 26.0   4.5 15.1
fi   5.6 17.3 11.9 23.3   8.2 19.9   3.0 12.0

ql, global quality of life; pf, physical functioning; rf, role functioning; ef, emotional functioning; 
cf, cognitive functioning; sf, social functioning; fa, fatigue; nv, nausea and vomiting; pa, pain; dy, 
dyspnoea; sl, insomnia; ap, appetite loss; co, constipation; di, diarrhoea; fi, financial difficulties.
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questionnaires (as well as the EORTC QLQ-CR38 colorectal module) and were 
included in the current study. This reflected an 85% response rate. The authors 
compared the three groups of patients with the age- and gender-matched nor-
mative sample, presenting a table showing the means, standard deviations and 
p-values; Table 18.3 summarises the means and SDs for the EORTC QLQ-C30 
outcomes. Figure 18.2 shows the corresponding profile plot, and in our opinion 
this visual display makes the patterns in the outcomes much easier to discern.

The authors observed that, compared to the other two rectal groups, LRRC 
patients reported lower functioning scores and more pain. Compared with the 
normative population, rectal cancer patients had lower scores on Global Quality 
of Life, all five functioning scales and more constipation and diarrhoea, regard-
less of treatment (p < 0.05). In addition, LARC and LRRC patients experienced 
a lower PF, but more fatigue than the normative population (p < 0.05). Finally, 
LRRC patients reported more pain (p < 0.0001) than the normative population, 
while the LARC group reported more appetite Loss (p = 0.017) and dyspnoea 
(p = 0.026) compared with the normative population.

In this observational (non-randomised) study the three rectal cancer groups dif-
fered in age (medians 70.4, 65.6 and 63.7 respectively), but the normative values 
presented by the authors are based age and gender averaged across all three groups.

Figure 18.2  EORTC QLQ-C30 scale scores for 439 patients with rectal cancer, divided into 
non-advanced disease (NAD), locally advanced rectal cancer (LARC) and locally recurrent 
rectal cancer (LRRC). The bold line shows age- and gender-matched reference values in a 
sample of the general population in the Netherlands. The reference group had highest QoL, 
best functioning and least symptoms (based on the data shown in Table 18.3).

SymptomsFunction
0

20

40

60

80

100

M
ea

n 
sc

or
e

ql pf rf ef cf sf fa nv pa dy sl ap co di fi

LARCNAD
ReferenceLRRC



	 18.5 P opulation norms	 487

Example

Figure 18.3 shows the bar plot corresponding to Figure 18.2. Arguably, the visual 
benefits of the profile plot have been forfeited and it is now more difficult to discern 
the underlying patterns. However, this presentation makes it less likely that naïve 
readers will assume that values on different dimensions are directly comparable.
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Figure 18.3  Bar chart of the mean EORTC QLQ-C30 scale scores shown in Figure 18.2, for 439 
patients with rectal cancer, divided into non-advanced disease (NAD), locally advanced rectal 
cancer (LARC) and locally recurrent rectal cancer (LRRC) (based on the data shown in Table 18.3).

Although the format of  is widely used, many people find it easier to see patterns 
in data if the reference group is drawn as the baseline, or target, level of QoL and the 
patient means are plotted as differences about this baseline. This format is shown in 
Figure 18.4. An additional advantage is that, like the bar-chart of Figure 18.3, it dis-
courages casual readers from comparing absolute values of the different scales with 
each other.
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Example

In Figure 18.4 it is easy to see that Global QoL and all functioning scales have 
lower values for patients than for the general population. Also, all three patient 
groups have more diarrhoea that the normative sample, by between 15 and  
20 units. For LRRC patients, pain is worse by about 25 units. It is visually more 
difficult to read these values from Figure 18.2, and involves subtraction to 
obtain the differences.
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Figure 18.4  Data of Figure 18.2, showing mean differences of the patient scores from 
the age- and gender-matched reference values of the general population for 439 patients 
with rectal cancer, divided into non-advanced disease (NAD), locally advanced rectal cancer 
(LARC) and locally recurrent rectal cancer (LRRC). See footnote to Table 18.3 for scale names.

Caution should be used when contrasting the differences from different scales.  
Although it appears convincing from  that role functioning is more severely affected than, 
say, social functioning, there is no guarantee that intervals on the different scales are equiv-
alent. It is possible that a change of 5 units may be important on one scale, while changes 
of less than 10 may be unimportant on another. An alternative method, which may be 
preferable when comparing scales, is to plot effect sizes, as described in Section 18.12.

18.6  Minimal important difference

Whereas norms are based upon surveys of the prevailing QoL states in reference popu-
lations, the minimal important difference (MID) takes into account the opinions and 
values of patients. Also sometimes called the minimal clinically important difference 
or MCID, the MID is the smallest difference in score in the domain of interest that 
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patients perceive as beneficial and which would cause clinicians to consider a change 
in the patient’s management (assuming no side effects or major cost considerations).

In order to determine the size of this difference, patients can be asked whether they 
have noticed a change in their condition and how important they regard that change. 
Most QoL questionnaires relate to present or recent QoL status; for example: ‘During 
the past week, did you feel depressed?’ Therefore, the strategy is to ask the patient to 
complete a questionnaire at their first visit and then again at the second visit. Imme-
diately following this second assessment, they are asked whether they perceived 
any change between the two visits and whether this has been an important change. 
Questions regarding the change in level are sometimes called transition questions, or 
global ratings of change. The number of categories in the transition questions, and 
their descriptive wording, may influence the value obtained for the minimal clinically 
important difference. Most investigators have used at least seven categories, with the 
central one being ‘no change’ and the extreme categories being something like ‘very 
much better’ (or worse) or ‘a great deal better’ (or worse).

Example from the literature

The first published example of using a global rating of change was for the Chronic 
Respiratory Questionnaire and Chronic Heart Failure Questionnaire, investigated 
by Jaeschke et al. (1989) to determine the MIDs. Initial discussion with staff 
experienced in administering the questionnaires suggested that a mean change 
of 0.5 on the seven-point scales represents a change that a patient would feel 
was important to their daily life. In a subsequent study, 75 patients completed 
QoL questionnaires at baseline and at 2, 6, 12 and 24 weeks. After complet-
ing the second and subsequent assessments, they also scored themselves on 
15-point global rating scales according to whether their condition was ‘a very 
great deal worse’ (−7) through to ‘a very great deal better’ (+7).

Small changes of ‘somewhat worse’ were defined as those between −3 and 
−1, moderate changes were −5 and −4 (‘moderately or a good deal worse’), and 
large were −7 and −6 (‘a great deal or a very great deal worse’). Correspond-
ing positive values were defined for getting better. Table 18.4 shows the mean 

Table 18.4  Mean change scores for dyspnoea, fatigue and emotional function,by size of 
global rating of the change

Global rating of change

None Small Moderate Large

Dyspnoea 0.10 0.43 0.96 1.47
Fatigue 0.12 0.64 0.87 0.94
Emotion 0.02 0.49 0.81 0.86

Source: Jaeschke et al., 1989. Reproduced with permission of Elsevier.
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A 15-point global rating of change scale can place a cognitive challenge to patients 
and demands a large sample size to ensure that sufficient numbers of patients are avail-
able to enable precise estimates for all categories; indeed, as in the example above, 
it is frequently necessary to reduce the data from 15-point scales by merging adja-
cent categories. This has led some investigators to use other formats, such as seven-
point scales (e.g. Osoba et al., 1998). Whereas the analysis reported by Jaeschke et al. 
(1989) referred to ‘changes’ and did not distinguish improvement from deterioration, 
it has since been found in some studies that there may be a difference; for example, in 
the study of Cella et al. (2002) it was observed that MIDs for improvement tended to be 
larger than those for deterioration. Recognising the similarities with diagnosis, many 
authors have adapted receiver operating characteristic (ROC) curves to the estimation 
of MID values; these have the advantage of making greater use of the distribution of 
the full sample for estimating individual values (Turner et al., 2009b).

Example from the literature

Kvam et al. (2010) evaluated MID values using EORTC QLQ-C30 scores from 239 
multiple myeloma patients. Seven-category scales were used for the transition 
questions, with response options ranging from ‘very much worse’ through ‘no 
change’ to ‘very much better.’ Figure 18.5 shows results for the four dimensions 
pain, fatigue, physical function and global QoL. Mean scores and confidence 
intervals are displayed, corresponding to each of the seven transition ratings. 
From the figure, MID values for a little better and worse were pain −14.2, 12.9; 
fatigue −5.0, 4.5; physical function 4.4, −4.4; global QoL 1.4, −10.7. The val-
ues for moderate changes ranged from 6 to 17. Kvam et al. kept deteriorations 
separate from improvements, and confirmed the findings of Cella et al. (2002) 
that MIDs for improvement tended to be larger than those for deterioration.

Figure 18.6 shows a ROC curve for pain deterioration, with the suggested cut 
point based on a compromise between sensitivity and specificity; at this cut-
point, the pain score was 16.7.

change in reported levels of dyspnoea, fatigue and emotional function, divided 
according to whether patients thought that the overall change was none, small, 
moderate or large. In this table, positive and negative changes have been 
combined. For example, the recorded levels of dyspnoea changed by an aver-
age of 0.96 in those patients who reported a moderate overall change, with a 
decrease in dyspnoea for those reporting benefit and a corresponding increase 
for those improving.

Thus Jaeschke et al. (1989) confirmed their preliminary estimates that a small 
change on the seven-point scales would correspond to a change in score of approx-
imately 0.5, since the mean of the observed values 0.43, 0.64 and 0.49 is 0.52.
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Figure 18.5  Each graph shows the mean score change and 95% CI for 239 patients with 
multiple myeloma who stated that they had become much better, moderately better, a little 
better, unchanged (0), a little worse, moderately worse, or much worse from time 1 (baseline) 
to time 2 (three months). High scores indicate more symptoms (pain and fatigue) or better 
functioning (physical function and global HRQL). Source: Kvam et al., 2010. Reproduced with 
permission of John Wiley & Sons, Ltd.
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Figure 18.6  Receiver-operating characteristic (ROC) curve of the European Organization 
for Research and Treatment of Cancer (EORTC) QLQ-C30 change score in patients who 
stated that their pain had deteriorated. AUC, area under the curve. Source: Kvam et al., 
2010. Reproduced with permission of John Wiley & Sons, Ltd.
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Global rating of change questions have been criticised on various grounds (e.g. 
Terwee et al., 2010). To assess their change, patients may with varying accuracy recall 
their previous responses and implicitly construct the change that would be necessary to 
explain their current state. Both response shift (see Chapter 19) and recall bias (Schwartz 
and Sudman, 1994) may distort their assessment of change, and it has been observed that 
ratings of change correlate more strongly with current status than with the baseline score.

These transition questions use the patient as their own control, and seek to determine 
whether any changes that occur are large enough to be of importance to the patient. 
They can therefore be described as within-person methods. An alternative between-
person approach, in which patients are asked to compare their present state relative to 
that of others who have the same condition, has been explored by Redelmeier et al. 
(1996). Reassuringly, they found it resulted in broadly similar estimates for the MID.

18.7  Anchoring against other measurements

Sometimes other outcomes can be identified, for which observers or preferably 
patients are able to specify what constitutes an important difference. These anchor 
outcomes should measure essentially the same construct as the target, and the value of 
these anchors depends on how well they reflect underlying change. Following Cohen’s 
(1988) rules of thumb, Hays et al. (2005) recommend 0.371 as a correlation thresh-
old to define a noteworthy (large effect) association; they also recommend that there 
should be multiple anchors and that the correlations should be reported. Then patients 
can be classified into groups according the anchor, and the corresponding values of the 
target measure are used to determine the MID.

Example from the literature

Su er et al. (2009) used changes in visual acuity to propose a MID for the 
National Eye Institute Visual Function Questionnaire-25 (NEI VFQ-25). The 
authors note that a 15-letter change in best corrected visual acuity is fre-
quently used as a primary endpoint in clinical trials and is generally accepted 
as clinically significant. Thus they used 15-character changes in visual acuity as 
the anchor for determining the MID for the corresponding changes in the overall 
composite score of the VFQ-25, formed by the mean of 24 items after omitting 
the single item for general health. The mean visual acuity (letter count) was 
53.5, with SD = 13.2, and the mean score for the VFQ was 69.3, SD = 19.2. 
Patients were assessed again at 12 months. The investigators grouped patients 
into those who gained at least 15 letters, had fewer than 15 letter change, or 
lost at least 15 letters. Fitting linear regression models, they estimated a MID 
of 4.34 based on a clinically significant change of 15 letters in visual acuity.
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In this example the authors, following conventional practice, analysed group mean 
scores and used linear regression models. However, correlations between the anchor-
ing variable and the target score (the authors reported r to be less than 0.3) affect the 
slope of the regression line, and cause the slope to be shallow: in regression, slope   
b r SD SD= × ( / ).Target Anchor  This in turn will result in an attenuated estimate of the MID. 
Why does this happen? Regression aims to predict expected scores for individual patients, 
which is not the same as cross-calibration of scales. Instead, we are concerned with esti-
mating the equivalent value on the target scale that corresponds to an observed change on 
the anchoring outcome. We suggest that an alternative approach is to apply a simple linear 
linking function (Fayers & Hays, 2014a). This is unaffected by r and leads to:

	 MID AnchorChange SD SD= × ( / ).Target Anchor 	 (18.1)

This is equivalent to applying the effect-size ratio of the anchor to the target. A pos-
sible advantage of this approach is that it can be applied either to change-scores or 
to cross-sectional data, as it simply scales the anchor change by the respective SDs. 
For the above example, this would result in MID = 15 × 19.2/13.2 = 21.8, which is 
very different from the attenuated value proposed by Su er et al. (2009). However, 
empirical studies evaluating the merits of linking scores instead of regression models 
are required.

18.8  Minimum detectable change

Minimum detectable change (MDC), or minimal detectable difference, is the smallest 
change in score that can be detected after allowing for ‘measurement errors’ or random 
errors such as test-retest and patient-to-patient variability. There are several methods 
for estimating the MDC, typically involving the standard error of measurement (SEM) 
or reliability coefficients such as the test–retest correlation and Cronbach’s α. Clearly, 
both MDC and MID are important, but they measure different things. For an instrument 
to be useful, it ought to be capable of detecting changes that are important to patients 
or are deemed clinically relevant; that is, it should be suitably sensitive and should be 
responsive to changes, two characteristics that are assessed as part of the validation of 
all new instruments. For a sensitive and reliable instrument, MDC should smaller than 
MID. Further, MDC is a statistical property of the measurement, and is sometimes 
described as a distribution-based approach, whereas MID is the value of concern for 
interpretation and is based on the value judgement of patients or less frequently other 
observers. Thus MDC is of little relevance for interpretation. The relationship between 
MID and MDC is discussed by Turner et al. (2010) and de Vet et al. (2010). Effect size 
statistics, based on SD rather than SEM, are sometimes also described as a distribution-
based approach, but it is less confusing to term them as being a standardised-differ-
ences approach (see Section 18.9).
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18.9  Expert judgement for evidence-based guidelines

Early attempts at specifying MID for sample size determination and interpreting 
results relied on expert judgement. Later studies attempted to formalise this process, 
using rigorous qualitative studies and Delphi methods to obtain consensus values. 
King et al. (2010) used expert judgement in another way, combining it with clini-
cal anchors and systematic review. Three clinicians with many years of experience 
managing cancer patients and using PROs in clinical research each reviewed 71 
publications that reported mean scores of the FACT-G. The clinicians were blinded 
to the FACT-G results of the individual studies, and were asked to consider the vari-
ous clinical anchors that they believed might be associated with FACT-G mean dif-
ferences, using these to predict which dimensions of QoL would be affected and 
whether the size-class of effects would be trivial, small, moderate or large. For 
example, if the study was a clinical trial that reported patients in one treatment arm 
had cancer that progressed and led to shortened survival, the experts might anticipate 
that there would be moderate or large deterioration of QoL accompanied with mod-
erate increase in levels of pain. Similarly, knowledge of treatment received might 
lead experts to infer levels of particular toxicities. The size-classes were defined 
explicitly in terms of clinical relevance, for example ‘Small: subtle but nevertheless 
clinically relevant’. The experts’ judgements were then linked with the observed 
FACT-G mean differences and inverse-variance weighted mean differences and val-
ues were calculated for each size-class.

Example from the literature

Cocks et al. (2011) extended the method of King et al. (2010), and applied 
it to the QLQ-C30. They identified 152 publications of randomised clinical 
trials and cohort/descriptive studies. These reported QoL comparisons for 
2,217 ‘contrasts’ that could act as anchors, such as patients with early versus 
advanced disease, or good versus poor performance status, different treat-
ment modalities, etc. A team of 34 experts reviewed from one to 98 articles 
each, according to their areas of expertise and their availability. Reviewers 
were mainly oncologists but the panel also possessed nursing, psychosocial, 
surgical, psychology, and radiotherapy expertise. For the review, the actual 
study results in the publications were masked, and the reviewers described 
what results, based on their experience, they anticipated would have been 
reported in the publications. Based on the meta-analysis of the results, rec-
ommendations were made for each of the multi- and single-item scales of the 
QLQ-C30. The results are summarised in Table 18.5. The authors suggest the 



	 18.10 I mpact of the state of quality of life	 495

threshold between trivial/small should be the smallest estimate on which to 
base a sample size. Depending on the individual study/interventions, larger 
differences may be of interest and the range of small/medium estimates 
could be used. This table is for cross-sectional comparisons, and Cocks et al. 
(2012) extend the analyses to include guidelines for interpreting change in 
scores over time.

Table 18.5  Guidelines for the size of cross-sectional differences when comparing groups of 
patients. Scales have been ordered according to the size of the medium differences

Lower estimate of 
medium differences

Mean difference

Scale Trivial Small Medium Large

< 10 points

DI < 3 3– > 7 —
NV < 3 3– 8– > 15
CF < 3 3– 9– > 14
DY < 4 4– 9– > 15

10–15 points

FI < 3 3– > 10 –
QL < 4 4– 10– > 15
SF < 5 5– 11– > 15
SL < 4 4– 13– > 24
FA < 5 5– 13– > 19
CO < 5 5– 13– > 19
PA < 6 6– 13– > 19
PF < 5 5– 14– > 22
AP < 5 5– 14– > 23

> 15 points RF < 6 6– 19– > 29

DI, diarrhea; NV, nausea and vomiting; CF, cognitive functioning; DY, dyspnoea; FI, financial difficulties; 
QL, global quality of life; SF, social functioning; SL, insomnia; FA, fatigue; CO, constipation; PA, pain; 
PF, physical functioning; AP, appetite loss; RF, role functioning.
Source: Adapted from Cocks et al. (2011). Reproduced with permission from the American Society of 
Clinical Oncology.

18.10  Impact of the state of quality of life

The extent to which reduced QoL affects daily living may sometimes serve as an indi-
cator of its importance. This is likely to be particularly true for causal scales. An exam-
ple is pain: patients can be asked about both levels of pain and its impact upon various 
activities; thus impact ratings are used to ‘anchor’ the pain ratings.

Thus the Brief Pain Inventory (BPI) asks patients to rate their pain at the time of 
completing the questionnaire (pain now) and also its worst, least and average over 
the previous week. One form of scoring the BPI is to use the ‘pain-worst’ scale as the 
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18.11  Changes in relation to life events

Since QoL scales involve unfamiliar measures, studies that relate the observed changes 
to changes in more familiar or objective measures can be easier to interpret. One such 
method is to compare (or ‘anchor’) changes in QoL in patients with the size of change 
that is expected to occur in persons who experience various major life events such as 
family illness, loss of a job or bereavement.

Example from the literature

Table 18.6, from Cleeland (1991), shows the levels at which specific functions 
begin to be impaired by ‘pain worst’ recorded on the BPI. For example, patients 
were asked to rate how much pain interferes with their ‘enjoyment of life’, with 
0 being ‘no interference’ and 10 being ‘interferes completely’. Using an interfer-
ence rating of 4 to mean ‘impaired function’, Table 18.6 shows that enjoyment 
of life becomes impaired when pain worst reaches a level of 3. Most of the items 
became impaired when pain reached a level of 5. This is consistent with other 
studies, where the midpoint of pain rating scales has been found to represent 
a critical value beyond which patients report disproportionate impairment of 
functional status. Because of these findings, Cleeland suggests, it is possible 
to define ‘significant pain’ as pain that is rated at the midpoint or higher on 
pain-intensity scales.

Table 18.6  Levels of pain severity that were reported as 
impairing function

Impaired function Rating of worst pain

Enjoyment of life 3
Work 4
Mood 5
Sleep 5
General activity 5
Walking 7
Relations with others 8

Source: Cleeland, 1991. Reproduced with permission of Taylor and 
Francis Group LLC Books.

primary response variable. To calibrate the pain-worst scale in terms of the impact of 
pain, patients can additionally be asked to rate how much their pain interferes with 
various activities and states.
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Example from the literature

Table 18.7 shows 12 items from the Social Readjustment Rating Scale (SRRS) 
of Holmes and Rahe (1967) that form a Life Events Index of undesirable 
stressful life events. The full SRRS consists of 43 scales for major life events 
rated from 0 to 100 according to their level of stress. For example, a minor 
violation of the law was associated with a change score of 11 points. Col-
umns one and two of Table 18.7 summarise the changes relating to various 
life events.

Testa et al. (1993), in a randomised clinical trial of antihypertensive therapy, 
used a Life Events Index (LEI) adapted from the SRRS, the General Perceived 
Health (GPH) scale and several other QoL scales. The GPH scale contains 11 
items relating to vitality, general health status including bodily disorders, and 
sleep disturbance. The changes from baseline were expressed using stand-
ardised response means as in equation (18.6), with the change scores being 
divided by the SD of the changes observed during a period while the patients 
were stable. The authors then used linear regression to calibrate the GPH scale 
in terms of the LEI (final column in Table 18.7).

They found that a change of 0.1 SD in the GPH scale was equivalent to 
approximately 37 points on the LEI, and thus corresponds to the impact that 
might be expected from the death of a close friend (37 points) or from sexual 

Table  18.7  Undesirable life events and their corresponding weights, from the Social 
Readjustment Rating Scale, and four examples of change-scores from the General Perceived 
Health (GPH) questionnaire that correspond to a change in stressful life events

Stressful life event (undesirable events)
Life Events 

Index: weights

General Perceived Health (GPH)

Change scores (SD units)

  1. M inor violation of the law −11
  2. M ajor change in sleeping habits −16
  3. M ajor change in working conditions −20 0.05
  4.  Change in residence −20
  5. T rouble with boss −23
  6. D eath of a close friend −37 0.10
  7. S exual difficulties −39
  8. B eing fired from work −47
  9. M ajor personal injury or illness −53 0.15
10. D eath of a close family member −63
11. D ivorce −73 0.20
12. D eath of a spouse −100

Source: Holmes and Rahe, 1967, reproduced with permission from Elsevier, with additional data from 
Testa et al., 1993.
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18.12  Effect size statistics

The methods discussed so far to estimate the magnitude of important changes make use 
of information collected from surveys of the population or from studies that investigate 
QoL changes in patients. When such information is unavailable, effect size statistics 
may be useful. These are based on standardised differences, in which the variability 
of the measurements is accounted for by scaling the target effect through division by 
the standard deviation of the measurements. Some authors group effect-size statis-
tics with other distribution-based methods, because they depend on an estimate of the 
SD. However, as mentioned in Section 18.7, this can be misleading as the objective 
of standardisation is very different. Standardisation is a scaling of the target values 
according to the variability of the data (i.e. the SD), whereas MDC statistics typically 
make use of the standard error instead of the SD, where the standard error is a function 
of not only the SD but also the sample size and is used for significance testing. Effect 
size measures were initially proposed for use in sample size estimation, and have been 
mentioned in that context in Section 11.3. Methods based upon effect size statistics 
have the advantage of simplicity. Their limitation is that they do not consider the values 
and opinions of patients. Despite this, many investigators have found that effect size 
statistics often seem to produce values that correspond very roughly to those obtained 
using patient-orientated methods.

Suppose changes in a patient’s QoL are assessed using several different instru-
ments. Some instruments may use a scale that is scored, say, from 1 to 7, while others 
might score the patient from 0 to 100. Thus changes will appear to be larger on some 
instruments than others. One way to standardise the measurements is to divide the 
observed changes by the SD. A particular change is likely to be of greater clinical 
significance and of more importance to patients if it occurs on a scale that has a nar-
row range of values and therefore shows little variation as indicated by a small SD. 

difficulties (39 points). A change of 0.15 SD in GPH similarly corresponds to a 
55-point life-events change, and this is equivalent to the impact on QoL that 
a major personal illness (53 points) might have. Testa et al. conclude that 
although there was broad variability in responses from person to person, val-
ues between 0.1 and 0.2 SD units can be considered clinically meaningful and 
represent the lower bound of what constitutes a minimally important response 
to treatment.

In this study, overall QoL scores shifted positively by 0.11 for treatment with 
captopril, and negatively by 0.11 for enalapril, an overall difference of 0.22. 
Testa et al. comment: “Our findings indicate that drug-induced changes in the 
QoL can be substantial and clinically meaningful even when they involve drugs 
in the same pharmacological class.”
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Having scaled for the variability in this way, the standardised changes should then 
be of comparable magnitude to each other, despite the scales having different ranges 
of values.

Considering the patient’s perspective, too, it can be sensible to allow for SDs. 
The level of QoL will vary within a patient from day-to-day. If there is a high 
degree of variability in QoL levels, implying a large SD, a small improvement due 
to therapy may not even be noticed by the patient and would not be considered 
useful.

Cohen (1988) proposed this form of standardisation in order to simplify the estima-
tion of sample sizes. He noted that to calculate a sample size one must first specify 
the size of the effect that it is wished to detect. Sometimes the investigator will have 
knowledge or beliefs about likely, important, treatment effects, and will be able to base 
estimates upon that. Frequently, there will be no such prior information upon which to 
base decisions. Thus Cohen proposed that the mean change divided by the SD would 
serve as an effect-size index that is suitable for sample size estimation. Based upon his 
experience in the social sciences, he suggested that effect sizes of 0.2–0.5 have gener-
ally been regarded by investigators as being ‘small’, 0.5–0.8 are ‘moderate’, and those 
of 0.8 or above are ‘large’.

These apparently arbitrary thresholds have stood the test of time very well. Perhaps 
surprisingly, the values 0.2, 0.5 and 0.8 have since been found to be broadly applicable 
in many fields of research as well as in social sciences from where Cohen had drawn 
his experience.

Examples from the literature

Osoba et al. (1998) contrasted the approach of minimal clinically important dif-
ference with the values for ES, and the two methods were broadly consistent. In 
most cases, the ES was 0.5 or greater (‘moderate to large’) when the transition 
questions indicated moderate or greater change. The ES was mostly between 0.2 
and 0.5 (‘small’) when the transition question indicated little change, and was 
mostly less than 0.2 when no change was reported.

Norman et al. (2003) carried out a systematic review, identifying 38 stud-
ies (62 outcomes) that reported a minimal clinically important difference and 
also provided information sufficient for calculation of an effect size. They con-
clude that in most circumstances the threshold of discrimination for changes 
in health-related QoL for chronic diseases appeared to be approximately half a 
SD. It is noted as an explanation for this consistency that research in psychol-
ogy has shown that the limit of people’s ability to discriminate over a wide 
range of tasks is approximately one part in seven, which is very close to half a 
SD. However, many authors regard the use of distribution-based effect sizes as 
simplistic and it remains controversial.
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The label effect size is used as a generic term to cover a wide range of standardised 
measures of change, and so there is some confusion sometimes over what is intended. 
Two in particular stand out in QoL research. The first, often simply called the ‘effect 
size’, is described next. The second method, the standardised response mean, is suit-
able for paired data and uses a different SD.

Effect size for two independent groups

One statistic frequently used for determining effect sizes is the ES statistic, called sim-
ply and confusingly effect size. ES is defined as the mean change in scores, divided by 
the SD. This can be used to compare two independent groups of patients, as in a clini-
cal trial. If the mean values of the two groups are xTreatment  and xControl , the SD used for 
standardising the treatment difference can be calculated from the control group, giving:

	 ES
x x

SD
Treatment Control

Control

=
−

. 	 (18.2)

Although the SD of one group (usually the control group, SDControl) is frequently used 
for the divisor, in practice, the pooled SD from the two treatment groups is more com-
monly used:

	 ES
x x

SD
Group Group

Pooled

=
−1 2 , 	 (18.3)

where, if groups are of equal size,

	 SD SD SD 2 .Pooled Group Group
2

1
2

2( )= +  	 (18.4)

Examples from the literature

Table 12.3, based on Islam et al. (2010), can be readily extended to include 
the effect size by calculating the mean difference divided by SDPooled, as shown 
in Table 18.8. The ES of 0.39 for HADS anxiety is small, but 0.68 for depression 
can be regarded as moderate.

Another example is provided by Temel et al. (2010), who randomised 151 
patients with metastatic lung cancer to standard care alone or early pallia-
tive care integrated with standard care. QoL at baseline and at 12 weeks was 
assessed with three scales: the Functional Assessment of Cancer Therapy–Lung 
(FACT-L) scale (values can range from 0 to 136); the lung-cancer subscale (LCS) 
of the FACT-L scale (range 0 to 28); and the Trial Outcome Index (TOI), which 
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is the sum of the LCS, physical well-being and functional well-being scores 
(range 0–84). Thus each scale had a different range of values and a different 
high (best) score, making the change scores difficult to interpret. Temel et al. 
used the SD of the pooled data to calculate the Effect Size for each scale, thus 
providing comparable standardised outcome measures. The values were 0.42, 
0.41 and 0.52 respectively. The authors commented that “A comparison of 
measures of quality of life at 12 weeks showed that the patients assigned to 
early palliative care had significantly higher scores than did those assigned to 
standard care, for the total FACT-L scale, the LCS, and the TOI, with effect sizes 
in the medium range.” (Although by some conventions an ES between 0.20 and 
0.50 is classified as small.)

Table 18.8  Comparison of mean HADS scores in 50 patients with facial trauma and 50 
matched controls. The addition of effect sizes may guide the interpretation of observed 
differences. (Adapted from Islam et al., 2010. Reproduced with permission of Elsevier).

Variable

Facial trauma 
group (N = 50) 

Mean (SD)

Control group 
(N = 50)  

Mean (SD)
Mean difference 

(95% CI) p-value
Effect 
size*

HADS Depression 5.94 (3.1) 3.92 (2.8) −2.0 (−3.4 to −0.6) 0.006 0.68
HADS Anxiety 5.91 (4.5) 4.33 (3.5) −1.6 (−3.5 to 0.2) 0.07 0.39

*According to the conventional classification, an effect size of 0.20 is small, 0.50 moderate, and 0.80 
large.
Source: Adapted from Islam et al., 2010. Reproduced with permission of Elsevier.

Example

Figure 18.4 can be redrawn using the principle of effect sizes. The differences 
between the values of patients and the reference population have been divided 
by the between-patient SDs, leading to the ES values in Figure 18.7. The dot-
ted lines correspond to small, moderate and large ES of 0.2, 0.5 and 0.8. Since 
many of the scales had approximately similar SDs of around 20 points, the plot 
is superficially similar to that of Figure 18.4 apart from a scaling factor. The 
effect sizes are in the region between small to moderate for most of the scales, 
but patient symptom-scores for pain (LRRC) and diarrhoea are large or moder-
ate compared to the reference values, and the functioning scales and overall 
QoL show small to moderate reductions, with a large impact on social function-
ing for the LRRC patients.

(Continued)
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Effect size (ES) for paired data

The ES statistic can also be used for paired, or within-patient, data. It is then defined as 
the mean change in scores divided by the SD of the QoL scores. Usually the baseline 
measurement, at Time1, is chosen to be either immediately prior to starting active treat-
ment or pre-randomisation in a clinical trial, and this can be used for the calculation 
of the SD:

	 ES
x x

SD
Time Time

Time

=
−2 1

1

. 	 (18.5)

Standardised response mean (SRM)

The standardised response mean (SRM) is the mean change in a PRO from two assess-
ments in each subject, divided by the SD of these changes in scores. Most commonly 
the paired assessments are made at two different times in each patient, for example 
at baseline and after treatment, and thus the SRM describes the course of the illness. 
Another example of within-patient paired observations is self-assessment compared to 
proxy assessment. The formula for SRM is:

SymptomsFunction

Large

Moderate

Small

Small

Moderate

Large−0.8

−0.5

−0.2

0.0

0.2

0.5

0.8

E
ffe

ct
 s

iz
e

ql pf rf ef cf sf fa nv pa dy sl ap co di fi

LARCNAD
LRRC

Figure 18.7  Data of Figure 18.4, showing effect sizes instead of absolute mean differences. 
For 439 patients with rectal cancer, divided into non-advanced disease (NAD), locally 
advanced rectal cancer (LARC) and locally recurrent rectal cancer (LRRC), compared to 
age- and gender-matched reference values of the general population. See footnote to  
Table 18.3 for scale names.
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	 SRM
x x

SD
Time Time

Difference

=
−2 1 . 	 (18.6)

A large SRM indicates that the change is large relative to the background variability 
in the measurements. Thus the SRM is a form of Cohen’s effect-size index. It is a widely 
used measure of the size of effects for paired data. The SDDifference should in principle 
be estimated from stable patients whose overall level of QoL is not expected to be 
changing. For example, if untreated patients under observation are expected to have a 
stable QoL, they might provide an estimate of the background variability. Sometimes 
SDDifference may be available from previous test–retest reliability studies conducted 
when developing the QoL instrument itself, since those studies also require stable 
patients. In practice, data on stable patients are often unavailable and the SDDifference of 
the study patients themselves is most frequently used.

Whereas the ES used the SD of the between-patient baseline scores, SRM uses the 
SDDifference. An advantage of the SRM is that is corresponds most closely to the method 
of calculating a paired t-test, which is most sensitive for detecting differences between 
the two measurements. However, the ES is commonly considered more appropriate for 
assessing an effect size because it can be argued that we should use patient baseline 
values and variability in order to decide what magnitude of QoL change would be 
important.

If the correlation between XTime1 and XTime2 is ρ, and if we assume that the SDs at 
times 1 and 2 are approximately equal, there is a direct relationship between ES and 
SRM:

	 ES SRM 2(1 ).ρ= × − 	 (18.7)

Thus, if the correlation ρ is 0.5, ES and SRM will be similar; if there is a high corre-
lation, which implies that SDDifference will be smaller than the SD of the baseline scores, 
ES will be smaller than SRM. Despite this, the same thresholds of 0.2, 0.5 and 0.8 are 
commonly interpreted as indicating small, moderate and large effect sizes for both ES 
and SRM; this is clearly not very logical.

Table 20.1 provides the standard errors (SEs) for paired and unpaired SRMs, ena-
bling calculation of confidence intervals.

Example from the literature

Self- and proxy-reports were compared for the Stroke Impact Scale (SIS) using 
data from 180 patients in Brazil (Carod-Artal et al., 2009). The SIS 3.0 is 
a 59-item self-report assessment of stroke outcome, and has eight domains: 
Strength, Hand function, Mobility, Physical and instrumental activities of daily 
living (ADL/IADL), Memory and thinking, Communication, Emotion, and Social 
participation. Scores for each domain range from 0 to 100, and higher scores 
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indicate better QoL. Four of the subscales (Strength, Hand function, ADL/IADL, 
and Mobility) are combined into a Composite Physical Domain (CPD).

Table 18.9 shows the comparison of SIS patient and proxy mean scores. For 
six of the eight domains there were no significant differences between proxy 
and patient scores, but proxies scored significantly lower (worse) for Strength 
(41.7 vs. 36.6; p < 0.0001) and ADL/IADL (46.2 vs. 43.1; p < 0.01), as well as 
for the composite CPD (39.7 vs. 34.9; p < 0.0001). The authors commented that 
“Nevertheless, the estimated ES was small (0.21 for the Strength domain)”, and 
“The SRM for the CPD was 0.37 (small/moderate effect)”.

Since the authors had indicated that “An ES or a SRM of 0.2 was considered 
a small bias, and a value between 0.20 and 0.5 a moderate bias”, it seems 
inconsistent to use ES for the strength domain. Nor is it entirely clear why they 
reported ES in addition to SRM. They did not comment on the effect size of 
ADL/IADL.

Carod-Artal et al. observed that proxy raters tended to report more HRQoL 
problems than patients themselves on the SIS physical domains. They con-
cluded that patient and proxy ratings are valid, and that agreement between 
stroke patients and proxies was adequate for most SIS domains. However they 
also assessed agreement and warned that proxy assessment of SIS subjective 
domains should be evaluated with caution because the strength of the agree-
ment was low.

Table 18.9  Self- and proxy-report assessments of the Stroke Impact Scale (SIS): ES and 
SRM of the differences, for 180 Brazilian patients

SIS domains

Patients 
N=180  

Mean (SD)

Proxies 
N=180  

Mean (SD)

Patient-Proxy 
difference 
Mean (SD) t P ES SRM

Strength 41.7 (25.8) 36.6 (23.7) 5.3 (21.4) 3.3 <0.001 0.21 0.25
Hand function 20.2 (30.9) 20.5 (30.1) −0.5 (18.1) −0.4 0.7 0.02 0.03
Mobility 42.2 (26.9) 40.7 (26.7) 1.5 (16.8) 1.2 0.22 0.06 0.09
ADL/IADL* 46.2 (23.7) 43.1 (22.5) 3.2 (16.6) 2.6 0.01 0.13 0.19
Memory and 
thinking

71.6 (22.8) 68.2 (24.5) 3.4 (25.3) 1.8 0.07 0.15 0.13

Communication 77.1 (20.2) 76.9 (20.1) 0.1 (22.3) 0.1 0.93 0.01 0.01
Emotion 52.2 (12.3) 53.7 (13.1) −1.2 (16.3) −0.9 0.33 0.09 0.07
Social  
participation

46.9 (22.8) 49.1 (23.7) −2.3 (27.6) −1.1 0.2 0.10 0.08

Composite 
Physical Domain

39.7 (22.7) 34.9 (21.6) 4.7 (12.9) 4.9 <0.001 0.21 0.37

*ADL/IADL: activities of daily living/instrumental activities of daily living.
Source: Carod-Artal et al., 2009, Table 4. Reproduced with permission of Wolters Kluwer Health.
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Effect sizes and meta-analysis

Effect sizes are a form of standardisation, and provide a dimensionless number 
that summarises the results. For example, if a mean treatment difference were 
measured in millimetres, dividing by a SD that is also expressed in millimetres 
would result in a number that has no measurement units. Thus the ES provides 
a useful method for comparing results across a number of clinical trials, even 
when several different instruments have been used. It therefore enables meta-
analyses to be carried out with QoL data. This is discussed in more detail in  
Chapter 20.

18.13  Patient variability

Most of the methods described make use of comparisons of means, and therefore 
inherently assume that all patients will derive the same benefit or deterioration in QoL 
according to their treatment. That is, all patients are assumed to change by the same 
average amount. It is also assumed that PRO scores may be sensibly aggregated by 
averaging – and that, for example, two patients scoring 50% of maximum are equiva-
lent to one patient scoring 75% and another scoring 25%.

Clearly, there is variability in patient-to-patient responses. If QoL improves, on 
average, by 15%, most patients will experience changes that are either smaller or 
larger than this value and few if any will experience exactly this change. Thus even a 
small average benefit might allow some patients to obtain a major and very worthwhile 
improvement. Although it is important to know the overall mean changes, it is also 
important to consider the potential advantage (or disadvantage) to those patients who 
benefit (or suffer) most from the treatment. The normal range is the estimated range of 
values that includes a specified percentage of the observations. For example, the 95% 
normal range for the change in QoL would be the range of values that is expected to 
include 95% of patients from the relevant patient population. The limits of the normal 
range would indicate the magnitude of the likely benefit to those patients with the best 
2.5% (upper limit of range) and worst 2.5% (lower limit of range) of responses, and also 
show the degree of variability in the observations. If the observations have a Normal 
distribution, the following formula estimates the normal range (for further details, see 
Campbell et al., 2007). From Appendix Table T1, zα is the value that corresponds 
to the proportion of patients outside the normal range (e.g. 1 2 0.975α− =  for 95% 
normal range, in which case z 1.961 2 =α− ), x  is the mean value and SD is the standard 
deviation:

	 Normal range x z SD x z SDto .1 2 1 2= − × + ×α α− − 	 (18.8)
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18.14  Number needed to treat

An alternative way to allow for the variation in treatment effect upon QoL is known as 
the number needed to treat (NNT). This is an estimate of the number of patients who 
need to be treated with the new treatment in order for one additional patient to benefit. 
The NNT can be estimated whenever a clinical trial has a binary outcome. When evalu-
ating QoL, one possible binary outcome might be the proportion of patients with a 
‘moderate improvement’ in QoL, where moderate improvement could be defined as an 
improvement greater than some specified value. Similarly, the number of psychiatric 
‘cases’, such as cases of depression, could be used.

The proportion of patients with ‘moderate deterioration’ or ‘cases’ can be estimated 
for each treatment group. If the proportions deteriorating are pT and pC for the test and 
control treatments, the difference pT − pC is called the absolute risk reduction (ARR). 
The NNT is simply:

	 NNT
ARR p p

1 1
.

T C

= =
−

	 (18.9)

When pT and pC are the proportions improving, pT − pC is called the absolute benefit 
increase (ABI), and NNT = 1 / ABI.

Example

Pain is frequently measured on a 0 to 10 scale. Suppose treatment causes a 
small reduction in average pain, with a mean change of 0.96 and correspond-
ing SDDifference of 2.49. Assuming a Normal distribution for mean change, the 
95% normal range would be 0.96 − (1.96 × 2.49) to 0.96 + (1.96 × 2.49), or 
−3.9 to +5.8. Therefore, we expect 95% of patients to lie within this range, 
but 2.5% are expected to have more extreme deterioration and 2.5% a more 
marked improvement. This is a range of 9.7 (−3.9 to 5.8) or nearly 10 points on 
the pain scale, and is approximately half the total range (−10 to +10) possible 
for the scale. Thus, although the mean change in pain score was 0.96, which 
corresponds to a small effect size, many patients could experience large and 
clinically important increases or decreases in pain.

Example from the literature

Guyatt et al. (1998) describe a cross-over trial of treatment for asthma. The mul-
ticentre double-blind randomised trial recruited 140 patients. During the three 
periods in this cross-over study, each patient received salmeterol, salbutamol or 
placebo in random sequence. Patients completed the asthma-specific AQLQ.
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This example relates to a cross-over trial in which patients received all three treat-
ments. Consequently, the proportion of patients better on one treatment or the other 
could be estimated directly. In a majority of randomised trials, each patient only 
receives one of the treatments, say C or T. Therefore we must estimate how many 
patients benefit from C and how many from T. Let us suppose that for the NC controls 
the proportions improved, unchanged and deteriorated are iC, uC and dC respectively. 
Although iT of the NT patients in the T-group improved, we might expect that some of 
these patients would have improved even if they had received the C instead. Assum-
ing independence between the two groups, we can estimate that iC of the iT patients 
would have improved anyway. Therefore, of the improved patients in the T-group, we 
estimate the proportion who truly benefited from T as iT − (iC × iT) = (uC + dC) × iT. In 
addition, dC of the T-group patients who were unchanged might have been expected 
to have deteriorated if they were in the C-group, giving another dC × uT that benefited 

Two AQLQ scales were examined: asthma symptoms and activity limitations. 
Table 18.10 shows that the mean differences between salmeterol and the other 
two treatments were all statistically highly significant, but are ‘small’ for AQLQ 
scores according to the classification of minimal clinically important difference 
in Section 18.6. The NNT is calculated from the proportion of patients who had 
obtained benefit from salmeterol, where ‘better’ was defined as an improvement 
of 0.5, minus the proportion of patients who obtained a similar sized benefit 
from the alternative treatment. Thus in the first row of Table 18.10, these pro-
portions are 0.42 and 0.12 for salmeterol versus salbutamol, giving ABI = 0.30, 
and hence NNT = 1/0.30 = 3.3. Therefore 33 patients would need to be treated 
for 10 to gain an important benefit in symptom reduction.

Table 18.10  Differences between groups given different treatments for asthma, showing 
the number needed to treat for a single patient to benefit from salmeterol

AQLQ domains

Difference  
between treatments Proportion 

better on 
salmeterol

Proportion 
better on 

salbutamol 
or placebo

Proportion  
who 

benefited NNTMean p-value

Salmeterol vs. salbutamol
Asthma symptoms 0.5 < 0.0001 0.42 0.12 0.30 3.3
Activity limitations 0.3 < 0.0001 0.32 0.10 0.22 4.5

Salmeterol vs. placebo
Asthma symptoms 0.7 < 0.0001 0.50 0.09 0.41 2.4
Activity limitations 0.4 < 0.0001 0.42 0.08 0.34 2.9

Source: Guyatt et al., 1998, Table 1. Reproduced with permission of BMJ Publishing Group Ltd.
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from T. Hence, after allowing for those patients expected to benefit from C, the total 
proportion of the NT patients who really benefited from T is estimated as:

			 
u d i d u .C C T C T( ) ( )+ ×  + ×

Similar calculations for the C-group give the proportion of the C patients who might be 
expected to have benefited from C, and as before ARR = pC − pT.

Example from the literature

Guyatt et al. (1998) describe a parallel group trial involving 78 patients with 
chronic airflow limitation. In the control group, the proportions of patients 
whose dyspnoea was improved, unchanged and deteriorated were iC  =  0.28, 
uC = 0.49 and dC = 0.23. The comparable proportions for the treatment group 
were iT = 0.48, uT = 0.42 and dT = 0.10. Therefore the estimated proportion 
that were better in the treatment group is (0.49 + 0.23) × 0.48 + (0.23 × 
0.42) = 0.44. Similar calculation for the estimated proportion who are better 
in the control group gives 0.28 × (0.42 + 0.10) + (0.49 × 0.10) = 0.20. Hence 
ARR = 0.44 − 0.20 = 0.24, and NNT = 1/0.24 = 4.2.

Thus for every 42 patients treated it may be expected that 10 patients would 
have an important improvement in dyspnoea reduction as a consequence of therapy.

Example from the literature

Many QoL instruments are multidimensional, and some authors therefore define 
a composite endpoint. Klinkhammer-Schalke et al. (2012) reported a ran-
domised trial in 200 women with newly diagnosed breast cancer, who completed 
the EORTC QLQ-C30 and the supplementary breast cancer module, QLQ-BR23. 
‘Diseased QoL’ was defined as a drop below 50 points in any of the 10 major 
QoL dimensions on a scale from 100 to 0 points (worst QoL). ‘Healed QoL’ was 
a shift to 50 points or more. The primary end point used meaningful changes in 
QoL in each patient as an immediate, personally relevant treatment goal, not 
mean values in the overall patient group. The effect size was calculated as the 
number needed to treat (NNT) to raise all QoL subscales above 49 in one patient 
at six months.

The authors report that at six months 60/85 patients in the control group 
or pC = 71% (95% CI 51–68) showed diseased QoL in at least one dimension. 
In the treatment group, this occurred in 47/84 patients or pT = 56% (95% CI 
38–56). A χ2-test of the difference gives p = 0.048. This corresponds to a rela-
tive risk reduction of (71–56)/71 = 21% (95% CI 0–37), an ARR = 15% (95% 
CI 0.3–29) and an NNT of 7 (95% CI 3–37). The confidence limits for NNT were 
calculated by a computer bootstrapping algorithm.
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18.15  Conclusions

This chapter has described a variety of ways of approaching clinical significance 
and the interpretation of results. Some methods aim to provide a better feel for the 
interpretation and meaning of scale scores, for example by estimating the values that 
may be expected in patients and in other groups such as healthy people. Other meth-
ods place greater emphasis upon the patient’s perspective and clinical significance. 
Reviews have concluded that “While no single method for determining clinical signifi-
cance is unilaterally endorsed, the investigation and full reporting of multiple methods 
for establishing clinically significant change levels for a QOL measure, and greater 
direct involvement of clinicians in clinical significance studies are strongly encour-
aged” (Wyrwich et al., 2005). Thus many authors recommend using a combination of 
approaches, including in particular anchor- and distribution-based methods (Revicki et 
al., 2008; Sloan et al., 2006)

The interpretation of QoL results remains essentially qualitative. Clinical signifi-
cance is subjective, and therefore a matter of opinion. The values and opinions of 
individual patients will differ, as will the opinions of the treating clinician and those 
of society in general. Thus, for a QoL measurement scale, it is unlikely that a single 
threshold value will be universally accepted as a cut-point that separates clinically 
important changes from trivial and unimportant ones. It is also likely that patients may 
consider changes in some PROs to be more important than others, and a change of, 
say, 5 points on one scale may be as clinically important as a change of 20 on another. 
However, many investigators are finding that, for a variety of scales assessing overall 
QoL and some of its dimensions, changes of between 5% and 10% (or 5 to 10 points 
on a 100-point scale) are noticed by patients and are regarded by them as meaningful 
changes.

18.16  Further reading

There is extensive literature about how to interpret QoL measures and PROs. Revicki 
et al. (2008) review literature on this topic and set standards. The interpretation of 
changes over time is reviewed by Wyrwich et al. (2013), who also describe the use of 
“cumulative distribution function” plots. For an example of a comprehensive assess-
ment of a particular domain, Dworkin et al. (2008) review research into pain and offer 
consensus recommendations. However, methods for establishing MID values remain 
controversial (King, 2011). Communication of results to patients presents additional 
challenges, and some approaches are considered by Guyatt and Schunemann (2007).
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Biased reporting and  
response shift

Summary

It is well established that patients adapt to their illness, learning to accommodate and 
cope with their altered conditions. Thus they may change their internal standards, 
their values and/or their conceptualisation of QoL. Such changes are an example of 
response shift, in which a patient’s responses to PRO items may vary in a manner that 
seems discordant with their changing health status. We discuss when and how response 
shift and other forms of bias, such as recall bias and selective reporting, might affect 
the analyses or distort the interpretation of results.

19.1  Bias

An estimate is said to be biased if it differs systematically from the true value of the 
parameter being estimated. An estimator with zero bias is called unbiased. Otherwise 
the estimator is said to be biased. There are many causes and forms of bias. This chap-
ter examines biases that affect questionnaire assessments and, in particular response 
shift. Response shift occurs when a subject’s views, values or expectations change 
over time, and especially when the changes occur during the period of observation. 
Thus a patient’s health might be seen to be deteriorating, and yet the patient may assert 
that their QoL has not changed, or even that it has improved. Alternatively, a patient’s 
health status may appear to be unchanging even though that same patient may report 
substantial changes in their QoL. In both cases, the patient’s responses over time do 
not seem to agree with their corresponding health status. Of course there could be non‐
systematic, or random, measurement errors due to poor test–retest reliability; these do 
not constitute response shift, and do not result in consistent or repeatable responses 
from patients. Similarly, an instrument with poor sensitivity may fail to detect a change 
in QoL, but that does not enable a claim that a patient’s QoL has not changed despite 
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their health status having deteriorated – in the latter case the implication is that, for 
example, the patient has adapted and is coping with their changing circumstances.

19.2  Recall bias

An important but sometimes neglected aspect of quality of life instruments is the speci-
fication of the recall period. A few instruments focus on current health status, and ask 
the respondent about how they feel ‘Right now’. Many more, however, refer to ‘How 
you have been in the past week’, and some specify the past month or some other 
period. Another form of recall is to ask the patients to compare themselves against how 
they were when they previously attended hospital, reporting how much their condi-
tion has changed. It is clearly important that instruments pay attention to the precise 
specification of recall period. Caution must be exercised if this recall period is altered 
from that advocated by the instrument’s developers, as any change is likely to violate 
the previous reports of validation.

The United States Food and Drug Administration (FDA, 2009) notes that it is 
important to consider patient ability to validly recall the information requested. 
They comment that the choice of recall period that is most suitable depends on 
the instrument’s purpose and intended use; the variability, duration, frequency and 
intensity of the concept measured; and the disease or condition’s characteristics; 
and the tested treatment and, in reference to clinical trials, “we intend to review the 
clinical trial protocols to determine what steps were taken to ensure that patients 
understood the instruments recall period … note also that any problems created 
by differential recall are likely to noise and obscure treatment effect.” PRO instru-
ments that call for patients to rely on memory, especially if they must recall over 
a long period of time, compare their current state with an earlier period, or aver-
age their response over a period of time, are likely to undermine content validity. 
Response is likely to be influenced by the patient’s state at the time of recall. For 
these reasons, items with short recall periods or items that ask patients to describe 
their current or recent state are usually preferable.

Recall bias occurs when the respondent’s answer to a question is affected not just by the 
correct answer and also by the respondent’s memory. People tend to forget how extreme 
the past was. A patient with dental pain might say that their current pain is unbearable, but 
a few months later they are likely to have forgotten just how bad it was and might report 
that it was ‘not that bad’. On the other hand, positive events they also become blurred 
towards neutrality: if someone has just come back from a successful holiday, it is well 
known that they will give enthusiastic descriptions of their experience; but if they are 
asked about that same holiday after a few weeks, the response is likely to be consider-
ably weaker. Assessment of HRQoL is frequently concerned with symptoms and other 
problems, and patients may tend towards under‐reporting the severity of past problems. If 
patients do, as we suggest, tend to report problems differently according to their distance 
from the time of the event, their responses will have systematically changed and this may 
be regarded as a form of response shift.
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As Albert Schweitzer, the philosopher and physician, is reputed to have said, “Hap-
piness is nothing more than good health and a bad memory”.

19.3  Selective reporting bias

Patients may tend to ignore or discount those problems they believe to be unrelated to 
their illness. For example, a patient with bladder cancer who has also previously been 
incontinent for many years might respond to a question on this topic by reporting that 
it causes no problem – in effect, the patient has adapted to the illness and learnt to cope 
with the symptoms. However, patients who have experienced a recent change or who 
believe they have illness‐related problems are more likely to make accurate responses. 
This selective reporting bias can distort the analyses and interpretation of results. To 
some extent it can be controlled by suitable framing of the questionnaire, which con-
sists of instructions telling the patient whether to report all symptoms and problems, 
irrespective of origin or cause. Furthermore, many instruments ask about severity, as 
opposed to impact, of symptoms.

Example from the literature

Stone et al. (2004) show that pain recall may be complex: although we sug-
gested that recall may lead to understatement of actual pain in the past, the 
opposite may also occur. Chronic‐pain patients (N = 121) were asked to rate 
their current pain several times a day, and at the end of the week were also 
asked to “Place a mark on the following line to indicate the level of your USUAL 
PAIN over the last 7 days”. An additional item asked participants about the 
change in pain from week to week. The question “Think about your pain over 
the last 7 days and compare it to the week before. How has it changed?” was 
answered with a five‐point scale from much worse to much better.

On a scale of 0 (no pain) to 100 (worst possible pain), average momen-
tary pain ratings were much lower (mean = 44) than recalled levels (58). The 
authors suggest that when subjects have to recall their average pain, they 
might only consider (or give greatest weight to) occasions when they are actu-
ally in pain, because those episodes are more prominent and salient, and thus 
more available to memory. Thus, recalled pain levels correspond more closely to 
the average levels experienced during episodes of pain, rather than to overall 
average levels.

When assessing change using momentary and recalled data there was low 
level of consistency and agreement. The authors suggest various reasons for 
this. One explanation hinges on the idea that change scores are inherently 
unreliable.
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When a questionnaire is given to the general population, however, one might 
expect no such discounting of problems. As a consequence, QoL levels for patients 
may appear to be more favourable than those expected from population‐based refer-
ence values. Sometimes this effect can be quite marked, even to the extent of making 
patients appear to have better QoL than the general population.

Example from the literature

Selective reporting may affect proxies as well as patients. Fayers et al. (1991) 
report QoL assessments in a randomised trial comparing maintenance versus no 
maintenance chemotherapy for small‐cell lung cancer patients. Because this 
chemotherapy was likely to induce vomiting, the patient questionnaire asked 
about nausea and vomiting. These symptoms were also recorded by the clinicians.

In a total of 956 patient visits (Table 19.1), patients reported 626 (65%) 
episodes of vomiting, compared with 245 (26%) reports by physicians. Patients 
reported 371 episodes of vomiting where physicians recorded no problems with 
nausea and vomiting. Curiously, in 49 instances physicians reported vomiting 
when patients indicated no problems.

The authors suggest that if patients reported vomiting it was likely to be 
true. Thus there was a high degree of selective reporting by clinicians, who 
perhaps ignored and under‐reported mild vomiting because they expected this 
to occur in nearly all patients.

Table 19.1  Small‐cell lung cancer patients’ and their physicians’ assessments of nausea 
and vomiting

Physicians’ assessments

Patients’ assessments

None Nausea Vomiting Total

Not reported 125 78 371 574
Nausea 27 31 79 137
Vomiting 49 20 176 245

Total 201 129 626 956

Source: Fayers et al., 1991, Table V. Reproduced with permission of Macmillan Publishers Ltd on behalf 
of Cancer Research UK.

19.4  Other biases affecting PROs

Many forms of bias can affect questionnaires (Streiner and Norman, 2008), among 
which are the following. Responses to items on a PRO questionnaire can be influenced 
by a patient’s current mood: depressed patients tend to rate themselves poorly, 
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while happy patients are more positive. Response acquiescence, also described as 
‘yea‐saying’ or acquiescence bias, is the tendency of respondents to give positive 
responses such as ‘yes’, ‘true’ or ‘often’. Mood may be particularly important in 
younger females, while response acquiescence may be a source of systematic bias 
that can lead to underestimation of PROs among the well‐educated and overestima-
tion among older respondents. (Moum, 1988). Framing effects occur when responses 
are affected by how the question is phrased or by the preceding questions (Kahneman 
and Tversky, 1984); this is why most developers of QoL questionnaires specify that 
the sequence of items on their questionnaire must not be changed – so that any fram-
ing effects will at least remain constant. It is also the reason why some questionnaires 
place questions about ‘your overall quality of life’ at the end, so that the preceding 
items indicate (frame) the range of issues that should be considered in answering 
the global item (or, conversely, some questionnaires deliberately position the global 
item first, so that it remains unaffected by later items). Halo effects can cause rat-
ings of specific characteristics to be influenced by the overall impression of health, 
and provide reason not to place the global item first. Proxy assessments may also be 
influenced by halo effects, with the rater’s overall impression influencing ratings of 
specific characteristics.

Social desirability, or ‘faking good’, is the tendency for respondents to give 
what they consider to be the most socially desirable answer (Edwards, 1957). 
This is sometimes manifested by under‐reporting side effects of treatment or 
over‐reporting the reduction of symptoms, so as to ‘please the doctor’. In social 
desirability the respondent is usually unaware of the bias, whereas faking good is 
done deliberately; an example of faking good is the cancer patient who understates 
side‐effects of treatment so as to ensure the dose is not reduced. ‘Faking bad’ is 
the opposite of faking good: an example is the patient who overstates the severity 
of their pain so as to obtain analgesics. End aversion, or central tendency bias, is 
the tendency for respondents to avoid the extremes of the response scale – per-
haps avoiding the rating of symptoms as 10 on a scale from 0 to 10 because that 
would preclude the ability to indicate a worse response in future. Many forms of 
bias may be susceptible to cultural, gender, age or education differences (Johnson  
et al., 2005).

When patients rate their overall QoL, an ill‐defined construct, they may reason-
ably ask, ‘Compared to what?’ Social comparison is the process by which people 
compare themselves with others. Downward comparisons consist in comparing 
oneself to others whose state is worse, and tend to generate feelings of satisfaction 
(Wills, 1981), while the corresponding upward comparisons are associated with 
dissatisfaction. Wood et al. (1985) reported that breast cancer patients make the 
majority of comparisons with patients less fortunate than themselves. Stanton et al. 
(1999) later showed that while breast cancer patients made more downward com-
parisons, they preferred information and support from more fortunate others. We 
illustrate social comparisons as an example of response shift and reference frames 
(see Figure 19.2).
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19.5  Response shift

Many patients adapt over time, and their perceptions of QoL may change. Learning to 
cope with problems is a well‐recognised feature in the chronically ill, and frequently 
an important aspect of clinical therapy is to help patients to adapt to their illness. Thus, 
patients who experience a constant level of pain for a long period may come to cope with 
it, and hence report diminishing levels over time. Also, patients may meet others whose 
condition is better or worse than their own, and this can also lead to a recalibration of 
their own internal standards and values. Such subjective changes in patients’ perceptions 
are an example of what is known as response shift (Schwartz and Sprangers, 1999).

Under the theoretical model proposed by Sprangers and Schwartz (1999), response 
shift is a change in the meaning of one’s self‐evaluation of QoL as a result of changes 
in internal standards, values and the conceptualisation of QoL (Figure 19.1). Rapkin 
and Schwartz (2004) later extended this model to include changing frame of reference. 
This model therefore describes four forms of response shift:

	 1.	 Recalibration – for example, someone with extreme pain might rate their pain as being 
9 on a scale from no pain (0) to worst imaginable pain (10). However, when assessed 
again after their condition has deteriorated and the pain has become much worse, they 
might realise that their earlier pain should have been described as nearer 5 out of 10.

	 2.	 Reprioritisation – typified by someone who values physical function and health as 
the most important factors for good HRQoL until, when they become seriously and 
terminally ill, they find that family relationships are far more important determinants.

	 3.	 Re‐conceptualisation – in addition to reprioritisation, people can redefine what 
they mean by HRQoL. For example, a healthy person may be unlikely to men-
tion absence of fatigue as a major factor for good HRQoL, whereas patients with 
serious chronic disease might describe fatigue as one of the most important do-
main affecting HRQoL.

Example from the literature

The effects described can be substantial. A sample of 60 university students com-
pleted a survey on student issues that included two questions: ‘How happy are you 
with life in general?’ and ‘How many dates did you have last month?’ (Strack et 
al., 1988). There was little correlation (r = −0.12) between the responses to these 
questions, suggesting that dating is not a major factor determining happiness. 
But in a second sample of 60 students the order of questions was switched, asking 
about frequency of dating first; now the correlation was strong (r = 0.66). When 
respondents hear ‘How happy are you these days?’ their answer is affected by cur-
rent mood. If asked about dating first, that determines their current mood – sad or 
happy – and they answer the next question accordingly.
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	 4.	 Changing frame of reference – when a hospital inpatient is surrounded by others who 
are more severely ill than themselves, they might revise their self‐assessment by mak-
ing the social comparison ‘I’m not so badly off as most of the others on this ward’.

These response‐shift changes may be consequences of various mechanisms, such as 
coping and adaptation to illness, reframing of expectations, effects of spiritual prac-
tices, changing social comparisons, goal reordering and recalibration of responses. The 
impact of the mechanisms will be affected by antecedents, such as the patient’s per-
sonality or other characteristics, their expectations and spiritual identity. We illustrate 
some forms of response shift by the following examples.

Figure 19.1  Sprangers and Schwartz (1999) theoretical model of response shift and quality of life. 
Source: Sprangers and Schwarz, 1999, Figure 1. Reproduced with permission of Elsevier.
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Example from the literature

An example of response shift was provided by Albrecht and Devlieger (1999), 
who posed the disability paradox: “Why do many people with serious and per-
sistent disabilities report that they experience a good or excellent quality of 
life when to most external observers these individuals seem to live an undesir-
able daily existence?” Based on the results of interviews, they suggested that 
the high quality of life reported by many respondents could be a ‘secondary 
gain’ that occurs when individuals with impairments adapt to their new condi-
tions and make sense of them. Individuals who experience disability can find 
an enriched meaning in their lives secondary to the disability condition. The 
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Example from the literature

Groenvold et al. (1999) investigated anxiety and depression in newly diagnosed 
breast cancer patients, using the HADS. A sample of 466 Danish breast cancer 
patients at low risk of recurrence was recruited within seven weeks following 
their surgery. Their level of anxiety and depression was compared with that of 
609 women randomly selected from the Danish general population.

Contrary to expectations, the HADS scores of breast cancer patients were 
significantly lower than those of the general population sample, indicating less 
anxiety and depression. The respective patient and population mean scores 
were 5.3 and 6.0 (p = 0.02) for anxiety, and 2.8 and 3.4 (p = 0.001) for depres-
sion. The differences were consistent across all five age groups examined.

The authors were sceptical regarding the results, and questioned the valid-
ity of comparing HADS scores of breast cancer patients against those obtained 
from the general population. Firstly, the HADS was developed and validated in 
hospital patients, and had not been validated in the general population. Sec-
ondly, there might be selective reporting. Since the patients knew they were 
in a cancer study, they might have excluded complaints that they attributed to 
non‐cancer causes (selective reporting bias). This might lead to an underes-
timate of anxiety and depression for the breast cancer patients. Thirdly, there 
may have been response shift. The cancer patients may have changed their 
internal standards as a result of their experiences – for example, some patients 
might now place greater value on family relationships. The authors conclude: 
“The results of the HADS applied in the general population are probably not 
directly comparable with the results from the breast cancer patients.”

results of this study suggest that secondary gains occurred when individuals 
used their disability condition and subsequent outcomes to reinterpret their 
lives and reconstitute personal meaning in their social roles. Thus the respond-
ents changed their values and conceptualisation of QoL.

The implications of the study by Albrecht and Devlieger are firstly that healthy people 
are poor judges of the QoL and values of patients, and secondly that people change when 
they become ill – this latter implication being an example of response shift. Others have 
noted similar response shifts: as we mentioned in Chapter 1 of Part 1, there are major and 
consistent differences between the opinions of patients and the others, and also between the 
different healthcare staff. Thus Slevin (1990) observed that, contrary to the expectations of 
doctors or others, “(cancer) patients appear to regard a minute chance of possible benefit as 
worthwhile, whatever the cost” and willingly tolerate horrendously toxic cancer therapy for 
little improvement in chance of survival. Again, patients have changed their priorities and 
values after becoming ill, and their responses to questionnaires have altered as a consequence.
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In the above examples of response shift we have postulated that there is re‐
conceptualisation or reprioritisation, although patients may be affected by more than 
one type of shift as in the preceding example. Adapting to illness, learning to cope 
and changing of values and priorities can represent mental changes that reflect real 
modifications as to how patients feel. Of course, centuries ago Aristotle realised that 
such internal changes occur, and the quotation deserves repeating: “what constitutes 
happiness is a matter of dispute … some say one thing and some another, indeed very 
often the same man says different things different times: when he falls sick he thinks 
health is happiness, when he is poor, wealth” (Aristotle, 384–322 BCE). Recalibra-
tion is different, in that the patients’ feelings and values may remain unchanged, but 
the patients are expressing themselves on a revised scale; recalibration is predomi-
nantly a measurement problem.

Example from the literature

The SEIQoL is an individualised quality of life measure that allows respondents 
to nominate the five most important issues that affect them. This makes it 
ideally suited for detecting response shift. Re‐conceptualisation corresponds 
to changes in nomination of cues (life areas), while reprioritisation is reflected 
by changes in cue weights. Ring et al. (2005) explored the impact of denture 
treatment on 117 edentulous patients, with assessments pre‐treatment and at 
three months. There was evidence of re‐conceptualisation, with 81% of patients 
nominating at least one different cue at three months compared to baseline. 
There was also evidence of reprioritisation, with patients significantly changing 
their weightings for the cues that they rated most and least important.

Example from the literature

Sprangers et al. (1999) describe a qualitative study in which 99 patients with 
newly diagnosed cancer were assessed for fatigue, before and after radiother-
apy. Patients were also interviewed using non‐judgemental probes. An example 
of the reported responses was a patient who said: “During the radiotherapy I 
became more tired. At that time, I may have thought that I was tired. But now 
I say no I was not tired at all. Now I am tired. …So, now I may look differently 
upon that week, while at that time I may have thought that I was dead tired.” 
Thus this patient recognised that she had experienced a recalibration response 
shift, and that by her revised standards she had overstated the level of fatigue 
at the pre‐treatment assessment. A number of patients considered their revised 
values of the baseline assessment to be more valid than the responses made 
at the time.
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Pain is another symptom that, like fatigue, may be prone to recalibration if patients 
experience increasingly severe pain as their illness progresses. Visser et al. (2013) studied 
202 cancer patients and reported that that 35% experienced recalibration response shifts in 
the anticipated direction, while 20% showed recalibration shift in the opposite direction.

Patients may be asked the seemingly simple question ‘What is your overall qual-
ity of life during the past week?’, but this begs the query ‘Compared to what?’ Even 
if such a query is not made explicit, some patients may contrast their health against 
that of another peer group such as friends of similar age, other patients with similar 
condition, or even themselves before becoming ill. The need to specify a reference 
frame has been recognised by social scientists in the population survey context, where 
the concern has been to remove inherent ambiguities by directing respondents to use 
age‐standardised comparisons. Investigators have used questions such as ‘Compared 
to others of your age, how would you rate your health status?’, commonly specifying 
relative response options (better/worse) and not absolute values (such as very bad to 
very good). Better average health status is reported by elderly people when an age 
comparison is explicitly invoked (e.g. Baron‐Epel and Kaplan, 2001). Although it is 
rare for reference frames to be specified in healthcare research, there is evidence that 
the measurement of QoL is affected.

Example from the literature

Fayers et al. (2007) asked 1,325 patients with Paget’s disease, who were complet-
ing the SF36 in a clinical trial, “How would you rate your overall quality of life 
during the past week?” The patients were then told that we realise different peo-
ple have different things in mind when they answer questions about their quality 
of life, and asked “When you rated your overall quality of life, were you mainly 
comparing yourself against one or more of the following?” The options included 
‘before you became ill’, ‘how you felt a year ago’, ‘other people with Paget’s dis-
ease’, ‘healthy people that you know (such as family or friends)’ and ‘something 
else (please specify)’. Patients could tick one or more response options.

The majority of patients ticked a single option. At all time points, about 
20% of patients said they had in mind how they were before they became ill, 
nearly a third were considering themselves a year or more previously, and about 
20% were comparing themselves with healthy peers. As had been hypothesised, 
mean HRQL scores varied substantially according to the declared frame of refer-
ence; differences were as big as 19% of the scale score, or a standardised mean 
effect size of 0.74 standard deviations (Figure 19.2).

Thus, reported reference frames were associated with effects of similar mag-
nitude to the differences in HRQoL that are regarded as clinically important. 
This may be of particular concern in trials that randomise patients to manage-
ment in different settings, such as treatment at home/in hospital, or surgery/
chemotherapy and might bias or obscure HRQL differences.
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19.6  Assessing response shift

Early attempts at assessing response shift in HRQoL mainly focused on the ‘then‐test’. 
Patients are assessed on two occasions, such as pre‐treatment and post treatment. After 
completing the second assessment, they are given the then‐test, with a question such 
as: ‘We would like you to think back to the time of your first assessment, immediately 
prior to the start of your treatment. With hindsight, how would you now rate the way 
you felt then?’ The difference between the values of the pre‐treatment assessment and 
the then‐test provides an estimate of recalibration response shift. Arguably, when esti-
mating the change in a PRO due to treatment, the then‐test value should be used in 
preference to the pre‐treatment value.

The then‐test approach is easy to understand, simple to apply and straightforward to 
analyse; it has been used extensively. However, it can be criticised as making unsup-
ported assumptions about absence of recall bias, ability to recall previous states, a 
shared internal standard for current and previous conditions, and potential contamina-
tion because of respondent’s feelings of social desirability or other concerns. A review 
of publications reporting then‐test results also found that the then‐test lacks standard-
ised and transparent interpretation, with ambiguity in the claims of negative and posi-
tive response shifts. Schwartz and Sprangers (2010) subsequently produced guidelines 
for the optimal use and reporting of the then‐test.
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Figure 19.2  Ratings of QoL varied according to frame of reference. Source: Fayers et al., 
2007. Reproduced with permission of Elsevier.



522	 Biased reporting and response shift 

While the then‐test is most suitable for detecting recalibration, a variety of multi-
variate methods have been proposed for identifying and measuring reprioritisation and 
re‐conceptualisation response shifts. A review by Schwartz et al. (2013) describes the 
range of statistical techniques that have been used and offer guidelines for exploring 
response shift in clinical studies.

Example from the literature

Schwartz et al. (2006) identified 26 published longitudinal studies that meas-
ured response shift, and of these 19 reported data for evaluating the response‐
shift effect size. Five dimensions were explored using a random effects 
meta‐analysis: global quality of life, fatigue, psychological well‐being, physical 
role limitations and pain. Figure 19.3 shows the results for global quality of 
life. The mean effect size was small (0.02).

In many cases it was unclear whether the shifts were positive or negative, mak-
ing Figure 19.3 little more than guesswork. The authors commented that a defini-
tive conclusion on the clinical significance of response shift cannot currently be 
drawn from existing studies. This uncertainty is due to the heterogeneity of ESs as 
well as of studies and patient populations, and inadequacy of reporting.

Figure 19.3  Meta-analysis of response shift affecting assessment of global QoL. (see 
Chapter 20 for explanation of the ‘Forest plot’). Note: See Schwartz et al., 2006 for detailed 
references of studies cited. Source: Schwartz et al. 2006, Figure 3. Reproduced with permission of 
Springer Science and Business Media.
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19.7  Impact of response shift

It might be argued that, when assessing QoL, all that matters is the patient’s current 
perception. Hence, if pain is perceived and reported as diminishing, we can regard 
it as becoming less important to the patient even though the pain stimulus may be 
unchanged. However, many clinicians would argue that it remains just as important 
to address the pain, despite claims by the patient that they can cope and that it is 
becoming less of a problem. Response shift might equally work in the other direction. 
Patients can find that persistent symptoms cause increasing distress, and may therefore 
report the symptoms as becoming more severe even though they do not appear to be 
changing in any objective physical sense. A nagging pain may not be intense, but can 
become extremely distressing.

There seems little doubt that response shift can occur; much of clinical practice is 
concerned with helping patients to adapt to their illness, or to learn how to cope with 
their symptoms. That is, positive response shifts are actively encouraged, and may 
sometimes be substantial.

Selective reporting, recall and other biases, and response shift can all be forms of 
measurement bias, and may all result in misleading reports of PROs. Both subjective 
and supposedly objective symptoms can be reported differently by patients and the 
general population. Selective reporting can clearly present a serious bias problem 
when using normative data, although response shift is arguably less important if 
perceptions are considered to matter more than reality. In QoL studies it is rarely 
possible to quantify the overall bias, and these various causes of bias can rarely be 
separated.

Many forms of assessment bias may be of less importance for treatment compari-
sons in a clinical trial, provided they apply equally to all treatment arms. However, it is 
important to bear in mind their potential impact on particular studies. We have already 
seen that clinicians may under‐report symptoms such as vomiting, which they regard 
as the inevitable consequence of chemotherapy for cancer. Similarly, selective report-
ing bias could occur in a trial of long‐term chemotherapy versus ‘no treatment’ if the 
treatment group gradually regarded some symptoms as inevitable and stopped report-
ing them; selective reporting might lead to serious underestimation of QoL differences 
between the chemotherapy and control groups.

19.8  Clinical trials

Can response shift affect the results of clinical trials?  In many situations there may be 
no reason to suspect that response shifts will differ between the randomised groups. 
Then one might hope that there are no grounds to believe there could be a systematic 
bias to the treatment comparisons. Despite this, response shift may add extra noise to 
the comparisons, and by increasing the variability it can blur the estimates of treatment 
effect and reduce the power of the comparison. Thus it should not be ignored.
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As we have observed, helping patients to cope and adapt to illness is a major 
component in many interventions – especially when there is limited choice of active 
treatments. Clinicians and other staff actively promote and encourage adaptation as 
a positive part of the patient experience, and many believe it has profound impact 
on patients. Thus it can be argued that coping and related adaptations are part of the 
overall policy of management: provided one regards the trial as comparing policies of 
management, as opposed to comparing individual treatments, there is no need to make 
any correction or other allowance for adaptation. Thus if one arm of the study involves 
more frequent hospital attendances for administration of the treatment than the other, 
and if patients benefit by the additional contact with hospital staff, that is all part of 
the policy of management and would apply just as much to future patients outside the 
trial as to those within it. Adopting a pragmatic perspective, we know that adaptation 
occurs, it is encouraged, and it is a normal part of overall patient management. But it 
can obscure the explanatory assessment of treatment efficacy.

Sometimes there may be unanticipated differences in the degree of response shift in 
the study arms, even in randomised clinical trials.

Example from the literature

The trial of Jordhøy et al. (2001) compared the QoL of palliative care patients 
who were managed in a specialist hospital unit against those who were 
offered a comprehensive support package that allowed them to stay at home 
until the end of their lives. The authors report that “The present interven-
tion enabled more patients to stay at home to die, and according to pub-
lished reports on patients’ wishes, this is a favorable outcome. Several others 
have reported improved family and patient satisfaction”. However, contrary to  
all expectations, there was no difference in QoL between the two groups 
(Jordhøy et al., 2003).

One might speculate that the hospital‐based patients were surrounded by 
others in a comparable state or, sometimes, in an even worse health state than 
themselves. These patients might therefore adjust their expectations accord-
ingly, and may feel that, compared to those around them, their QoL is not so 
bad. In contrast, the home‐care patients would be among healthy people and 
might use a very different yardstick when responding to QoL questionnaires. 
However, the trial of Jordhøy et al. was not designed with response shift in 
mind. The authors could only conclude that there was no evidence of a differ-
ence in QoL (and discussed a number of potential explanations).

In this example, response shift may have played a role because the two randomised 
groups were being assessed in completely different settings, and it is plausible that the 
settings might influence the responses in divergent ways.
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19.9  Non‐randomised studies

Response shift can be a far more serious issue for non‐randomised studies, because it 
can no longer be argued that response shift may occur equally across the randomised 
groups. As an example of the problems, we have already mentioned the survey of Groen-
vold et al. (1999). A more serious and far‐reaching example is that of Spitzer (2012).

Example from the literature

In 2001, Robert Spitzer announced the first results of an influential and notori-
ous study that evaluated the feelings of gay people who were receiving ‘repar-
ative’ therapy (also known as ‘sexual reorientation’ or ‘conversion’ therapy), 
and which concluded that many of them reported changes in their sexual 
desires from homosexual to heterosexual (Spitzer, 2003). Eleven years later he 
recanted, acknowledging that “There was no way to judge the credibility of sub-
ject reports of change in sexual orientation. I offered several (unconvincing) 
reasons why it was reasonable to assume that the subject’s reports of change 
were credible and not self‐deception or outright lying. But the simple fact is 
that there was no way to determine if the subject’s accounts of change were 
valid” (Spitzer, 2012). One of the flaws was that the assessment was based on 
what people remembered feeling years before. Thus response shift, for example 
in the form of self‐deception or misrepresentation of their feelings, might have 
biased the results and may well have led to erroneous conclusion.

Example from the literature

In the study of Ring et al. (2005), exploring the impact of implant‐supported 
dentures compared with high‐quality conventional dentures, recalibration  
response shift was identified in addition to the reprioritisation and re‐ 
conceptualisation that we described above. Unadjusted QoL scores revealed no 
significant impact of treatment at three months (baseline: 75.0; three months: 
73.2, p = 0.33). However, after allowing for response shift there was a signifi-
cant treatment effect (revised baseline: 69.2; three months: 73.2, p = 0.016). 
The authors conclude that positive impact of denture treatment for edentulous 
patients was seen only when response shifts were taken into consideration: 
“The nature of the response shifts was highly complex but the data indicated a 
degree of re‐conceptualisation and reprioritisation. Assessment of the impact 
of treatments using patient‐generated reports must take account of the adap-
tive nature of patients.”



526	 Biased reporting and response shift 

19.10  Conclusions

Most clinical trials and surveys either ignore response shift or assume it is negligible. 
In randomised trials this may sometimes be reasonable, for example when compar-
ing two forms of pharmaceutical therapy in a double‐blind trial. But response shift 
becomes more of a threat when trials are unblinded, although even then there is the 
temptation to take the pragmatic view that many forms of response shift, such as adap-
tation to illness, are consequences of the overall policy of management. However, 
the magnitude of the response shifts is usually not established and if substantial may 
obscure treatment effects or distort the estimates of effect size. The greatest threat is to 
non‐randomised studies, when the interpretation of the results may become compro-
mised. Throughout this chapter we have illustrated examples in which response‐shift 
effects appear to have played an important role.
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20
Meta‐analysis

Summary

Systematic overviews and meta‐analyses have become an important aspect of clinical 
research. In particular, they are routinely applied before launching new clinical trials as 
a means of confirming the need to carry out a clinical trial, or after completing trials as 
a means of synthesising and summarising the current knowledge on the topic of inter-
est. In this chapter, we focus on issues that are of specific relevance to meta‐analyses 
of QoL and PROs.

20.1  Introduction

Meta‐analysis is the quantitative review and synthesis of the results from studies that 
have independently evaluated similar or equivalent interventions and outcomes. Thus 
the principal stages of meta‐analysis are (i) the systematic identification of all studies 
that addressed the outcome of interest, (ii) the evaluation of the quality of these studies, 
(iii) the extraction of the relevant quantitative data and (iv) the statistical combining 
and analysing of the collective results.

Many books have been written about meta‐analysis, and it is the focal interest of the 
Cochrane Collaboration. The aim of this chapter is to introduce the principles of meta‐
analysis, together with examples from the literature. We shall in particular focus on the 
two special challenges posed by QoL studies: firstly, in many disease areas there are a 
number of potential questionnaires, and for meta‐analysis it will be necessary to com-
bine the seemingly disparate outcome measures and, secondly, the quality of studies 
may vary considerably, in particular because some studies may experience poor compli-
ance with consequent high levels of missing data. This chapter is primarily concerned 
with data extracted from published reports, as opposed to the more labour‐intensive 
meta‐analyses that involve obtaining individual patient data from each separate study.

It is strongly recommended that the Cochrane Handbook for Systematic Reviews 
of Interventions (Higgins and Green, 2011) be consulted – see the section on Further 
Reading.
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20.2  Defining objectives

The first stage is to define the study objectives in a formal written protocol. Is the review 
examining results relating to a particular class of drugs? – If so, there must be a precise 
definition of what pharmaceutical compounds will be included. What patient groups 
will be eligible for inclusion – for example, will studies of children and adults both be 
relevant? Will only randomised studies be included, or are other experimental designs 
permitted – for treatment efficacy comparisons, many researchers only accept evidence 
from randomised controlled trials. Will studies be excluded if compliance is below a 
specified threshold? Will studies be excluded if they used instruments that are unvali-
dated or inadequately validated? Will foreign language publications be accepted? If at 
all possible, they should be; but there may be practical constraints that make it unfea-
sible to obtain all translations. At this stage, it is also useful to search the Cochrane 
Library – maybe someone else has already carried out a similar systematic review!

20.3  Defining outcomes

It is necessary to define the outcome that is to be compared across studies. For some 
dimensions this is easier than others, and for some PROs it may be tricky. For example, 
when reviewing ‘quality of life’ in a meta‐analysis, should studies that present data on 
self‐reported ‘overall health’ but not ‘overall quality of life’ be accepted? If pain is the 
main outcome, are studies useful if they only report the percentage of patients with 
pain, or should an eligibility criterion be that a valid score be available for severity of 
pain? Formal definitions and rules should be recorded in the meta‐analysis protocol, 
defining the outcomes that must be available for the analyses.

Another aspect needing definition is the specification of the assessment time points. 
Individual trials may report the PROs at different time points, or may provide only 
summary measures such as AUC or scores from longitudinal analysis. It is unlikely 
that there will be consistency of reporting across trials. It is necessary to define the tar-
get time point – such as at the end of treatment or a specified time after randomisation. 
It is also necessary to define the maximum eligible window. For example, if the target 
time point is two months after randomisation, will trials be accepted if they provide 
only a six‐week assessment – or a six‐month assessment?

Some reviews focus on change from baseline; that is, whether patients have improved 
or deteriorated from the intervention. In this case, how many studies present the mean 
change scores or provide information enabling the calculation of change scores?

20.4  Literature searching

A major part of any systematic review or meta‐analysis is the literature search, to make 
sure that all available studies have been identified and included. It is the literature 
search that takes the greatest time when carrying out a meta‐analysis. The Cochrane 



	 20.5 A ssessing quality	 529

Collaboration offers workshops and training sessions on this topic. The quality of the 
literature search is largely what distinguishes a strong meta‐analysis from one that is 
weak and unpublishable. Searching should address published and unpublished litera-
ture, uncompleted studies and studies still in progress.

A starting point is to search bibliographic databases such as Medline and Embase, 
and obtain abstracts of all potentially relevant articles. A key point at this stage is to 
ensure that a full range of relevant terms is included in the searching strategy; biblio-
graphic searching is a science in itself.

Citations are another source of published reports. After a relevant publication has 
been found, its list of references may be scrutinised for backward citations. In most 
publications, clues about the value of the citations may be obtained from the introduc-
tion and the discussion sections. More recent papers that refer back to publications 
already found may also provide useful information, either in the form of data or ref-
erences to yet other studies. These forward citations may be identified using citation 
indexes, such as the Social Sciences Citation Index.

The above searching process addresses completed, published studies. Ongoing stud-
ies can often be identified by accessing registers of clinical trials. These registers may be 
maintained nationally or internationally, and many of them cover trials run by the pharma-
ceutical industry as well as publicly funded ones. Example registers are the International 
Standard Randomized Controlled Trial Number Register (<http://www.controlled‐trials 
.com/isrctn/> and the US National Institutes of Health register (<http://www.clinicaltrials 
.gov/>); many of the national registers are amalgamated into a central database at the 
World Health Organization (<http://apps.who.int/trialsearch/>). Some registries are main-
tained by funding institutions or by groups with interest in particular disease areas, such 
as the US National Cancer Institute register of clinical trials. In 2004, the International 
Committee of Medical Journal Editors (ICMJE) gave notice that it will consider a clinical 
trial for publication only if it has been registered in an appropriate registry.

Usually, multiple sources will be searched, and records should be kept of the number 
of new studies identified from each additional database. It can be anticipated that fewer 
and fewer new studies will be retrieved from successive searches, and this may be used in 
reports as part of the evidence regarding the thoroughness of the searching process.

In summary, searching (and the subsequent extraction of data) is a complex and 
time‐consuming task.

20.5  Assessing quality

Full information, such as copies of publications, should be obtained for each poten-
tially usable study. These can be graded for eligibility and overall quality. It is usually 
recommended that there should be multiple reviewers, with each study being reviewed 
by more than one person. This is partly to spread the workload, but mainly to ensure 
that the ratings are consistent and of a reliable standard. It is therefore important that 
there should be a formal pre‐specified procedure both for making the ratings and for 
resolving rater disagreements.

http://www.controlled%E2%80%90trials.com/isrctn/
http://www.controlled%E2%80%90trials.com/isrctn/
http://www.clinicaltrials.gov/
http://www.clinicaltrials.gov/
http://apps.who.int/trialsearch/
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The principal concern is that the reviewed studies should be free from any plausible 
bias that might weaken confidence in the results. The Cochrane Collaboration suggests 
that the simplest approach is a three‐level grading into:

●● Low risk of bias	 All quality criteria met,

●● Moderate risk of bias	 One or more quality criteria only partly met,

●● High risk of bias	 One or more quality criteria not met.

After assessing the quality of the studies, a numeric rating can be assigned. This 
can later be used when calculating the mean effect across studies, such that the poorer 
quality studies will have lower weight and contribute less to the calculated mean effect.

The main sources of bias that apply to studies of interventions are described indi-
vidually. The Cochrane Handbook for Systematic Reviews (Higgins and Green, 2011) 
covers these issues in greater depth, and discusses additional sources of bias; reporting 
bias, for example, includes not only outcome reporting bias but several other subhead-
ings, too.

Selection bias

This is one of the most important factors affecting study quality. The prevention of 
selection bias is the main objective of randomisation in clinical trials. When assess-
ing a potential participant’s eligibility for a trial, both those who are recruiting the 
participants and the participants themselves should remain unaware of the interven-
tion that will be assigned; the assignment is only disclosed after the eligibility has 
been confirmed and the participant recruited to the trial. Once revealed, neither the 
assignment nor the eligibility decision can be altered. It has been shown repeatedly for 
example by Schulz et al., 1995) that allocation concealment of the randomised alloca-
tion is an essential component of quality, and that trials with poor concealment tend to 
show larger – and biased – treatment effects. The CONSORT statement (Schulz et al., 
2010), adopted by many medical journals, ensures that all publications about clinical 
trials now record full details of the randomisation procedure. This information is less 
frequently available for earlier publications, and one must assume that a lack of pub-
lished information implies that randomisation was not used, or that it may have been 
of a poor standard. For example, in some early trials the randomisation may have been 
effected by a list of successive allocations that was printed pre‐study, with the clini-
cians recruiting patients to the trial possibly knowing in advance what the next ‘ran-
dom’ allocation would be. This practice, formerly common, means that the allocation 
was not concealed and that the randomisation is fundamentally flawed. Randomisation 
should ideally be by an independent central office that registers the patients’ eligibility 
details and then provides the allocation through an automated process.

In general, non‐randomised studies provide substantially weaker evidence than ran-
domised clinical trials.
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Performance bias

Performance bias refers to systematic differences in the care provided to the partici-
pants in the comparison groups. In a clinical trial the only systematic difference should 
be the intervention under investigation. To protect against unintended differences, 
those providing and receiving care can be blinded so that they do not know the group 
to which the recipients of care have been allocated. As part of the blinding process, 
placebos should be used whenever appropriate. Schulz et al. (1995) show that a lack of 
blinding is a major source of bias.

Of course, not all interventions can be blinded. Some treatments have such obvious 
side effects that it immediately becomes apparent which has been applied to which 
patient. But on the other hand, even some surgical trials have used ‘mock surgery’ for 
the control group: the patient responses to physically ineffective mock surgery can 
be so strongly positive that these trials have been deemed ethical. This highlights the 
importance of including assessment of blinding as a part of quality. Lack of blinding is 
also associated with detection bias.

Detection bias

Detection bias refers to systematic differences between the comparison groups in 
outcome assessment. Trials that blind the people who will assess outcomes to the 
intervention allocation should logically be less likely to be biased than trials that do 
not. Blinding of outcome assessment may be particularly important in research with 
subjective outcome measures, such as pain (for example Schulz et al., 1995) or other 
PROs.

Outcome reporting bias

Outcome reporting bias arises from the selective reporting of some outcomes but 
not others, depending on the nature and direction of the results; it is also known 
as selective reporting bias. In many studies, a range of PROs are assessed but fre-
quently not all are reported. If it is intended to present information about only a sub-
set of PROs, that should be clearly stated in the study protocol prior to commencing 
the study. Once a study has started, the subsequent choice of outcomes that are 
reported can be influenced by the results. This can potentially make the published  
results misleading.

Compliance and attrition bias

Poor compliance and missing data (as well as other forms of attrition, including 
patient withdrawal and death) are a major problem in QoL studies. This particularly 
applies to chronic diseases and cancer, where some clinical trials report that 50% 
or fewer of the anticipated questionnaires (i.e. from living patients) were received. 
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The concern is that there may be systematic differences between the comparison 
groups in the loss of patients from the study. Many investigators have found that 
poor compliance, leading to incomplete outcome data, is frequently associated with 
less well patients who have a poorer QoL, and so trials with high levels of missing 
data are susceptible to bias and are of low validity; they should be assigned a low 
quality rating.

The approach to handling losses also has great potential for biasing the results, as 
we have seen in Chapter 15. The problem is further clouded in that some studies fail to 
publish the extent of the missing data, or do not report the methods of handling miss-
ing values. Increasingly, imputation is used when analysing trials with missing data. 
If published reports of trials are used for the meta‐analysis there may be little control 
over whether or not imputed results are used – one is at the mercy of the publications 
– but if individual patient data are available there is more flexibility over the decision 
about whether to impute or not.

In Section 10.3 we discussed the five‐and‐twenty rule that was mentioned by Schulz 
and Grimes (2002). This suggests that “less than 5% loss is thought probably to lead 
to little bias, while greater than 20% loss potentially poses serious threats to valid-
ity.” Perhaps this is a starting point for assessing attrition bias, although it might be 
found that these levels are too harsh for QoL outcomes and result in loss of too many 
trials. Although there is no consensus as to what is an acceptable level of compliance, 
consideration should be given to excluding from the meta‐analysis all trials that fall 
below some pre‐specified minimum threshold (although they may be retained in the 
systematic review).

Fortunately, in many cases the QoL meta‐analyses may be carried out for diseases in 
which improvement of QoL is the principal objective of treatment, for example relief 
of back pain or treatment of depression. Then compliance with assessment is likely 
to be high. One such example is palliative care, where QoL is by definition the aim 
of management and therapy. However, two particular problems arise in this setting. 
Firstly, when patients deteriorate, it may be regarded as unethical to risk further stress 
by asking them to complete questionnaires, and many patients also refuse during their 
final months. Secondly, a substantial proportion of patients may die before the target 
time point for assessment. This attrition can raise additional problems of interpreta-
tion. At the very least, it is essential that the meta‐analysis reports the levels of attrition 
observed in the various trials.

Validated instruments

Another indicator of quality could be the use of a validated instrument with established high 
sensitivity. However, this and similar criteria are less likely to be important factors unless 
they might cause bias in the trial’s results. More often, the use of an inferior instrument 
results in lower precision or sensitivity, but not bias. Despite this, it may be useful to include 
such criteria in a scoring scheme. Then, trials that use the most sensitive instruments will 
receive the greatest weight when generating the across‐study summary statistics.
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20.6  Summarising results

Meta‐analyses are relatively straightforward if all included studies use the same out-
come measure. Then the treatment difference observed in each study can be shown 
with its corresponding confidence interval (CI). We shall describe how the studies 
can then be combined to obtain an overall evaluation of treatment effect. Figure 20.1 
shows an example of a meta‐analysis summary, taken from the Cochrane Library. This 
example will be followed throughout this chapter.

Example from the literature

Linde et al. (2005) reviewed the use of St John’s wort for treating depression and 
identified 26 placebo‐controlled trials as suitable for inclusion. Of these, 14 tri-
als reported depression at six to eight weeks using the Hamilton Rating Scale for 
Depression (HRSD), which is a 17‐item interviewer‐administered scale. Figure 20.1 
shows the results for 10 studies that treated major depression, and a further four 
studies that were not restricted to major depression. Each study is listed, with its 
sample size and mean scale score in the two treatment groups. The mean treatment 
differences are plotted as blocks, with horizontal lines indicating the 95% CI values.

The interpretation of these results is discussed later in this chapter.

Figure 20.1  Forest plot of St John’s Wort for depression. The solid squares denote individual 
mean effects and the horizontal lines represent 95% CIs. The diamonds denote pooled 
weighted mean differences. Note: See Linde et al., 2005 for detailed references of studies 
cited. Source: Linde et al., 2005, comparison 02, outcome 04. Reproduced with permission 
of John Wiley & Sons, Ltd.

Review: St John’s Wort for depression
Comparison: 02 Hypericum mono-preparations vs. placebo.
Outcome: 04 Mean HAMD (Hamilton Rating Scale for Depression) after 6 to 8 weeks of treatment.

Study Hypericum
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Test for overall effect z = 4.67 p<0.00001
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Test for overall effect z = 8.42 p<0.00001
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20.7  Measures of treatment effect

In practice, it is more likely that a variety of instruments will have been used. Clearly, 
it would not make sense to combine and average the raw mean scores from, say, a 
four‐point numerical scale and a 100‐point visual analogue scale (VAS). Thus the main 
challenge in QoL meta‐analyses is to place all studies on a common metric. The out-
comes may have been reported on completely different scales, such as perhaps numeri-
cal rating scales with ten or more response options, VAS ranging from 0 to 100, short 
ordered‐categorical scales with four‐ or five‐point response levels, and so on. Symp-
toms and dimensions of QoL may also be presented as dichotomous (binary) out-
comes. Thus, for example, pain may be reported as absent/present; it might be graded 
on a short categorical response scale (e.g. ‘no pain’, ‘a little’, ‘quite a bit’, ‘very much’, 
‘unbearable’); it might be rated on a 10‐cm VAS; or it might be assessed using a multi‐
item severity scale.

For the discussion that follows, we shall assume that a decision has been made to 
include studies that report any of these forms of assessment, and we consider ways to 
combine dichotomous, ordered categorical and continuous outcome measures. In prac-
tice, however, some investigators planning meta‐analyses might specify that dichoto-
mous responses are too imprecise and that only studies reporting multilevel categories 
or continuous outcomes will be included.

The statistical approach to the problem is to make use of standardised effect sizes, 
as described in Chapter 18, for each outcome of interest. The effect sizes can be 
thought of as estimates of the true effect of the intervention being studied. The uncer-
tainty surrounding each effect size can be represented by calculating its SE, and 
constructing a 95% CI for each study’s effect size. Table 20.1 presents a variety of 
effect‐size measures, with their SEs, for studies with continuous measures or binary 
outcomes.

Continuous outcomes

For continuous data, provided the same instrument was used in all studies, the raw 
mean difference (MD) can be used as the measure of effect size. When different scales 
are used in the studies – as we are assuming will commonly be the case in QoL meta‐
analyses – the method of standardised mean difference (SMD) may instead be used, 
as shown in Table 20.1. The SMD represents treatment effects as the number of SDs 
between the treatments. To calculate the SMDs and their SEs, we ideally require an 
estimate of the mean treatment effect in each group, the corresponding SD and the 
number of patients. This can of course be calculated if individual patient data have 
been collected, but when extracting data from published sources not all of this infor-
mation may be available explicitly. The Cochrane Handbook for Systematic Reviews 
(Higgins and Green, 2011) explains methods for imputing the necessary values from 
other information – for example if t‐statistics, exact p‐values or CIs are presented, the 
SE and SD can usually be estimated.



535

Ta
bl

e 
20

.1
 

E
qu

at
io

ns
 f

or
 e

ff
ec

t 
si

ze
s 

an
d 

th
ei

r 
SE

s.
 F

or
 c

on
tin

uo
us

 o
ut

co
m

es
, 

th
e 

m
ea

ns
, 

st
an

da
rd

 d
ev

ia
tio

ns
 a

nd
 s

am
pl

e 
si

ze
s 

of
 t

he
 c

on
tr

ol
 g

ro
up

 a
re

  
x C

, 
SD

C2
, 

n C
, a

nd
 fo

r t
he

 e
xp

er
im

en
ta

l t
he

ra
py

 th
ey

 a
re

 x
E

, 
SD

E2
, 

n E
. F

or
 b

in
ar

y 
ou

tc
om

es
, a

 a
nd

 b
 a

re
 th

e 
nu

m
be

rs
 in

 th
e 

ex
pe

ri
m

en
ta

l g
ro

up
 re

sp
on

di
ng

 
ne

ga
tiv

el
y 

an
d 

po
si

tiv
el

y;
 c

 a
nd

 d
 a

re
 th

e 
co

rr
es

po
nd

in
g 

nu
m

be
rs

 in
 th

e 
co

nt
ro

l g
ro

up

C
on

tin
uo

us
 o

ut
co

m
es

, i
nd

ep
en

de
nt

 g
ro

up
s

E
ff

ec
t s

iz
e

St
an

da
rd

 e
rr

or
 o

f 
ef

fe
ct

 s
iz

e

St
an

da
rd

iz
ed

 m
ea

n 
di

ff
er

en
ce

 (
SM

D
) 

(a
ls

o 
ca

lle
d 

C
oh

en
’s

 d
)

SM
D

x
x

SD
t

n
n

n
n

C
E

P
oo

le
d

C
E

C
E

=
−

=
+ ×

w
he

re

SD
n

SD
n

SD

n
n

P
oo

le
d

C
C

E
E

C
E

=
−

+
−

−
+

−
(

)
(

)

(
)

(
)

1
1

1
1

2
2

SE
n

n

n
n

SM
D

n
n

2(
2)

E
M

D
C

E

C
E

C
E

2

=
+ ×

+
+

−

G
la

ss
’s

 Δ
∆

=
−

x
x

SDC
E

C

SE
n

n

n
n

n
2(

1)
C

E

C
E

C

2

=
+ ×

+
∆

−
∆

H
ed

ge
’s

 a
dj

us
te

d 
g

g
SM

D
n

n
C

E

=
×

−
+

−
 

 
1

3

4
9

(
)

SE
n

n

n
n

g

n
n

2(
3.

94
)

E
C

E

C
E

C
E2

=
+ ×

+
+

−
C

on
ti

nu
ou

s 
ou

tc
om

es
, p

ai
re

d 
da

ta

St
an

da
rd

iz
ed

 r
es

po
ns

e 
m

ea
n 

(S
R

M
Pa

ir
ed

)
SR

M
x

x

SD
t

n
P

ai
re

d
T

im
e

T
im

e

D
iff

er
en

ce

=
−

=
2

1
1

w
he

re

SD
SD

of
di

ffe
re

nc
es

D
iff

er
en

ce
=

SE
SR

M
n

SR
M n

P
ai

re
d

P
ai

re
d

(
)

(
)

=
+

−
1

2
1

2

E
ff

ec
t s

iz
e 

(E
S Pa

ir
ed

) 
(n

ot
 r

ec
om

m
en

de
d)

E
S

x
x

SD
P

ai
re

d
T

im
e

T
im

e

T
im

e

=
−

2
1

1

SE
E

S
n

E
S n

(
)

2(
1

)

2(
1)

P
ai

re
d

P
ai

re
d

2
ρ

=
−

+
−

,

w
he

re
 ρ

 is
 th

e 
co

rr
el

at
io

n 
of

 X
Ti

m
e1

 w
ith

 X
Ti

m
e2

B
in

ar
y 

ou
tc

om
es

L
og

(O
dd

s‐
R

at
io

)
lo

g(
)

lo
g

O
R

a
d

b
c

=
× ×

 
 

E
S 

= 
π

3
/

 ×
 lo

g(
O

R
) 

= 
0.

55
13

 ×
 lo

g(
O

R
)

SE
O

R
a

b
c

d
lo

g(
)

{
}=

+
+

+
1

1
1

1

L
og

(R
el

at
iv

e 
R

is
k)

lo
g(

)
lo

g
/(

)

/(
)

R
R

a
a

b

c
c

d
=

+ +
 

  
SE

R
R

a
a

b
c

c
d

lo
g(

)
{

}=
−

+
+

−
+

1
1

1
1



536	 Meta‐analysis

In line with the policy of the Cochrane Reviews, we recommend the use of Hedges’ adjusted 
g, which is a version of the SMD that includes an adjustment for small sample bias. But we 
shall write ‘SMD’ as the generic label for this class of measures that also includes Glass’s Δ.

In principle, change scores (i.e. change in a PRO from baseline) can be treated exactly 
the same way as other continuous variables. The standardised response mean (SRM) is 
the paired‐data equivalent of the SMD. In practice, however, many published reports fail 
to supply the SD or SE of the change scores, and these can be difficult to estimate from 
the more commonly cited SD of the baseline or final score because the SE of the change 
depends on the correlation between the two measurements. In such cases it may be pref-
erable to use the after‐treatment time point rather than the change score, because in ran-
domised clinical trials the baseline scores should on average be equal in the two groups.

Example from the literature

Plants from the family Zingiberaceae, which includes ginger, turmeric and 
galangal, have for centuries been used in traditional medicine and have been 
claimed to possess anti‐inflammatory and analgesic properties. Lakhan et al. 
(2015) carried out a literature search and identified eight randomized, double‐
blinded, placebo‐controlled trials that measured pain using visual analogue 
scales (VAS) and were eligible for a meta‐analysis. The authors present SMD 
values, noting that “The SMD is a useful statistical tool when studies all assess 
the same outcome but measure it in a variety of ways.”

Figure 20.2 shows their published forest plot. Lakhan et al. conclude from their 
meta‐analysis that Zingiberaceae extracts are clinically effective hypoalgesic 
agents with a better safety profile than non‐steroidal anti‐inflammatory drugs.

Figure 20.2  Forest plot comparing placebo control against extracts from the Zingiberaceae 
family of plants for treatment of chronic pain. Standardised mean differences (SMDs) are shown 
for each study, sorted by date of publication. (Based on Lakhan et al., 2015).
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Binary outcomes

Several effect‐size measures are commonly used for binary data, including the odds 
ratio (OR) or its logarithm, log(OR); relative risk (RR) or its logarithm log(RR); and 
risk difference. Each possesses certain advantages and disadvantages. Table 20.1 
shows log(OR) and log(RR). The RR represents the ratio of the risks of having the 
event of interest. The OR does not have such simple clinical interpretation, although it 
does approximate the relative risk when the event rate is low. However, a major advan-
tage of OR is its good statistical properties. We shall not consider the risk difference 
because, although it is probably the easiest effect‐size measure to interpret, it has the 
least desirable statistical properties and tends to give the least consistent results when 
the event rate is varied. When using the OR or RR, a value of one represents no differ-
ence between the study groups. However, it is common to take a logarithmic transfor-
mation of these values before conducting meta‐analysis, because the log‐transformed 
effect size is symmetrical about zero and therefore has better statistical properties. 
Log(OR) has the additional advantage that if it is multiplied by 3 0 5513π = .  it is then 
commensurate with SMD (Chinn, 2000), which provides one approach to combining 
binary and continuous outcomes (see Section 20.8).

Ordinal outcomes

For ordinal variables, the choice is between assuming they can be treated as if they 
were continuous variables, converting to binary data by introducing a cut‐point, or 
using more complex analytical methods (see later).

20.8  Combining studies

The previous section discussed how to summarise each study by calculating an effect 
size and corresponding SE of the effect size. The next stage is to combine these esti-
mated treatment effects to provide an overall average treatment effect.

Example from the literature

In a meta‐analysis of open mesh versus non‐mesh for groin hernia repair, one 
of the outcome measures was pain (Scott et al., 2001). The open mesh studies 
were separated into three groups: flat mesh (six studies), plug‐and‐mesh (two 
studies) and pre‐peritoneal mesh (one study). ‘Persisting pain’ was defined as 
groin, thigh or testicular pain at one year after the operation, or at the closest 
time point to one year provided it was more than three months post‐surgery. In 
Figure 20.3, the disparate ratings of pain have been presented as odds ratios 
(ORs) for the presence of persisting pain lasting longer than three months.

(Continued)
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For simplicity, in this chapter we shall only present the fixed‐effects approach. This 
assumes there is no heterogeneity between the study results; that is, we assume all 
studies are estimating a single true underlying effect. This is in contrast to the random‐
effects model, which incorporates an estimate of between‐study variation (heterogene-
ity) into the calculation of the common effect. This is explained in greater detail in 
Section 20.10.

Continuous outcomes

For continuous variables, or when continuous, binary and ordinal outcomes have 
been converted to a common metric that is assumed to be continuous, the simplest 
method of meta‐analysis is known as the inverse variance weighted or weighted 
mean difference (WMD) method. For this, the average of effect sizes is calculated, 
giving more ‘weight’ to estimates from larger studies. The weights are the inverse 
variances of the means from each study, that is 1/(SE)2. This means that studies with 
the least variability, usually the largest studies, will receive the highest weighting in 
determining the overall combined result. A 95% CI for the combined effect size can 

Review: Open Mesh versus non-Mesh for groin hemia repair
Comparison: 01 Open mesh versus open non-mesh
Outcome: 10 Pain persisting longer than three months

Study Mesh
n/N

Non-mesh
n/N

Peto odds ratio
95% Cl

Weight
(%)

Peto odds ratio
95% Cl

01 Flat mesh versus non-mesh
Bietigheim 1998

Copenhagen 1996

Lansing 1998

Ostersund (unpub)

Rome 1995×

Rotterdam 1996

Subtotal (95% Cl)
Total events: 50 (Mesh), 70 (Non-mesh)
Test for heterogeneity chi-square=15.41 df=4 p=0.004 F=74.0%
Test for overall effect z=2.15 p=0.03

02 Plug and mesh versus non-mesh
Berlin 1996

Gdansk 1997

Subtotal (95% Cl)
Total events: 6 (Mesh), 10 (Non-mesh)
Test for heterogeneity chi-square=0.10 df=1 p=0.75 F=0.0%
Test for overall effect z=1.43 p=0.2

Total (95% Cl)
Total events: 63 (Mesh), 84 (Non-mesh)
Test for heterogeneity chi-square = 18.86 df = 7 p = 0.009 F = 62.9%
Test for overall effect z = 2.09 p = 0.04

Subtotal (95% Cl)
Total events: 7 (Mesh), 4 (Non-mesh)
Test for heterogeneity: not applicable    
Test for overall effect z = 1.03 p = 0.3

03 preperitoneal mesh versus non-mesh
SCUR 1997
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Figure 20.3  Forest plot of pain severity following open mesh or non‐mesh groin hernia 
repairs. Source: Scott et al., 2001. Reproduced with permission of John Wiley & Sons, Ltd.
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then be calculated. This is usually much narrower than those for the individual study 
estimates.

If there are k studies to be combined, we can use the estimates of treatment 
effect (SMDs etc.) calculated as in Table 20.1. We represent the treatment effect of 
the jth study as Y

j
, where j varies from 1 to k. The standard errors of the Y

j
 are SE

j
, 

calculated from the final column of Table 20.1. Then the inverse variance weights, 
W

j
, are

	 W
SEj

j

= 1
2

. 	 (20.1)

The weighted mean effect for, in this case, the maximum likelihood estimate, fixed‐
effects model, is

	
W Y

W
,

j j
j

j
j

MLE

∑
∑

θ = 	 (20.2)

with standard error

	 SE
W

( )
1

.
j

j

MLE ∑
θ = 	 (20.3)

Example from the literature

In Figure 20.1, all studies used the same outcome and so raw MDs were used, 
and combined as weighted mean differences. Linde et al. (2005) formed two 
subgroups, major depression and other studies, and summarise the studies 
using WMDs. They also show the overall effect across all studies. These WMD 
summaries are shown as diamonds. The weights that were applied to each study 
are listed.

Using a fixed‐effects model, Linde et al. show that the two subtotals and the 
overall effect are all statistically highly significant in favour of extracts from St 
John’s wort. The authors concluded that extracts of St John’s wort seem more 
effective than placebo and similarly effective as standard antidepressants for 
treating mild to moderate depressive symptoms, although they also note that 
several recent placebo‐controlled trials suggest that the tested Hypericum 
extracts have minimal beneficial effects, and that as the preparations available 
on the market might vary considerably in their pharmaceutical quality, the results 
of their review apply only to the products tested in the included studies.
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Binary outcomes

Although the inverse variance method may also be applied when combining binary data, 
it is more common to use one of two similar methods instead. The first of these is the 
Mantel–Haenszel method. Research has shown that this approach is especially benefi-
cial when trials are small or when there are only a small number of trials in the review. 
The other method, known as Peto’s odds ratio, involves using (O – E)/V as an estimate 
of the OR, where O and E are the observed and expected events in the treatment group 
and V is the variance of O – E. This estimate has excellent statistical properties and is 
combined using the inverse variance weighted method. Peto’s method is particularly 
useful when some trials have no events or when events are rare, but does not perform 
so well when treatment effects are large. Full details are given in Egger et al. (2001).

Most QoL meta‐analyses include some studies with continuous outcomes, as described 
under mixed outcomes. When all outcomes are binary, the Mantel–Haenszel or Peto meth-
ods may be used, as described in more detail in the references under Further Reading.

Example from the literature

In Figure 20.3, Scott et al. (2001) used Peto’s estimates of the ORs to combine 
the results from different studies. The overall treatment comparison, indicated 
by the bottom diamond in Figure 20.3, suggests that persisting pain was less 
frequent after mesh repair than after non‐mesh repair. However, the authors 
note that this result was dependent on one trial, and that data were not avail-
able for an additional 11 trials.

Ordinal outcomes

For ordinal variables, which are commonly encountered in QoL assessments, there 
are two possible approaches. If the ordinal scale data appear to be approximately Nor-
mally distributed, or if the analyses reported by the investigators suggest that para-
metric methods and a Normal approximation are appropriate, the outcome measures 
can be treated as continuous variables. The second approach is to concatenate the data 
into two categories that best represent the contrasting states of interest, and to treat the 
resultant outcome measure as binary.

Mixed outcomes

Often in QoL meta‐analyses there will be a combination of dichotomous and continuous 
data (and also possibly ordinal scales). It may be useful to present separate tables for the 
continuous data and dichotomous data, while also combining all data for a statistical 
analysis. There are statistical approaches available that will re‐express ORs as SMDs. 
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This allows the dichotomous and continuous data to be pooled together, subject to the 
assumption that the underlying distribution of the dichotomous measurements follows 
a logistic distribution (roughly similar in shape to the normal distribution). Then, as 
noted earlier, the ORs can be re‐expressed as an SMD according to the simple formula 
SMD OR= ×0 5513. log( ). Alternatively, SMDs can be converted to log(OR). Similarly, 
the SE of the log(OR) can be converted to the SE of an SMD by multiplying by 0.5513. 
After this, an inverse variance weighted analysis can be carried out as usual.

The simplest approach, as in the example of Figure 20.3, is to convert the con-
tinuous outcomes to dichotomous ones – in the given example, these are presence or 
absence of persisting pain.

Individual patient data

Traditional methods for meta‐analysis synthesise aggregate study level data obtained 
from study publications. An alternative but increasingly popular approach is meta‐
analysis of individual patient data (IPD), in which the raw individual level data for 
each study are obtained and used for synthesis. Obtaining IPD is inevitably labour 
intensive, and usually involves contacting the principal investigator of each study, con-
verting the separate datasets into a common format and merging them to provide a 
uniform database. Various approaches to analysis are possible, including allowance for 
baseline characteristics and other prognostic factors (Riley et al., 2010; Simmonds 
et al., 2005). Frequently the results will differ from those based on published aggregate 
data, in which case IPD meta‐analysis is more convincing and to be preferred.

Example from the literature

McCormack et al. (2004) reported that there have been over 40 randomised trials 
exploring the relative merits and potential risks of laparoscopic surgery for the 
repair of inguinal hernia. The outcomes were hernia recurrence and persisting 
pain. The authors carried out a meta‐analysis using IPD, and compared this with 
an earlier analysis based on aggregate published data to determine whether there 
were statistically significant changes in estimates of either of the two outcomes.

The results for hernia recurrence changed little. However, the IPD update 
led to divergent conclusions for persisting pain. The published data implied 
a statistically significant benefit in favour of open repair, whereas the revised 
result implied a statistically significant benefit in favour of laparoscopic repair 
(p < 0.001). Methodological quality did not account for this difference. Although 
the IPD study was resource intensive and costly, it greatly increased the amount 
of data available for meta‐analysis by recovering data that was not reported in 
the trial publications. This led to greater precision in some estimates of effective-
ness for one primary outcome, hernia recurrence, and yielded great benefits for 
persisting pain, an outcome that was rarely included in published reports.
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Longitudinal data

QoL and PROs are frequently reported as longitudinal data. Most meta‐analyses adopt a 
simple cross‐sectional approach, and frequently this is the only feasible way when using 
aggregate data from published clinical trials. Cross‐sectional analyses at multiple time 
points, however, fail to take into account the correlations between successive observa-
tions, and where IPD is available alternative analyses are possible (Jones et al., 2009).

20.9  Forest plot

The standard way to display the results of a meta‐analysis is a forest plot, as has been 
shown in the figures. The confidence limits of the estimates of effect size can be cal-
culated in the usual way, using their SEs, both for individual study effect sizes (Y

j
) and 

the weighted mean effect size (θ). For example, the 95% CI of θ is

	 SE SE1.96 ( ) to 1.96 ( ).θ θ θ θ− × + × 	 (20.4)

The results from a meta‐analysis are then displayed as point estimates for the sepa-
rate studies and also for the overall effect, together with their associated CIs. Figure 
20.1 and Figure 20.3 show forest plots produced using the Cochrane Collaboration’s 
Review Manager software, commonly known as ‘RevMan’ (Review Manager, 2011). 
While this provides the most comprehensive information in a standardised format, one 
commonly sees slightly simpler styles of representation in journal publications, such 
as that of Figure 20.2.

As we have seen, each of the included studies is shown on a separate line, together 
with the mean treatment effect, the corresponding CI and the inverse‐variance weight 
applied to the trial. These results are also shown graphically as a block whose area 
indicates the weight assigned to that study in the meta‐analysis, with a horizontal line 
depicting the CI (usually with a 95% level of confidence). The area of the block and the 
CI convey similar information, but both make different contributions to the graphic. 
The CI depicts the range of treatment effects compatible with the study’s result and 
indicates whether each was individually statistically significant. The size of the block 
draws the eye towards the studies with larger weight (narrower CIs), which dominate 
the calculation of the pooled result. The pooled result is also shown, with a diamond 
indicating the overall estimate and with the overall CI.

20.10  Heterogeneity

A further complication in meta‐analysis is the issue of heterogeneity. All the methods 
mentioned so far have been fixed‐effect methods and make the assumption that the true 
effect sizes for each study are the same (homogeneity); in other words, it is assumed 
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that if all studies enrolled huge numbers of patients they would all have the same effect 
size. In terms of forest plots, homogeneity implies that the CIs of the studies should be 
largely overlapping. Frequently, a visual inspection of the forest plots will suffice to 
confirm homogeneity or reveal heterogeneity.

Homogeneity may not be a reasonable assumption, especially when studies have 
varying entry criteria, for example in age or severity of disease. Another frequent cause 
of heterogeneity is that if studies apply treatments using varying dosage levels there 
may be corresponding variations in the response rates. In such cases, the association 
between the presumed factors (age, disease severity or dosage) and the reported indi-
vidual‐study effect sizes can be explored. However, a more insidious cause of hetero-
geneity may be publication bias, as discussed in Section 20.11.

In addition to visual checks, homogeneity between studies should also be assessed with 
a statistical test, although this may lack power if there are few studies. When significant 
heterogeneity is identified, there are a number of options available. One is to use the fixed‐
effect method possibly with exploration of the reasons for the heterogeneity; an alternative 
is to carry out a systematic review without a meta‐analysis; another option is to consider 
a random‐effects model instead. However, if the cause of heterogeneity is thought to be 
publication bias, the results of the meta‐analysis may be difficult to interpret.

Random‐effects methods do not assume the same underlying effect size for each 
study, but do allow random study‐to‐study variability. Although often the results from 
both random‐ and fixed‐effects models may be similar, in practice the random‐effects 
method will tend to give more weight to smaller studies and result in wider CIs than 
the fixed‐effect method. There is no consensus as to which is the best approach to use 
when heterogeneity is present.

Heterogeneity may be explored by calculating the statistic

	 Q W Y .j j
j

MLE

2∑ θ( )= × − 	 (20.5)

There is statistically significant heterogeneity if Q exceeds the value from a χ2 dis-
tribution with k – 1 degrees of freedom (Higgins and Thompson, 2002).

The level of inconsistency may be measured using the following statistic, which 
represents the percentage of total variation that is due to heterogeneity as opposed to 
sampling error; a value greater than 50% indicates substantial heterogeneity:

	 I
Q k

Q
2 1

100= − − ×( )
%. 	 (20.6)

Examples from the literature

The forest plot in Figure 20.1 also provides the Q‐statistics test for heterogene-
ity chi‐square. There was strong evidence of heterogeneity in both the analysis 
of the 10 studies ‘restricted to major depression’ and the overall comparison of 
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20.11  Publication bias and funnel plots

Publication bias is a well‐known problem in the reporting of clinical trials. Journals are 
more likely to publish studies that obtain ‘interesting’ positive results. This is especially 
the case if the studies are small, when those without such positive findings may fail to 
be published. In contrast, large and well‐conducted randomised clinical trials are more 
likely to be published, irrespective of their conclusions. Thus one way to explore whether 
the review might have been prejudiced through publication bias is to draw a funnel plot, 
in which the treatment effect observed in each study (x‐axis) is plotted against a measure 
of the study’s sample size (y‐axis). Since the estimates from smaller studies are less pre-
cise (larger SE and hence wider CI), we expect greater scatter at the bottom of the plot. In 
the absence of any bias, the plot should resemble a symmetrical inverted funnel.

all studies. The figure also reports the I2 statistics of 83.0% and 79.4% which 
both indicate substantial heterogeneity.

Linde et al. (2005) comment that their previous reviews had found that 
smaller trials tended to report larger treatment effects, which could be due to 
publication bias or bias introduced by lower methodological quality of smaller 
trials. As a consequence, they had chosen to use a fixed‐effects model, as this 
gives more weight to larger trials. They also explored the use of a random‐
effects regression models.

Lakhan et al. (2015), when assessing the role of Zingiberaceae extracts for chronic 
pain as illustrated in, found that heterogeneity between studies was very high 
(I2 = 87.5%). They also speculate that “Earlier studies tended to use lower doses, 
which may explain the tendency for more recent studies to have larger effect sizes.” 
Thus they used the more conservative random‐effects model as “This was necessary 
because of the heterogeneity of effects in the included studies.”

The hernia meta‐analysis of Scott et al. (2001) shown in Figure 20.3 also 
displays significant heterogeneity, and as a consequence those authors decided 
to use a random‐effects model.

Example from the literature

Linde et al. (2005) show a funnel plot of the 23 placebo‐controlled trials that 
reported information on the number of responders according to the HRSD (Fig-
ure 20.4). The larger studies have a responder rate close to 1, indicating zero 
effect, while there is evident asymmetry for the smaller studies, which tend to 
lie to the right of the larger studies. This substantial asymmetry was reflected 
by a highly significant p‐value (< 0.0001).
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20.12  Conclusions

Now that an increasing number of clinical trials include QoL endpoints, we can expect 
to see a corresponding increase in the number of meta‐analyses of such outcomes that 
are carried out and published. Although meta‐analysis for QoL may seem to be, and in 
some ways is, more complicated than analyses of other endpoints, there are no funda-
mental reasons why it cannot be carried out in exactly the same way.

This chapter has discussed and illustrated the particular issues involved in carrying 
out meta‐analyses of QoL endpoints, illustrating some specific problems that arise in 

Despite this, after carrying out many additional analyses, the authors cir-
cumspectly conclude: “In summary, we believe that the heterogeneous find-
ings of placebo‐controlled trials of Hypericum extracts and the clear funnel 
plot asymmetry found in our analyses are partly due to an overestimation of 
effects in smaller, older studies, and partly due to variable efficacy of Hypericum 
extracts in different patient populations, while non‐publication of negative 
studies (publication bias) does not seem to play a major role.”

Hence they tempered the conclusions of their meta‐analysis with the res-
ervation: “Current evidence regarding Hypericum extracts is inconsistent and 
confusing.”
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Figure 20.4  Funnel plot of 23 placebo‐controlled trials that reported information on the 
number of responders according to the Hamilton Rating Scale for Depression. Source: Linde 
et al., 2005, Figure 1. Reproduced with permission of John Wiley & Sons, Ltd.
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this setting and showing how they may be resolved. However, it is also important to 
emphasise that carrying out a systematic review is a major exercise that calls for appre-
ciable investment of time and resources.

20.13  Further reading

The first port of call for further information should be the Cochrane Collaboration 
(Website: <http://www.cochrane.org/>). In particular, the Cochrane Handbook for 
Systematic Reviews (Higgins and Green, 2011) is available for electronic access 
(<http://www.cochrane‐handbook.org/>). This provides extensive information about 
all aspects of systematic reviews and meta‐analyses. There are also a number of useful 
books that cover the general issues of systematic reviews and meta‐analysis, including 
Egger et al. (2001), Hedges and Olkin (1985) and Borenstein et al. (2009).

The Cochrane Collaboration’s Review Manager software, known as ‘RevMan’, is 
available free of charge for academic use or for preparing Cochrane Reviews (Review 
Manager, 2011), and facilities for forest plots and meta‐analysis are available in a 
growing number of statistical packages. Analogous to the CONSORT guidelines for 
reporting the results of clinical trials, the PRISMA Statement sets a standard for “Pre-
ferred Reporting Items for Systematic Reviews and Meta‐Analyses” and has been pub-
lished and endorsed by many leading medical journals (for example, Moher et al., 
2009). PRISMA consists of a 27‐item checklist and a four‐phase flow diagram, and is 
also available at <http://www.prisma‐statement.org/>.

http://www.cochrane.org/
http://www.cochrane%E2%80%90handbook.org/
http://www.prisma%E2%80%90statement.org/%00
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                                                          APPENDIX 2             
 Statistical tables
 Table T1: Normal distribution

 The value tabulated is the probability, α, that a random variable, Normally distributed

with mean zero and standard deviation one will be greater than z  or less than –z–  . The 

tabulated values are also known as two‐tailed or two‐sided p ‐values.     

0

α/2 α/2

−zα zα

Example:  The two‐tailed  p  ‐value corresponding to z = 1.96 is 0.05. 

z α z α z α z α
0.00 1.0000 0.30 0.7642 0.60 0.5485 0.90 0.3681

0.01 0.9920 0.31 0.7566 0.61 0.5419 0.91 0.3628

0.02 0.9840 0.32 0.7490 0.62 0.5353 0.92 0.3576

0.03 0.9761 0.33 0.7414 0.63 0.5287 0.93 0.3524

0.04 0.9681 0.34 0.7339 0.64 0.5222 0.94 0.3472

0.05 0.9601 0.35 0.7263 0.65 0.5157 0.95 0.3421

0.06 0.9522 0.36 0.7188 0.66 0.5093 0.96 0.3371

0.07 0.9442 0.37 0.7114 0.67 0.5029 0.97 0.3320

0.08 0.9362 0.38 0.7039 0.68 0.4965 0.98 0.3271

0.09 0.9283 0.39 0.6965 0.69 0.4902 0.99 0.3222

0.10 0.9203 0.40 0.6892 0.70 0.4839 1.00 0.3173

0.11 0.9124 0.41 0.6818 0.71 0.4777 1.01 0.3125

0.12 0.9045 0.42 0.6745 0.72 0.4715 1.02 0.3077

0.13 0.8966 0.43 0.6672 0.73 0.4654 1.03 0.3030

0.14 0.8887 0.44 0.6599 0.74 0.4593 1.04 0.2983

0.15 0.8808 0.45 0.6527 0.75 0.4533 1.05 0.2937

0.16 0.8729 0.46 0.6455 0.76 0.4473 1.06 0.2891

0.17 0.8650 0.47 0.6384 0.77 0.4413 1.07 0.2846

0.18 0.8572 0.48 0.6312 0.78 0.4354 1.08 0.2801

0.19 0.8493 0.49 0.6241 0.79 0.4295 1.09 0.2757
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z α z α z α z α
0.20 0.8415 0.50 0.6171 0.80 0.4237 1.10 0.2713

0.21 0.8337 0.51 0.6101 0.81 0.4179 1.11 0.2670

0.22 0.8259 0.52 0.6031 0.82 0.4122 1.12 0.2627

0.23 0.8181 0.53 0.5961 0.83 0.4065 1.13 0.2585

0.24 0.8103 0.54 0.5892 0.84 0.4009 1.14 0.2543

0.25 0.8026 0.55 0.5823 0.85 0.3953 1.15 0.2501

0.26 0.7949 0.56 0.5755 0.86 0.3898 1.16 0.2460

0.27 0.7872 0.57 0.5687 0.87 0.3843 1.17 0.2420

0.28 0.7795 0.58 0.5619 0.88 0.3789 1.18 0.2380

0.29 0.7718 0.59 0.5552 0.89 0.3735 1.19 0.2340

1.20 0.2301 1.70 0.0891 2.20 0.0278 2.70 0.0069

1.21 0.2263 1.71 0.0873 2.21 0.0271 2.71 0.0067

1.22 0.2225 1.72 0.0854 2.22 0.0264 2.72 0.0065

1.23 0.2187 1.73 0.0836 2.23 0.0257 2.73 0.0063

1.24 0.2150 1.74 0.0819 2.24 0.0251 2.74 0.0061

1.25 0.2113 1.75 0.0801 2.25 0.0244 2.75 0.0060

1.26 0.2077 1.76 0.0784 2.26 0.0238 2.76 0.0058

1.27 0.2041 1.77 0.0767 2.27 0.0232 2.77 0.0056

1.28 0.2005 1.78 0.0751 2.28 0.0226 2.78 0.0054

1.29 0.1971 1.79 0.0735 2.29 0.0220 2.79 0.0053

1.30 0.1936 1.80 0.0719 2.30 0.0214 2.80 0.0051

1.31 0.1902 1.81 0.0703 2.31 0.0209 2.81 0.0050

1.32 0.1868 1.82 0.0688 2.32 0.0203 2.82 0.0048

1.33 0.1835 1.83 0.0672 2.33 0.0198 2.83 0.0047

1.34 0.1802 1.84 0.0658 2.34 0.0193 2.84 0.0045

1.35 0.1770 1.85 0.0643 2.35 0.0188 2.85 0.0044

1.36 0.1738 1.86 0.0629 2.36 0.0183 2.86 0.0042

1.37 0.1707 1.87 0.0615 2.37 0.0178 2.87 0.0041

1.38 0.1676 1.88 0.0601 2.38 0.0173 2.88 0.0040

1.39 0.1645 1.89 0.0588 2.39 0.0168 2.89 0.0039

1.40 0.1615 1.90 0.0574 2.40 0.0164 2.90 0.0037

1.41 0.1585 1.91 0.0561 2.41 0.0160 2.91 0.0036

1.42 0.1556 1.92 0.0549 2.42 0.0155 2.92 0.0035

1.43 0.1527 1.93 0.0536 2.43 0.0151 2.93 0.0034

1.44 0.1499 1.94 0.0524 2.44 0.0147 2.94 0.0033

1.45 0.1471 1.95 0.0512 2.45 0.0143 2.95 0.0032

1.46 0.1443 1.96 0.0500 2.46 0.0139 2.96 0.0031

1.47 0.1416 1.97 0.0488 2.47 0.0135 2.97 0.0030

1.48 0.1389 1.98 0.0477 2.48 0.0131 2.98 0.0029

1.49 0.1362 1.99 0.0466 2.49 0.0128 2.99 0.0028

1.50 0.1336 2.00 0.0455 2.50 0.0124 3.00 0.00270

1.51 0.1310 2.01 0.0444 2.51 0.0121 3.10 0.00194

1.52 0.1285 2.02 0.0434 2.52 0.0117 3.20 0.00137

1.53 0.1260 2.03 0.0424 2.53 0.0114 3.30 0.00097

1.54 0.1236 2.04 0.0414 2.54 0.0111 3.40 0.00067

1.55 0.1211 2.05 0.0404 2.55 0.0108 3.50 0.00047

1.56 0.1188 2.06 0.0394 2.56 0.0105 3.60 0.00032

1.57 0.1164 2.07 0.0385 2.57 0.0102 3.70 0.00022

1.58 0.1141 2.08 0.0375 2.58 0.0099 3.80 0.00014

1.59 0.1118 2.09 0.0366 2.59 0.0096 3.90 0.00010

1.60 0.1096 2.10 0.0357 2.60 0.0093 4.00 0.00006

1.61 0.1074 2.11 0.0349 2.61 0.0091

1.62 0.1052 2.12 0.0340 2.62 0.0088

1.63 0.1031 2.13 0.0332 2.63 0.0085

1.64 0.1010 2.14 0.0324 2.64 0.0083

1.65 0.0989 2.15 0.0316 2.65 0.0080

1.66 0.0969 2.16 0.0308 2.66 0.0078

1.67 0.0949 2.17 0.0300 2.67 0.0076

1.68 0.0930 2.18 0.0293 2.68 0.0074

1.69 0.0910 2.19 0.0285 2.69 0.0071

Normal distribution: Continued



          STATISTICAL TABLES 581

 Table T2: Probability points of the Normal distribution

 The value z  in Table T1 is called the standard Normal deviate. This table tabulates the

value of z  corresponding to the probabilities, α, for one‐ and two‐sided p ‐values.

Example:  For an observed test statistic of  z =2.4, the two‐sided p ‐value is <0.02. 

1‐sided 2‐sided

α z α
0.0001 3.891 0.0002

0.0005 3.291 0.0010

0.0025 2.807 0.0050

0.0050 2.576 0.0100

0.0100 2.326 0.0200

0.0125 2.241 0.0250

0.0250 1.960 0.0500

0.0500 1.645 0.1000

0.1000 1.282 0.2000

0.1500 1.036 0.3000

0.2000 0.842 0.4000

0.2500 0.674 0.5000

0.3000 0.524 0.6000

0.3500 0.385 0.7000

0.4000 0.253 0.8000
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Example:  The value of  tα corresponding to a two‐tailed p ‐value of 0.05 is 1.960 if there are infi nite 

degrees of freedom, but this increases to 2.228 if there are only 10 degrees of freedom.    

 Table T3: Student’s t ‐distribution 

 The value tabulated is  tα , such that if X  is distributed as Student’s  X t ‐distribution with t df
degrees of freedom, then α is the probability that X  ≤ X −tα  or X ≥  tα .        

α

Degrees of 

freedom 0.2 0.1 0.05 0.04 0.03 0.02 0.01 0.001

df=ff 1 3.078 6.314 12.706 15.894 21.205 31.821 63.656 636.578

2 1.886 2.920 4.303 4.849 5.643 6.965 9.925 31.600

3 1.638 2.353 3.182 3.482 3.896 4.541 5.841 12.924

4 1.533 2.132 2.776 2.999 3.298 3.747 4.604 8.610

5 1.476 2.015 2.571 2.757 3.003 3.365 4.032 6.869

6 1.440 1.943 2.447 2.612 2.829 3.143 3.707 5.959

7 1.415 1.895 2.365 2.517 2.715 2.998 3.499 5.408

8 1.397 1.860 2.306 2.449 2.634 2.896 3.355 5.041

9 1.383 1.833 2.262 2.398 2.574 2.821 3.250 4.781

10 1.372 1.812 2.228 2.359 2.527 2.764 3.169 4.587

11 1.363 1.796 2.201 2.328 2.491 2.718 3.106 4.437

12 1.356 1.782 2.179 2.303 2.461 2.681 3.055 4.318

13 1.350 1.771 2.160 2.282 2.436 2.650 3.012 4.221

14 1.345 1.761 2.145 2.264 2.415 2.624 2.977 4.140

15 1.341 1.753 2.131 2.249 2.397 2.602 2.947 4.073

16 1.337 1.746 2.120 2.235 2.382 2.583 2.921 4.015

17 1.333 1.740 2.110 2.224 2.368 2.567 2.898 3.965

18 1.330 1.734 2.101 2.214 2.356 2.552 2.878 3.922

19 1.328 1.729 2.093 2.205 2.346 2.539 2.861 3.883

20 1.325 1.725 2.086 2.197 2.336 2.528 2.845 3.850

21 1.323 1.721 2.080 2.189 2.328 2.518 2.831 3.819

22 1.321 1.717 2.074 2.183 2.320 2.508 2.819 3.792

23 1.319 1.714 2.069 2.177 2.313 2.500 2.807 3.768

24 1.318 1.711 2.064 2.172 2.307 2.492 2.797 3.745

25 1.316 1.708 2.060 2.167 2.301 2.485 2.787 3.725

30 1.310 1.697 2.042 2.147 2.278 2.457 2.750 3.646

40 1.303 1.684 2.021 2.123 2.250 2.423 2.704 3.551

50 1.299 1.676 2.009 2.109 2.234 2.403 2.678 3.496

60 1.296 1.671 2.000 2.099 2.223 2.390 2.660 3.460

∞ 1.282 1.645 1.960 2.054 2.170 2.327 2.576 3.291

0

α/2 α/2

−tα −tα
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 Table T4: The χ2  distribution

 The value tabulated is χ2χχ  (α), such that if  X    is distributed as X χ2χχ   with  df  degrees of free-f
dom, then α is the probability that X ≥ χ2χχ  .        

Example:  If the observed test statistic,  X   , has a value of 7.1 with 1 degree of X

freedom, the p ‐value lies between 0.01 and 0.001.

α

Degrees of 

freedom 0.2 0.1 0.05 0.04 0.03 0.02 0.01 0.001

df=ff 1 1.64 2.71 3.84 4.22 4.71 5.41 6.63 10.83

2 3.22 4.61 5.99 6.44 7.01 7.82 9.21 13.82

3 4.64 6.25 7.81 8.31 8.95 9.84 11.34 16.27

4 5.99 7.78 9.49 10.03 10.71 11.67 13.28 18.47

5 7.29 9.24 11.07 11.64 12.37 13.39 15.09 20.51

6 8.56 10.64 12.59 13.20 13.97 15.03 16.81 22.46

7 9.80 12.02 14.07 14.70 15.51 16.62 18.48 24.32

8 11.03 13.36 15.51 16.17 17.01 18.17 20.09 26.12

9 12.24 14.68 16.92 17.61 18.48 19.68 21.67 27.88

10 13.44 15.99 18.31 19.02 19.92 21.16 23.21 29.59

11 14.63 17.28 19.68 20.41 21.34 22.62 24.73 31.26

12 15.81 18.55 21.03 21.79 22.74 24.05 26.22 32.91

13 16.98 19.81 22.36 23.14 24.12 25.47 27.69 34.53

14 18.15 21.06 23.68 24.49 25.49 26.87 29.14 36.12

15 19.31 22.31 25.00 25.82 26.85 28.26 30.58 37.70

16 20.47 23.54 26.30 27.14 28.19 29.63 32.00 39.25

17 21.61 24.77 27.59 28.44 29.52 31.00 33.41 40.79

18 22.76 25.99 28.87 29.75 30.84 32.35 34.81 42.31

19 23.90 27.20 30.14 31.04 32.16 33.69 36.19 43.82

20 25.04 28.41 31.41 32.32 33.46 35.02 37.57 45.31

21 26.17 29.62 32.67 33.60 34.76 36.34 38.93 46.80

22 27.30 30.81 33.92 34.87 36.05 37.66 40.29 48.27

23 28.43 32.01 35.17 36.13 37.33 38.97 41.64 49.73

24 29.55 33.20 36.42 37.39 38.61 40.27 42.98 51.18

25 30.68 34.38 37.65 38.64 39.88 41.57 44.31 52.62

26 31.79 35.56 38.89 39.89 41.15 42.86 45.64 54.05

27 32.91 36.74 40.11 41.13 42.41 44.14 46.96 55.48

28 34.03 37.92 41.34 42.37 43.66 45.42 48.28 56.89

29 35.14 39.09 42.56 43.60 44.91 46.69 49.59 58.30

30 36.25 40.26 43.77 44.83 46.16 47.96 50.89 59.70

0

α

X2(α)
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 Table T5: The  F ‐distributionFF
 The value tabulated is  F (F α, v

1
 , v

2
 ), such that if  X   has an  X F ‐distribution with F v

1
  and  v

2

degrees of freedom, then α is the probability that X≥XX F (F α, v
1
 , v

2
 ).

Example:  For an observed test statistic of X = 5.1 with 3 and 4 degrees of freedom, 0.10 > α > 0.05.

v
1

v
2

α 1 2 3 4 5 6 7 8 9 10 20 ∞

1 0.10 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 61.74 63.30

1 0.05 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 248.02 254.19

1 0.01 4052.18 4999.34 5403.53 5624.26 5763.96 5858.95 5928.33 5980.95 6022.40 6055.93 6208.66 6362.80

2 0.10 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.44 9.49

2 0.05 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.45 19.49

2 0.01 98.50 99.00 99.16 99.25 99.30 99.33 99.36 99.38 99.39 99.40 99.45 99.50

3 0.10 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.18 5.13

3 0.05 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.66 8.53

3 0.01 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 26.69 26.14

4 0.10 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.84 3.76

4 0.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.80 5.63

4 0.01 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.02 13.47

5 0.10 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.21 3.11

5 0.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.56 4.37

5 0.01 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.55 9.03

6 0.10 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.84 2.72

6 0.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.87 3.67

6 0.01 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.40 6.89

7 0.10 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.59 2.47

7 0.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.44 3.23

7 0.01 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.16 5.66

8 0.10 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.42 2.30

8 0.05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.15 2.93

8 0.01 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.36 4.87

9 0.10 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.30 2.16

9 0.05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 2.94 2.71

9 0.01 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 4.81 4.32

10 0.10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.20 2.06

10 0.05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.77 2.54

10 0.01 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.41 3.92

20 0.10 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.79 1.61

20 0.05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.12 1.85

20 0.01 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 2.94 2.43

30 0.10 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.67 1.46

30 0.05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 1.93 1.63

30 0.01 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.55 2.02

40 0.10 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.61 1.38

40 0.05 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 1.84 1.52

40 0.01 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.37 1.82

50 0.10 2.81 2.41 2.20 2.06 1.97 1.90 1.84 1.80 1.76 1.73 1.57 1.33

50 0.05 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.78 1.45

50 0.01 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.27 1.70

100 0.10 2.76 2.36 2.14 2.00 1.91 1.83 1.78 1.73 1.69 1.66 1.49 1.22

100 0.05 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.68 1.30

100 0.01 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.07 1.45

∞ 0.10 2.71 2.31 2.09 1.95 1.85 1.78 1.72 1.68 1.64 1.61 1.43 1.08

∞ 0.05 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84 1.58 1.11

∞ 0.01 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34 1.90 1.16
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absolute benefi t increase (ABI), 506

absolute risk reduction (ARR), 506, 508

acquiescence bias see response acquiescence

activities of daily living (ADL) scales, 7, 31–32, 577

composite indicators, 45

cross-sectional analysis, 325, 326

item response theory, 190

question design, 71

scoring, 253

adaptation

to illness, 516, 524, 525

psychosocial, late problems, 15–16

administration, questionnaire, 268–270

baseline assessment, 273

checking forms before patient leaves, 272–273

help and proxies, 276–277

named persons responsible, 271–272

post-treatment follow-up, 275

reporting, 443, 444

during therapy, 273–275

time frame, 263–264, 274, 275–276

written guidelines, 272

age

adjusting for, 326, 483–488

co-morbidity and, 333, 334

differential item functioning (DIF) and,

210, 211, 212

normative data by, 480–482

Akaike Information Criterion (AIC), 181

allocation concealment, 530

α see Cronbach’s α; type 1 error

alpha factoring, 165

Alzheimer’s disease, 114, 115

Alzheimer’s Disease Assessment Scale – Cognitive 

subscale (ADAS-Cog), 323–324

analysis of covariance (ANCOVA), 331, 335

analysis of variance (ANOVA), 331–337

Cronbach’s α, 141, 142

intraclass correlation coeffi cient, 111–112

models, 336–337

multivariate (MANOVA), 388–389, 435

repeated measures, 373–378

standard error of measurement (SEM), 142

anchor items, 229

anchor methods, 482, 492–493

ANOVA see analysis of variance

antihypertensive therapy, 10, 19, 497–498

anxiety, 29, 36, 40

Apgar score, 52, 146

approximate goodness-of-fi t indices (AGFIs), 180, 181

area under the curve (AUC), 345–347

cross-sectional analysis, 322

modelling vs., 389–390

reporting, 363–364

sample size estimation, 286

Aristotle, 6, 519

assessment, QoL see measurement, QoL

association of variables

graphical methods, 340–341, 437, 439

see also correlations

asthma, 28, 85, 276, 506–508

asymptotically distribution-free (ADF) factor 

analysis, 170

attrition, 448–449

clinical trials, 262, 265

graphical presentation, 349, 352, 358

missing data, 400–401

reporting, 360–362

sample size estimation, 306

see also compliance; missing data

attrition bias, 531–532

auto-correlation, 368–372

error structure, 371, 372

exchangeable, 372, 373, 375, 376–377, 380–381

independent, 372, 375, 380, 381

matrix, 368–370, 371

multiplicative (time series), 372, 375, 380–381

patterns, 371–372

structure selection, 387

unstructured, 372, 375, 380–381

user-fi xed, 372

auto-regression, 377–378

available-case analysis, 395, 424–425

bar charts, 338–339, 436, 437, 438

Barthel Index of Disability (BI), 31–32, 577

baseline

assessment, 273, 385

changes from, 330–331

variables, reporting, 440
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Chronic Heart Failure Questionnaire, 489–490

chronic illness, 10, 479–480, 516

chronic kidney disease (CKD), 121–122, 403

Chronic Respiratory Questionnaire, 489–490

citations, backward and forward, 529

clinical interpretation, 475–509

clinical practice, 244

clinical signifi cance, 436, 477, 509

clinical trials, 259–282

administering QoL forms see administration, 

questionnaire

assessing quality, 529–532

compliance issues, 259, 262–268, 270

curative treatment, 9–10

defi ning multiple endpoints, 261–262

design issues, 260–262

impact of response shift, 523–526

instrument selection, 244–250

interpretation of results, 478

need for QoL assessment, 17–18, 260

palliative treatment, 10–12

protocols, 259, 261, 270–280, 282

questionnaire development, 58

registers, 529

reporting see reporting

sample size, 261, 283–307

standard operating procedures, 280–281

see also randomised controlled trials

clinicians

administering QoL forms, 268, 269–270, 271–272

selective reporting bias, 514

treating, infl uence of QoL forms on, 277–278

clinimetric indexes, 52–53, 73

item reduction, 84, 85

scoring, 250

validation methods, 145–147

closed questions, 64

Cochrane Collaboration, 527, 528–529, 530, 542, 546

cognitive interviewing, 77–79

Cohen’s d see standardised mean difference

Cohen’s effect-size index, 499, 503

colorectal cancer, 146, 175, 464, 466, 469

common item design, 229

communication, with patients, 13–14

Comparative Fit Index (CFI), 180, 181

complete-case analysis, 394, 424–425, 449

compliance, 262–268, 399–400

acceptable levels, 266–267, 532

assessing study quality, 531–532

causes of poor, 264–265

clinical trial protocols, 271

consequences of poor, 259, 265

improving, 266, 270

measuring, 263–264

recording reasons for non-, 267, 268

reporting, 360–362, 431–432

sample size estimation and, 306

see also attrition; missing data

composite indicators, 45, 55–56, 253

computer-adaptive tests (CATs), 32, 223–240

algorithm, 225

differential item functioning (DIF) and, 238

diffi culty factors, 182

battery instruments, 39

Beck Depression Inventory (BDI), 29

Benyamini–Hochberg false discovery rate, 435

best attribute scaling, 453

β (type 2 error), 284β
bias, 89, 511–516

assessing studies for, 530–532

item, 190, 211

missing data, 393, 396–399, 531–532

see also response shift; specifi c types of bias
bifactor analysis, 183–186, 206

binary data, 309–310

adjusting for covariates, 328–329

meta-analysis, 535, 537, 540

reliability, 105–107

sample size estimation, 292–294

binomial proportions, 312–313

blinding, 531

blood pressure (BP), 113, 476

Bonferroni correction, 303, 304–305, 434

bootstrap methods, 321, 466

box-and-whisker plots, 340–341, 352–354, 357, 358, 

437, 439

breast cancer

ANOVA, 333–334

bias and response shift, 515, 518

differential item functioning, 212

missing data, 398–399, 400–401, 424–425

number needed to treat, 508

Q-TWiST, 466–467, 468, 470–472TT
QoL assessment, 7, 15

Brief Pain Inventory (BPI), 29, 495–496

Brief Psychiatric Rating Scale (BPRS), 371, 386–387

cardiac problems, 132, 484

case–control studies, 291–292, 293–294

categorical data, 309–310

cross-sectional analysis, 313–316

factor analysis, 168–169, 171

see also ordered categorical data

causal indicators, 43–45

correlation-based validation methods, 144–147

factor analysis, 173–175, 176, 186–187

instrument development, 55–56

item response models, 207–208

necessary causes, 53–54

overlap with effect indicators, 44

refl ective indicators vs., 46

scoring methods, 252–253

structural equation modelling, 176–178

suffi cient causes, 53–54, 253

see also formative indicators

ceiling effects, 82–83, 119, 311, 432

censored observations, 322, 323

censoring, informative, 408

central tendency bias, 515

change, global ratings of, 489–492

change scores, 330–331, 536

chi-squared ( χ2χχ ) test

cross-sectional analysis, 313–316

goodness of fi t, 178–179

Mantel–Haenszel test, 213–214

Pearson, 292

statistical table, 583
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cost-effectiveness ratio, incremental (ICER), 460

cost-utility ratios, 460–462

costs, computer-adaptive tests, 237

covariance, 152

covariates

cross-sectional data, 324–330

longitudinal data, 385–387

criterion validity, 90, 94–95

Cronbach’s α, 40, 41–42, 139–142

acceptable values, 139

causal or formative indicators, 145, 147

item selection, 84, 139–140, 144

overuse and alternatives, 142

cross-sectional analysis, 309–343, 477

adjusting for covariates, 324–330

analysis of variance, 331–337

changes from baseline, 330–331

data types, 309–311

endpoints, 342–343

graphical summaries, 337–342

non-Normal distributions, 311, 318–321

Normal distributions, 311, 316–318

two-group comparisons, 312–324

cubic spline functions, 383

cultural differences, 6, 310

differential item functioning, 211, 217–218, 219

instrument development, 82, 85–86

instrument suitability, 249

cumulative distribution functions, 323–324

Dartmouth COOP Charts, 13–14

data analysis, 430–436

choice of method, 432–433

errors, 440–442

modelling, 435–436

multiplicity of outcomes, 433–435

repeated measurements, 435

reporting, 444–445

simple comparisons, 433

data saturation, 66, 67–68

death, attrition due to see attrition

debriefi ng questionnaires, 75, 81

decision-making, medical, 16–17

degrees of freedom, effect of imputation, 425

dementia, 245

dentures, 519, 525

depression, 29, 36, 40

computer-adaptive test, 235

meta-analysis, 533, 539, 543–545

multi-item scales, 72

descriptive data analysis, 337, 338, 436

detection bias, 531

development, questionnaire, 57–87

defi ning target population, 58–59

evaluating adequacy, 248

factor analysis, 160

item response theory, 209

phase 1: generating QoL issues, 61–68

phase 2: developing items, 68–74

phase 3: pre-testing, 74–80

phase 4: fi eld-testing, 80–86

phases, 59–61

qualitative methods see qualitative methods, 

instrument development

item bank construction, 224–232

item response theory, 52, 224, 226–228

multidimensional, 238

patient-reported outcomes, 237–238

pros and cons, 233

short-form tests, 239

stopping rules and simulations, 235

testing procedure, 232–234

testing software, 236

computer-assisted tests (CATs), 238–239

concurrent validity, 94

conditional logistic regression, 195

confi dence intervals (CI)
common errors, 440

correlation coeffi cients, 103, 129–130

impact of imputation, 412, 425

intraclass correlation coeffi cient, 112, 113, 116, 131

longitudinal data, 358, 362–363

meta-analyses, 533, 534, 542

two-group comparisons, 312, 318, 321

confi rmatory data analysis, 337–338

confi rmatory factor analysis (CFA), 149, 159, 176–178

factor scores, 161

sample size, 162

vs. other approaches, 150

conjoint analysis, 451–453

CONSORT statement, 283, 429, 445, 530

construct validity, 57, 90, 96–103

convergent validity, 98–99, 134

discriminant validity, 99, 134

known-groups validation, 96–98

multi-item scales, 126, 133–138

multitrait-scaling analyses, 135–138

multitrait–multimethod analysis, 100–103, 134

constructs, 36–37

contact persons, 271–272

content validity, 90–93

documentation, 57, 87

instrument development, 62–63, 74

continuous data

analysis methods, 311, 432–433

factor analysis, 168, 171

meta-analysis, 534–536, 538–539

reliability, 110–112

sample size estimation, 289–292

convergent validity, 90, 98–99

causal or formative indicators, 145

multi-item scales, 125–126, 134, 135

multitrait–multimethod analysis, 100–101

coping, 8, 28, 524

corner state utilities, 454

correlation matrix, 150, 151–152, 154

correlations, 125, 127–133

confi dence intervals, 129–130

correction for overlap, 133

factor analysis, 150–152

formative or causal items, 144–147

intraclass see intraclass correlation coeffi cient

limitations of analyses based on, 172–173

Pearson see Pearson correlation coeffi cient

polychoric, 132–133, 169

range of variables, 128

rank, 131–132

signifi cance tests, 128, 130–131
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eigenvalues, 155–156

greater than one rule, 156, 163, 164

EM algorithm, 420–421

embarrassing questions, 74, 76–77, 402, 403–404

end aversion, 515

endpoints, 443

cross-sectional analysis, 342–343

meta-analyses, 528

multiple see multiple endpoints

EORTC (European Organisation for Research and

Treatment of Cancer), 25–26, 32

guidelines for developing questionnaires, 59,

66–67, 75, 87

EORTC QLQ-C30, 25, 559–560

auto-correlation, 369–370

clinical interpretation, 490–491, 494–495

compliance, 264, 265

correcting for overlap, 133

Cronbach’s α, 141

design, 36, 68–69, 71, 72, 86

differential item functioning, 212, 214, 

216–218, 219

disease- or treatment-specifi c modules, 

25–26

examples of use, 15–16, 17

FACT-G vs., 26, 86

graphical summaries, 338–339, 340, 341, 342

longitudinal data, 349

mapping studies, 458–459

missing data, 398–399, 404, 405–406, 407, 

408, 411

normative data, 480–482, 485–487, 488

QLQ-CR29 module, 146

QLQ-ELD14 module, 26, 561

QLQ-LMC21 module, 135–136, 137, 138, 141, 

143–144

sample size estimation, 285–286

scoring, 251, 255

selection, 245, 246–247

structural equation modelling, 177, 181, 182

validation, 41, 93, 101–102

epilepsy, 27–28, 65

EQ-5D see EuroQol

equamax rotation, 166

equivalence trials, 260

equivalent-forms reliability, 104, 116–117

error component, 336

error terms, 49, 336, 376

erythropoietin, 246

essentially tau-equivalent tests, 50

estimation, 126

European Organisation for Research and Treatment 

of Cancer see EORTC

EuroQol (EQ-5D), 23, 555–556

design, 5, 7, 70

quality-adjusted survival, 455, 458–459, 466

selection, 246

youth version (EQ-5D-Y), 106–107

evaluative scales, 54–55, 118

existential beliefs, 8, 28

expectations model, Calman’s, 8

expected mean scores, 483

expert judgement, 494–495

exploratory data analysis, 337, 338, 436

differential item functioning (DIF), 85, 210–222

age-related, 210, 211, 212

computer-adaptive testing and, 238

item response theory, 215

logistic regression, 215–218, 220

Mantel–Haenszel test, 213–214

pseudo, 217–218

quantifying, 219

sample size, 218–219, 220

tips for exploring, 219–221

uniform/non-uniform, 216

diffi culty

item, 191–192, 197

test, 190

diffi culty-factors, 182–183

dimensionality

computer-adaptive tests, 226–228, 237, 238

Cronbach’s α and, 140–141

evaluating, 125, 134, 138, 139

see also unidimensionality

dimensionless numbers, 505

dimensions, QoL, 5, 37

disability-adjusted life years (DALY), 473

disability paradox, 517–518

disability scales, 31–32, 577

discounting, QALYs, 460

discrete choice experiments (DCE), 451–453

discriminant validity, 90, 99

causal or formative indicators, 145

multi-item scales, 126, 134, 135

multitrait–multimethod analysis, 100–101

discrimination

item, 193, 197

test, 194

discriminative scales, 54–55, 118

disease-specifi c instruments, 24–28, 559–571

fi nding suitable, 244, 245–246

mapping utilities across, 458–459

disutility, 453

divergent validity see discriminant validity

domain-specifi c instruments, 28–32, 573–577

fi nding suitable, 245–246

downward comparisons, 515

dropouts, 400, 409

see also attrition; compliance; missing data

dummy variables, 334–335, 387, 414

dysphagia, 109–110, 348, 349, 383

Edmonton Symptom Assessment Scale (ESAS), 69

educational tests

computer-adaptive tests, 219–221, 237

item response theory, 51–52, 190, 197

effect indicators see refl ective indicators

effect size (ES), 500–505

meta-analyses, 505, 534–537, 542–543

paired data, 502, 535

sample size estimation, 284–290, 305, 499

scale validation, 118, 122, 123

two independent groups, 500–502

see also standardised response mean

effect-size index (Cohen), 499, 503

effect size statistics, 498–505

differential item functioning, 215–216, 220

standardised, 498, 534, 535
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fi xed-effects models

longitudinal data, 380, 382–384

meta-analysis, 538–543, 544

fl at maximum effect, 253

fl oor effects, 82–83, 311, 432

focus groups, 63, 64–65, 66

follow-up

assessment, 275

losses to see attrition; compliance; missing data

follow-up forms, clinical, 280

follow-up studies, 477

Food and Drug Administration (FDA), US, 9, 87, 512

forest plots, 533, 536, 538, 542

formative indicators, 42, 45–46, 56

ceiling and fl oor effects, 83

correlation-based validation methods, 144–147

factor analysis, 51, 173–175, 186–187

item reduction, 84, 85

scoring methods, 252–253

see also causal indicators

formative models, 46–48

framing, 513, 515

Functional Activity Questionnaire (FAQ), 32

Functional Assessment of Cancer Therapy – Breast 

(FACT-B), 333–334

Functional Assessment of Cancer Therapy – General

(FACT-G), 26, 562–563

clinical interpretation, 494

embarrassing question, 74

EORTC QLQ-C30 vs., 26, 86

longitudinal data, 350–351

selection, 245, 246–247

validity, 93, 101–102

Functional Assessment of Cancer Therapy – Lung 

(FACT-L), 11, 500–501

Functional Assessment of Chronic Illness Therapy

(FACIT), 26, 102–103, 130

Functional Living Index – Cancer (FLIC), 15, 409

funnel plots, 544–545

gain, 467–468

gastric cancer, 409, 422

gastro-oesophageal refl ux disease (GORD), 461–462

gender

adjusting for, 326, 483–488

normative data by, 480–481

generalised estimating equations (GEE), 380–381

generalised partial credit model (GPCM), 197, 198, 

204–205

generic instruments, 20–24, 549–557

fi nding suitable, 244, 245–246

Glass’s Δ, 535, 536

global questions, 5, 35, 37–38, 56

interpreting results, 475–476

multi-item scales vs., 40–42

see also single-item scales

global ratings of change, 489–492

global score, 38

item response theory, 191, 193

goodness of fi t, 199

Goodness of Fit Index (GFI), 180, 181

goodness-of-fi t indices

approximate (AGFIs), 180, 181

item response theory models, 202–205

exploratory factor analysis (EFA), 149,

154–175

diffi culty-factors, 182–183

factor rotation, 165–166

factor scores, 161

formative or causal models, 47, 51, 173–175, 

186–187

historical perspective, 159

structural equation modelling vs., 176

vs. other approaches, 150

F-distribution, 584

F-statistic (F-ratio), 119, 373

F-test, Fisher’s, 331, 333, 334

face validity, 74, 91–93

FACIT see Functional Assessment of Chronic 

Illness Therapy

FACT see Functional Assessment of Cancer 

Therapy

factor(s), 37, 154

loadings, 156, 252

number of, 163–164

rotation see rotation, factor

factor analysis, 50–51, 149–188

assumptions, 167–171

asymptotically distribution-free (ADF), 170

categorical data, 168–169, 171

choices and decisions, 161–167

confi rmatory see confi rmatory factor analysis

correlation patterns, 150–152

covariance, 152

dimensionality, 139

exploratory see exploratory factor analysis

formative indicators, 51

historical perspective, 159

illustrative example, 154–157

method of estimation, 164–165

multitrait scaling and, 138

oblique axes, 166–167

orthogonal rotation, 165–166

path diagrams, 152–154

QoL research, 171–175

sample size, 162–163

uses, 159–161

factor score indeterminancy, 161

factor scores, 161

faking good/bad, 515

false negative, 284

false positive, 284, 433

fatigue, 12, 54

area under the curve, 363–364

computer-adaptive test, 226, 234, 238

cross-sectional analysis, 334

graphical presentation, 437, 438

modelling longitudinal data, 375–376, 378–381, 

384, 385, 387

response shift, 519

scales assessing, 30–31, 246

feedback mechanisms, 178

fi eld-testing, 60–61, 80–86, 143

Fisher’s exact test, 314

Fisher’s F-test, 331, 333, 334

fi t-residuals, 204

fi ve-and-twenty rule, 266–267, 532
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301, 307

wording of questions, 74

hot deck imputation, 419–420

Huntingdon’s disease (HD), 115–116

Hypericum see St John’s wort

hypertension, 10, 19, 476

I2 statistic, 543–544

identity link, 388

impact of illness (or treatment), 8

imputation, 358, 395–396, 410–426

assessing study quality, 532

degrees of freedom, 425

deterministic methods, 415

incorporating variability, 415–421

missing forms, 410–425

missing items, 405–407

multiple, 421–422, 423

sensitivity analysis, 426

simple methods, 410–415

incremental cost-effectiveness ratio (ICER), 460

index, 39, 45

development, 73

score, 253

indicator variables, 42–48, 55–56

scoring, 252

individual patient data (IPD) meta-analysis, 541

information functions, 200

information leafl ets, patient, 269, 278–279

informative censoring, 408

informative missing data, 394, 402

instrumental activities of daily living (IADL) scales, 32

instruments, 3, 19–32

adding ad-hoc items, 249–250

administration see administration, questionnaire

battery, 39

content and presentation, 246–247

developing new see development, questionnaire

disease-specifi c see disease-specifi c instruments

domain-specifi c see domain-specifi c instruments

generic see generic instruments

historical development, 7–9

identifying suitable, 244–247

profi le, 23, 39, 447–448

scoring, 250–256

selection, 243–244, 247–249, 430

see also measurement scales

intelligence, 38, 49, 159

inter-rater reliability, 104, 114–116

internal consistency/reliability, 47

causal or formative indicators, 145

multi-item scales, 125, 139–142

single-item scales, 104

see also Cronbach’s α
interpretation, clinical, 475–509

interval scales, 69

interviews

instrument development, 63–64

patient, 63

specialist, 62–63

intraclass correlation coeffi cient (ICC), 110–112

inter-rater reliability, 114, 115–116

multi-item scales, 131

goodness-of-fi t test, chi-square, 178–179

graded response model (GRM), 197, 198

graphical presentations, 436–439

common errors, 440–442

cross-sectional data, 337–342

logistic item response models, 199–202

longitudinal data, 348–358, 367

showing variability, 357–358

groin hernia repair, 537–538, 540, 541, 544

guidelines

expert judgement for, 494–495

questionnaire administration, 272

reporting, 442–445

Guttman scales, 71–72, 210

HADS see Hospital Anxiety and Depression Scale

halo effects, 515

Hamilton Rating Scale for Depression (HRSD), 533, 

544–545

happiness, 6

hazard ratio, 297

Headache Impact Test (HIT), 216, 226, 228,

231–232

health economics, 256, 456–457, 458–462

health outcomes assessment, 3

health-related quality of life (HRQoL), 3, 5, 9

health status measures, 4, 7, 20

Health Utilities Index (HUI-2 and HUI-3), 454, 455, 

458

health, WHO defi nition, 4, 6

healthy-years equivalent (HYE), 472–473

Hedge’s adjusted g, 535, 536

help, with completing forms, 276–277

heterogeneity

sample see sample selection/heterogeneity

study, meta-analysis, 542–544

hierarchical scales, 71–72, 406

histograms, 338–339, 352–354, 436, 437

historical development, QoL concepts, 6–9

HIV Overview of Problems – Evaluation System 

(HOPES), 99–100

Holm step-down procedure, 434

home parenteral nutrition, 146

homogeneity

sample see sample selection/heterogeneity

scale, 134, 139

study, meta-analysis, 542–544

test, 314

horizontal mean imputation, 413–414, 415

Hospital Anxiety and Depression Scale (HADS), 11, 

29, 573

clinical interpretation, 500–501

correlation patterns, 150–152

criterion validity, 95

cross-sectional analysis, 313–317, 321, 329

factor analysis, 154–161, 164, 167–169, 173

indicator variables, 44

item response theory, 202–203

longitudinal data, 349, 352–353, 355–356, 357

multi-item scales, 125

non-Normal distribution, 290, 302, 319

path diagrams, 153, 154

reliability, 40

response shift, 518
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Karnofsky Performance Scale, 7

Katz index, 31

KDQOL (kidney disease quality of life), 121–122, 

403

known-groups validity, 96–98, 120

Kruskall–Wallis test, 335–336

labelled categorical scales, 68–69

landmark analysis, 449

language differences, 6, 310

differential item functioning, 211, 216–218, 219

instrument suitability, 249

last value carried forward (LVCF), 410–411, 415

late entry, 400

latent roots, 155–156

latent traits, 37

latent variable model, 38–39

latent variables, 36–37

correlation studies, 134

re-specifying, 48

least squares, unweighted, 165

length, questionnaire, 237

life events, changes in relation to, 496–498

Likert summated scales, 50, 69, 73

scoring, 250–253

linear analogue self-assessment (LASA) methods, 

7, 70

linear regression models, 324–326

ANOVA model vs., 337

link function, 388

literature search

instrument development, 61–62

meta-analysis, 528–529

suitable instruments, 244

local independence, 153, 206–207

computer-adaptive tests, 226–228, 237

log odds-ratio (log(OR))
differential item functioning, 215–217, 218, 

219, 220

meta-analysis, 535, 537, 541

log relative risk (log(RR)), 535, 537

logarithmic transformation, 290, 302

logistic item response models, 193–196

applying, 197–205

assumptions, 206–207

computer-adaptive testing, 224

fi tting, 198–199

goodness-of-fi t indices, 202–205

graphical goodness-of-fi t methods, 199–201

one-parameter see Rasch one-parameter logistic 

model

sample size, 205

selection, 197–198

two-parameter, 194, 197

logistic models, longitudinal data, 388

logistic regression

cross-sectional analysis, 328–329

differential item functioning, 215–218, 220

item response theory, 195

logit transformation

cross-sectional analysis, 328

item response theory, 193–194, 

195, 199

longitudinal data, 388

sample size, 112, 113

test–retest reliability, 113, 114

variants, 124

inverse variance weighted method, 538–539

item(s), 35–36

ad hoc, adding, 249–250

anchor, 229

coverage, 47, 91

distribution of responses, 82–83

linking, 228–229

list construction, 59, 68–74

missing see missing items

not applicable, 408

reduction, 83–85, 226–228

relevance, 91

sequencing, 237

see also questions

item bank, 224–232

item calibration, 228

item evaluation and reduction, 226–228

item linking, 228–229

stages of development, 227

test equating, 230–231

test information, 231–232

item bias, 190, 211

item calibration, 225, 228

concurrent, 229

separate, 229

item characteristic curves (ICC), 191–193, 194

assessing goodness of fi t, 199–202

differential item functioning, 215

item diffi culty, 191–192, 197

computer-adaptive tests, 237

item discrimination, 193, 197

item information curves, 201–202

item information functions, 200

item location, 192

item-misfi t indexes, 204, 208

item non-response, 400

item pool see item bank

item response theory (IRT), 51–52, 189–210, 

221–222

based scoring, 252, 255–256

computer-adaptive tests, 52, 224, 226–228

detecting redundant items, 84

differential item functioning, 215

diffi culty factors, 182

Guttman scales vs., 71–72, 210

item characteristic curves, 191–193

logistic models see logistic item response models

main models, 197

model assumptions, 205–208

model fi tting: tips, 208

polytomous models, 196

short-form tests, 239

test design and validation, 209

traditional scales vs., 209–210

unidimensionality assumption, 183–184, 206

iteration, 381

Kaplan–Meier survival analysis, 297

Kaplan–Meier survival curves see survival curves

kappa coeffi cient (κ), 105–107

weighted (κ
Weight

), 108–110, 112
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multiple item see multi-item scales

precision, 40–41

psychometric vs. clinimetric, 52–53

psychometrics, 48–52

reliability, 40

scope, 42

single item see single-item scales

suffi cient and necessary causes, 53–54

validity, 41–42

see also instruments

median, 320, 349, 432

Medical Outcomes Study 36-Item Short Form see
SF-36

medical team, administering QoL forms, 268, 

269–270, 271–272

meta-analysis, 527–546

assessing study quality, 529–532

combining studies, 537–542

defi ning objectives, 528

defi ning outcomes, 528

forest plots, 542

heterogeneity problem, 542–544

literature searching, 528–529

measures of treatment effect, 505, 534–537

publication bias and funnel plots, 544–545

summarising results, 533

Mini-Mental State Examination (MMSE), 201–202

minimal (clinically) important difference (MID),
488–493

anchoring, 492–493

effect size and, 499

expert judgement, 494–495

minimum detectable change (MDC), 493, 498

minimum-residual factoring, 165

missing at random (MAR), 402–403

imputation methods, 414–415, 426–427

missing completely at random (MCAR), 394, 

401–403, 426

missing data, 393–427

area under the curve, 347

attrition vs., 448–449

available-case analysis, 395, 424–425

biases, 393, 396–399, 531–532

complete-case analysis, 394, 424–425, 449

consequences, 265, 396–400

degrees of freedom, 425

generalised estimating equations, 381

ignorable, 402

imputation see imputation

informative, 394, 402

longitudinal data, 358, 389

pattern mixture models, 422–424

reasons for, 81–82, 262, 264–265

reporting, 431–432, 444

sample size effects, 306, 399

selection model, 423

summary measures, 395

types, 400–403

see also attrition; compliance

missing forms, 400, 408–425

instrument development and, 82

intermittent, 400, 408

reporting, 431–432

statistical methods, 410–425

longitudinal data, 345–365

area under the curve, 345–347, 363–364, 389–390

auto-correlation, 368–372

between- and within-subject variation, 380

covariates, 385–387

fi xed and random effects, 382–384

generalised estimating equations, 380–381

graphical presentations, 348–358, 367

interactions, 378–379

logistic models, 388

MANOVA, 388–389

meta-analysis, 542

missing data, 358, 389

modelling, 367–391

multilevel models, 373, 384–385

paired data, 379–380

repeated measures, 373–387

reporting, 360–364

tabular presentations, 358–360, 367

lung cancer, 11

biased reporting, 514

clinical interpretation, 476, 500–501

compliance, 262, 265, 270, 409

cross-sectional analysis, 313–314

longitudinal data, 348, 351, 352–353, 355–356, 357

Q-TWiST, 463TT
sample size estimation, 287–288, 296

manifest variables, 37

Mann–Whitney U-testUU
sample size estimation, 294, 295

two-group comparisons, 320

MANOVA (multivariate analysis of variance), 

388–389, 435

Mantel–Haenszel test, 213–214, 540

MAP-R program, 138

Markov chain imputation, 415–419

maximum-likelihood (ML) estimation

factor analysis, 163, 165, 168, 171

meta-analysis, 539

McGill Pain Questionnaire (MPQ), 29–30, 574

McNemar test, 293

mean(s), 432

comparing, 316–318, 433

medians vs., 349

sample size estimation, 289–292, 298, 299–300

mean and sigma method, 229

mean imputation

horizontal, 413–414

sample, 411–413, 415

simple, 405–406

measurement bias, 523

measurement, QoL

historical development, 6–9

indications, 17–18

methods, 18–32

reasons for, 9–17

see also administration, questionnaire

measurement scales, 35–56

constructs, 36–37

discriminative, evaluative and predictive, 54–55

indicator variables, 42–48, 55–56

items see item(s)

latent variables, 36–37
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necessary causes, 53–54

needs model, 8

nominal data, 309–310

nominal response model (NRM), 197

non-compliance see compliance

non-inferiority studies, sample size estimation, 298–301

non-Normal distributions, 119

adjusting for covariates, 328–329

ANOVA, 335–336

cross-sectional analysis, 311, 318–321

factor analysis, 168, 169–170, 171

sample size estimation, 290, 302

transformation, 290, 302, 321

non-normed fi t index (NNFI), 180

norm-based scoring, 20, 253–255

Normal distribution

adjusting for covariates, 324–328

area under the curve, 390

checking for, 335

cross-sectional analysis, 311, 316–318

factor analysis, 168, 169–170, 171

sample size estimation, 289, 290, 302

statistical tables, 579–581

structural equation modelling, 176

summary statistics, 432

T- and TT Z-scores, 255ZZ
Normal plot, 335

normal range, 505–506

norms, population (reference values), 479–488

adjusting for age and gender, 483–488

anchor methods, 482

sample size estimation, 298

Nottingham Health Profi le (NHP), 7, 21–22, 265, 551

nuisance variables, 99

null hypothesis, 126–127, 312

number needed to treat (NNT), 506–508

numerical data, 310–311

numerical rating scale (NRS), 41, 69, 71

nurses, administering QoL forms, 268

objectives, new QoL instruments, 58

oblimin, 166

oblique axes, factor analysis, 166–167

observers, assessing QoL, 18–19

odds ratio (OR)
clinical interpretation, 479

cross-sectional analysis, 328–329

log see log odds-ratio

Mantel–Haenszel test, 213, 214

meta-analysis, 537, 540–541

Peto’s, 540

sample size estimation, 292–293, 294–295

oesophageal cancer, 12, 383, 458–459

off-schedule patients, 362

one-parameter logistic model see Rasch one-

parameter logistic model

open questions, 64

ordered categorical data, 310

cross-sectional analysis, 314–316

data analysis methods, 432–433

item response theory models, 196, 199–200

reliability, 107–109

sample size estimation, 294–296, 307

ordered categorical scales, 68–69

missing items, 400, 403–408

checking forms for, 272–273

hierarchical scales, 406

instrument development and, 76–77, 81–82

intermittent, 414

methods for dealing with, 404–408

rates, 403–404

reporting, 431

missing not at random (MNAR), 402–403, 408–409

imputation methods, 422–424, 426–427

mixed-effects models, 383

mixed outcomes, meta-analysis, 540–541

modelling methods, 435–436

monotonicity

computer-adaptive tests, 226–228

item response models, 206

mood, effects on responses, 514–515, 516

multi-attribute utility (MAU) measures, 453–454

multi-item scales, 36, 38–39

construct validity, 133–138

correlation-based methods, 127–133

Cronbach’s α and internal consistency, 139–142

developing, 72–73

formative or causal items, 144–147

item reduction, 84

scoring methods, 20, 250–256

signifi cance tests, 126–127

single-item scales vs., 40–42

validation, 125–147

multicentre clinical trials, 259, 410

multidimensional construct, QoL as, 5, 37

Multidimensional Fatigue Inventory (MFI-20), 12,

30–31, 575–576

multilevel models, 373, 384–385

multiple endpoints

clinical trials, 261–262

sample size estimation, 303–305, 306–307

multiple-group comparisons, 432

ANOVA, 333–335

sample size estimation, 303

multiple imputation, 421–422, 423

multiple-indicator multiple cause (MIMIC) models, 51

multiple regression analysis, 326–327

multiple testing, 433–435

differential item functioning, 220

sample size estimation, 303–305

multitrait analysis, 84, 150

multitrait–multimethod analysis (MTMM), 

100–103, 134

multitrait-scaling analyses, 135–138

multivariate analysis of variance (MANOVA),

388–389, 435

myeloma, multiple

cross-sectional analysis, 338–339, 340, 341, 342

interpreting results, 490–491

longitudinal data, 359, 361, 363–364

modelling longitudinal data, 369–370, 375–376, 

378–381, 384, 385, 387

reporting results, 436, 437, 438, 439, 441

myocardial infarction, acute, 13

National Institute for Health and Care Excellence

(NICE), 454, 455

nausea and vomiting, 18, 36, 44, 46, 514
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patient-reported outcome measures (PROMs), 3

patient-reported outcomes (PROs), 3–4, 6

Patient-Reported Outcomes Measurement Information 

System see PROMIS

pattern mixture models, 422–424

Pearson chi-squared ( χ2χχ ) test, 292

Pearson correlation coeffi cient (r), 110, 127–131

auto-correlation, 368, 369–370

comparing two, 130–131

confi dence intervals, 129–130

factor analysis, 151–152

signifi cance testing, 128

Pediatric Cardiac Quality of Life Inventory (PCQLI),

132

Perceived Adjustment to Chronic Illness Scale 

(PACIS), 5

percentages, 348–349, 433, 478–479

percentile rank, 253

performance bias, 531

performance status, compliance and, 265

person-misfi t indexes, 204, 208

person-reported outcomes, 3

personal well-being, 8

Peto’s odds ratio, 540

pilot study see pre-testing, questionnaire

polychoric correlation, 132–133, 169

polytomous item response models, 196

population norms see norms, population

populations

special, 244–245

target see target population

power, 284

loss due to missing data, 399

pre-study calculation, 305, 430

sample size estimation, 285, 289

pre-testing, questionnaire, 60, 74–79

precision, 40–41

predictive instruments, 54–55

predictive validity, 95

preference measures see utilities

preferences, patient, 8, 14–15, 449–453

principal-axes factoring, 165

principal-factor estimates, 163

probability, 127

profi le instruments, 23, 39, 447–448

profi le plots, 341–342, 440–441

individual patients, 352

reverse, 356–357

summary, 354–356

prognosis, Q-TWiST and, 470T
prognostic value, QoL scores, 16–17

promax, 166, 167

PROMIS, 32, 102–103, 130

prophecy formula, Spearman–Browne, 140

proportion of agreement, 105

proportions

binomial, 312–313

sample size estimation, 292–294, 298, 300–301

PROs see patient-reported outcomes

prostate cancer, 411, 416–420

protocols, clinical trial, 259, 261, 270–280, 282

proxy assessment, 3–4, 6

biased, 514, 515

clinical trials, 260–261, 276–277

inter-rater reliability, 114–116

ordinal outcomes, meta-analysis, 537, 540

ordinal scales, 68–69

orthogonal rotation, 165–166

orthomax rotation, 166

outcome reporting bias see selective reporting bias

outliers, 341

Overactive Bladder Symptom Score (OABSS), 123

overlap

correction for, 133, 135

latent variables, 134

Oxford Hip Score, 255

p-values, 127, 284

Bonferroni correction, 434

differential item functioning, 220

multiple comparisons, 433–435

reporting, 440

two-group comparisons, 312, 318

two-tailed or two-sided, 579–580

Paediatric Asthma Quality of Life Questionnaire 

(PAQLQ), 28, 570–571

Paget’s disease, 520–521

pain

assessment, 29–30, 48, 71

bias and response shift, 512, 513, 516, 520, 523

cultural differences, 217–218

factor analysis, 184–186

impact rating, 495–496

item response theory, 190, 207

longitudinal analysis, 345–346, 347

meta-analyses, 537–538, 540, 541, 544

sample size estimation, 300

scale validation, 114, 120, 130, 146

time-to-event analysis, 322–323

paired data

effect size, 502

longitudinal data, 378–379

meta-analysis, 535

sample size estimation, 291–292, 293–294

standardised response mean, 502

palliative care, 10–12, 260

missing data, 409, 422

non-compliance/attrition, 263, 264–265, 532

response shift, 524

parallel items, 47, 49–50

item response theory for testing, 210

parallel tests, theory of, 49–50

partial correlation, 99, 330

partial credit model (PCM), 197, 198, 202–203

partial-gamma test, 213

path diagrams, 152–154

patient(s)

asking, 18–19, 448

attrition see attrition

clinical trials, 268–269

defi ning target population, 58–59

help with completing forms, 276–277

instrument development, 63–68

preferences, 8, 14–15, 449–453

variability, 505–506

Patient Generated Index (PGI), 8, 23–24, 557

Patient Health Questionnaire 9 (PHQ-9), 29, 313–314

patient information leafl ets, 269, 278–279

Patient-Reported Outcome and Quality of Life 

Instruments Database (PROQOLID), 244
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randomised controlled trials (RCT), 3

adjusting for covariates, 326, 328, 330

curative treatment, 9–10

impact of response shift, 523–525

missing data, 393–394, 397–399

need for QoL assessment, 17–18

palliative treatment, 10–12

see also clinical trials

randomly parallel tests, 50

rank correlation, 131–132

ranked data see ordered categorical data

Rasch one-parameter logistic model, 194, 195–196, 

197, 221

based scoring, 255

sample size, 205

selection, 197, 198

rating scale model (RSM), 197

raw mean difference (MD), 534

raw score, 405

real simulations, 235

recall bias, 512–513

receiver operating characteristic (ROC) curves, 

490–491

rectal cancer, 485–487, 488, 501–502

reference values see norms

refl ective (effect) indicators, 42–48

ceiling and fl oor effects, 82–83

distinction from causal indicators, 46

factor analysis, 174

instrument development, 55–56

item reduction, 84

overlap with causal indicators, 44

refl ective model, 43, 47, 48

regression coeffi cients, 324–325

regression imputation, 406–407, 414–415

regression models

adjusting for covariates, 324–329

ANOVA models and, 336–337

changes from baseline, 330–331

longitudinal data, 376–379

multiple-group comparisons, 334–335

see also logistic regression

rehabilitation programmes, 12–13

reintegration to normal living model, 8

relative change, 118

relative effi ciency (RE), 118, 119, 121–122

relative risk (RR), 537

log (log(RR)), 535, 537

relative validity (RV), 118, 119

reliability, 40, 90

acceptable, 112

binary data, 105–107

continuous data, 110–112

equivalent-forms, 104, 116–117

inter-rater, 104, 114–116

internal see internal consistency/reliability

intraclass correlation coeffi cient (ICC), 110–112

multi-item scales, 125

ordered categorical data, 107–109

Pearson correlation coeffi cient, 110

repeatability, 104

sensitivity and, 120

single-item scales, 104–117

test–retest see test–retest reliability

repeatability, 55, 90, 104

psychometric scales, clinimetric scales vs, 52–53

psychometrics, 48–52

modern, 49, 51–52

traditional, 48–49, 50–51

PU-QOL (pressure ulcer quality of life), 116–117

publication bias, 544–545

Q-statistic, 543–544

Q-TWiST, 462–472TT
alternatives to, 472–473

calculation, 465–466

choice of health states, 463

comparing treatments, 466–467

prognosis and variation with time, 470–472

QALY vs., 462Y
sensitivity analysis, 467–469

survival curves, 463–464

QDIS-CKD (quality-of-life disease impact scale for 

chronic kidney disease), 121–122

QLQ-C30 see EORTC QLQ-C30

QoL see quality of life

qualitative methods, instrument development, 57–58,

63–68, 86

documentation, 86–87

focus groups, 64–65

interviews, 63–64

sample selection, 66

sample sizes, 66–67

saturation, 66, 67–68

quality-adjusted life years (QALY), 365, 456–462

alternatives to, 472–473

assumptions, 459–460

cost-utility ratios, 460–462

discounting, 460

mapping studies, 458–459

Q-TWiST vs., 462T
quality-adjusted survival, 447–474

quality-adjusted time without symptoms and toxicity 

see Q-TWiST
quality of life (QoL), 3–4

defi ned, 4–6

dimensions, 5, 37

historical development of concepts, 6–9

impact of state of, 495–496

Quality of Life in Epilepsy Inventory (QOLIE-89),

27–28, 566–569

Quality of Well-Being Scale (QWB), 454, 455

quartimax rotation, 166

questionnaires see instruments

questions

developing, 68–74

embarrassing or problematic, 74, 76–77, 272, 402, 

403–404

global see global questions

open and closed, 64

wording, 73–74

see also item(s)

radiotherapy, 12, 15–16, 334, 348, 458–459, 519

random-effects models

longitudinal data, 382–384, 386

meta-analysis, 538, 543, 544

random error term, 40

random variation, 337

randomisation, 273, 279–280, 530
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formulae, 288–300

multiple testing, 303–305

non-inferiority studies, 298–301

non-Normal distributions, 302

pre-study stage, 305

reference population comparisons, 298

reporting, 430

selection of method, 301

specifying target difference, 305

two-group comparisons, 289–298

sampling bias, 85

satisfaction with life, 8, 28

saturation, data, 66, 67–68

saturation grid, 68

scale scores, 20, 39

linking of see test equating

precision, computer-adaptive tests, 225, 233, 234

use of factor analysis, 160–161

scales, measurement see measurement scales

scaling errors, 135–136

scaling success, 135, 137

scatter plots

association of variables, 340, 437, 439

factor analysis, 157

longitudinal data, 349–352

Schedule for Evaluation of Individual Quality of Life 

(SEIQoL), 8, 23–24, 519

scores, scale see scale scores

scoring, 50, 250–256

health economics, 256

IRT-based, 252, 255–256

norm-based, 20, 253–255

standard, 20, 250–252

summated scales, 250–253

scree plot, 163, 164

search, literature see literature search

secondary gain, 517–518

SEIQoL see Schedule for Evaluation of Individual 

Quality of Life

selection bias, 530

selection model, 423

selective reporting bias, 513–514, 518, 523, 531

self-esteem, 28

self-reported health (SRH), 4

sensitivity, 55, 90, 117, 119–122

assessment methods, 120–122

measures of, 118–119

sensitivity analysis

imputed data, 426

Q-TWiST, 467–469TT
serial correlation see auto-correlation

sexual function, questions about

instrument development, 74, 76–77, 78–79

missing data, 272, 402, 403–404

“sexual reorientation” therapy, 525

SF-6D, 23, 455, 457, 458

SF-12, 121–122

SF-36, 15, 22–23, 552–554

factor analysis, 176

item response theory, 195–196, 221

missing data, 424–425

precision, 41

sample size estimation, 291–292

scoring, 254

repeated assessments

data analysis, 435

sample size estimation, 303

validation, 104–123

repeated-measures ANOVA, 373–380

reporting, 429–445

compliance, 360–362, 431–432

data analysis, 430–436

design issues, 430

errors, 440–442

guidelines, 442–445

longitudinal data, 360–364

residuals, 180, 336, 337

auto-correlation, 376, 387

fi t-, 204

respondent validation, 74

response acquiescence, 277–278, 515

response shift, 511, 512, 516–526

assessing, 521–522

impact, 523–526

response thresholds

disordered, 199

item characteristic curves, 199–200

item response theory models, 196, 197

responsiveness, 90, 117–119, 122–123

different types of scales, 54

measures of, 118–119, 122

responsiveness statistic, 118

reverse profi les, 356–357

risk difference, 537

Root Mean Square Error of Approximation (RMSEA), 
180, 181

rotation, factor, 157–158, 159

oblique, 166, 167

orthogonal, 165–166

Rotterdam Symptom Checklist (RSCL), 26–27, 

564–565

differential item functioning, 210–211

factor analysis, 171–172, 173, 174, 175

St John’s wort (Hypericum), 533, 539, 545

sample, 126, 443

sample-mean imputation, 411–413, 415

sample selection/heterogeneity

correlation studies, 128

Cronbach’s α and, 141

instrument development, 66, 76, 80–81

multitrait-scaling analysis, 136–137

sample size, 283–307

clinical trials, 261, 283–307

differential item functioning, 218–219, 220

factor analysis, 162–163

instrument development, 66–67, 76, 85

item response theory models, 205

missing data and, 306, 399

multitrait-scaling analysis, 136

reliability studies, 112, 113

responsiveness studies, 123

sample size estimation, 284–307, 499

choosing power, 285

choosing target effect size, 285–288

choosing type 1 error, 285

clinical relevance, 477–478

compensating for attrition, 306
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STATA program, 154, 163

statistical analysis see data analysis

statistical signifi cance, 436, 476–477

tests see signifi cance tests

statistical tables, 579–584

stopping rules, computer-adaptive tests, 235

Stroke Impact Scale (SIS), 503–504

structural equation modelling (SEM), 51, 149, 

176–188

approximate goodness-of-fi t indices, 180

bifactor analysis, 183–186

chi-square goodness-of-fi t test, 178–179

comparative fi t of models, 181

diffi culty-factors, 182–183

formal or causal relationships, 186–187

vs. other approaches, 150

Student’s t-distribution, 582

Student’s t-test see t-test

subgroup differences, 85, 211

subjective measures, 6

suffi cient causes, 53–54, 253

sum-scores, 250–252

standardised, 250–251

weighted, 252–253

summary measures, 4, 73

continuous data, 311

longitudinal data, 346–347, 363, 365

missing data and, 395

selection, 432

summary profi les, 354–356

summated ratings, 73, 250–253

survival, quality-adjusted, 447–474

survival analysis, 297

survival curves, 323, 358, 360–362

missing data, 400–401

Q-TWiST, 463, 464, 465TT
survival studies, clinical interpretation, 476, 477

survival times, 322

Swal-Qol dysphagia questionnaire, 109–110

symptoms

factor analysis, 173–175, 186–187

improving, 12–13

interference of, 8

item response theory, 207

scoring methods, 252–253

syndromes, 173

t-distribution, Student’s, 582

T-scores, 20, 253–255TT
t-statistic

paired, 118, 119

squared, 119

t-test

comparing two means, 316, 318

sample size estimation, 286, 287, 289–290

tabular presentations, 358–360, 367, 440

target population

defi ning, 58–59

instrument development, 63–68

instrument suitability, 248

tau-equivalent tests, 50

terminal missing, 400

test equating (or linking), 225, 230–231

test for heterogeneity chi-square, 543–544

validation, 134

wording of questions, 69, 74

short-form tests, 239

Sickness Impact Profi le (SIP), 7, 21, 549–550

side effects

factor analysis, 173–175

interference of, 8

signifi cance tests, 126–127, 284

baseline variables, 440

chi-square test, 178–179

clinical interpretation, 476–477

correlations, 128, 130–131

differential item functioning (DIF) analysis, 220

multiple, 433–435

non-signifi cant, 440

two-group comparisons, 312

single-item scales, 36, 87

multi-item scales vs., 40–42

reliability, 104–117

sensitivity and responsiveness, 117–123

validity, 87–103

single rating, single-item scale, 39

see also global questions

16D (children with epilepsy), 28

skew distributions

ANOVA, 335–336

cross-sectional analysis, 317, 318–319, 322

factor analysis, 169, 170

sample size estimation, 290, 302

social comparison, 515

social desirability, 515

Social Readjustment Rating Scale (SRRS), 497–498

Spearman auto-correlation coeffi cient, 368, 369

Spearman–Browne prophecy formula, 140

Spearman, Charles, 159

Spearman rank correlation, 131–132

specialist interviews, 62–63

split-plot design, 373

spurious correlation, 99

standard deviation (SD), 152, 432

clinical interpretation, 479, 498–499

effect size and, 118, 500, 502

imputation methods reducing, 412, 414, 425

meta-analysis, 534

standardised response mean and, 502–503

standard error (SE), 127, 129, 498

meta-analysis, 534, 535, 539

two-group comparisons, 312, 317–318

standard error of measurement (SEM), 142

standard gamble (SG), 450–451, 457

standard operating procedures (SOPs), 280–281

standard scoring method, 20, 250–252

standardisation, 498–499

direct, 483

indirect, 483

standardised mean difference (SMD), 534–536, 

540–541

standardised response mean (SRM)
clinical interpretation, 500, 502–504

meta-analysis, 535, 536

scale validation, 118, 122, 123

Standardised Root Mean Square Residual (SRMR),
180

standardised score, 405
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unit non-response, 400

unweighted least squares, 165

upward comparisons, 515

urodynamic studies (UDS), 300–301

utilities, 449–453

mapping across instruments, 458–459

for traditional instruments, 457–461

utility-based instruments, 8, 23, 454–455

validation, 87

by application, 97

evaluating adequacy, 248

factor analysis, 160

formative or causal items, 144–147

item response theory, 209

multi-item scales, 125–147

quantitative vs. qualitative, 57–58

repeated assessments, 104–123

respondent, 74

scale alteration and, 143–144

single-item scales, 87–103

translated questionnaires, 80

validity, 41–42, 87–103

see also specifi c types of validity
variability

graphical display, 357–358, 362

imputation methods incorporating, 415–421

patient, 505–506

scaling for, 498–499

tabular display, 360

variance, 152, 331

explained, factor analysis, 155–156

Mantel–Haenszel test, 213

varimax rotation, 157–158, 165–166, 167

verbal rating scales (VRS), 68–69, 71

precision, 41

visual analogue scales (VAS), 7, 69–70, 71

patient preferences, 449–450

precision, 41

Visual Function Questionnaire-25 (VFQ-25), 492

voice problems, 92

vomiting see nausea and vomiting

weight of evidence, 284

weighted mean difference (WMD), 538–539

weighted sum-scores, 252–253

weights, 8, 252–253

WHOQOL-HIV-BREF, 97–98

willingness to pay (WTP), 451

windows (time)

form completion, 263–264, 274, 362

graphing longitudinal data, 352–354

World Health Organization (WHO), defi nition of 

health, 4, 6

yea-saying see response acquiescence

Z-scores, 253–255ZZ
z-statistic, 127, 312, 581

Z-transformation, 129ZZ
Zingiberaceae extracts, 536, 544

Zung self-rating Pain and Distress Scale, 30

test-for-trend, 314–316, 320

test information functions, 200, 202

computer-adaptive tests, 225, 231–232

testicular cancer (TC), 61–62, 63, 450

test–retest reliability, 55, 104, 113–114

then-test, 521–522

thought test, 46, 47

threshold utility analysis, 467–469

threshold values, 478–479

thresholds, response see response thresholds

time frame, for form completion, 263–264, 274, 

275–276

time-to-event analysis, 322–323

time-to-event data

cross-sectional analysis, 322–323

sample size estimation, 297–298, 307

time trade-off (TTO), 450

Tourangeau’s cognitive interviewing model, 77

transformation, non-Normal data, 290, 302, 321

transition probabilities, 416–418, 419

transition questions, 489–492

translation, 80

differential item functioning, 211, 216–218, 219

problems, 82

treatment

comparisons, reporting, 362–364

curative, 9–10

follow-up assessment, 275

infl uence of QoL forms on, 277–278

palliative see palliative care

QoL assessment during, 273–275

time interactions, 378–379, 385

treatment effect

cross-sectional analysis, 330–331

meta-analysis, 505, 534–537

modelling longitudinal data, 376–377, 379, 385–387

see also effect size

tuberculosis (TB), 53–54

Tucker–Lewis Index (TLI), 180, 181

TWiST (time without symptoms or toxicity), 463, 465T
two-group comparisons, 312–324, 432

ANOVA, 331–333

binomial proportions, 312–313

categorical data, 313–316

changes from baseline, 330–331

cumulative distribution functions, 323–324

effect size, 500–502

graphics, 437, 438

non-Normally distributed data, 318–321

Normally distributed data, 316–318

sample size estimation, 289–298

time-to-event data, 322–323

two-parameter logistic item response model, 194, 197

type 1 error (α), 284, 285, 289

type 2 error ( β), 284

unidimensionality, 37, 139

computer-adaptive tests, 226–228

essential/suffi cient, 184

evaluation, 125, 134

methods assuming, 182, 183–184, 206

see also dimensionality
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